“Proof-of-Work” Proves Not To Work

Ben Laurie & Richard Clayton

Presented at: WEIS04
University of Minnesota
14th May 2004
Summary

- Viewing “spam” as an “economic” problem
- Proof-of-work mechanisms
- How much proof do you want?
- Analysis from an economic viewpoint
- Analysis from a security viewpoint
- Conclusions
“Spam”

- Unsolicited Bulk Email is a major problem
- Some argue that problem is “Economics”
 - no charge for sending email
 - hence “one in a million” response is profitable
- Hence the fix is to charge for email?
 - real money? \(1p/email \Rightarrow \$160 \text{ billion annually}\)
 - phone companies would love this – would we?
 - eCash? doesn’t seem to have happened yet!
Proof-of-work schemes I

- Idea is to show that you care enough about your email to have expended effort in doing a (rather pointless) calculation first
 - there are ideas for useful calculations eg “Bread Pudding Protocols” (Jakobsson & Juels 1999) but generally just warms up the planet 😞

- Original idea: Dwork & Naur : Crypto 1992
 - used central server 😞😞😞
Proof-of-work schemes II

• Reinvented as HashCash (Adam Back, 1997)
 – compute \(\text{HASH}(\text{destination}, \text{time}, \text{nonce}) \) such that result has “\(n \)” leading zeros
 – \(2^n \) hard for sender, but trivial check for receiver

• Dwork, Goldberg, Naor (Crypto 2003)
 – analyse a function limited by memory speed
 – small variation between systems (factor of 4)
 – so this is much better than using classic HASH
Email Statistics

• November 2003 (consistent stats available)
 – 2.30×10^8 Internet hosts (ISC)
 – 5.13×10^8 Internet users (Radicati)
 – 5.70×10^{10} emails sent daily (Radicati)
 – 56% of all email is “spam” (Brightmail)

• Hence the average situation is
 – 60 spam (& 50 real) emails per person per day
 – 125 real emails per host per day
What about “mailing lists”?

- Expect to delegate proof-of-work analysis
- Lists common, but no published figures
- Inspected logs at large UK ISP (200K users)
 - this was after a spam filtering stage
 - consider identical source but >10 destinations
 - approximately 40% are of this form
- ie: reduce total to 75 emails per host per day
 - “back of envelope”, but only magnitude matters
How much work must we prove?

• Legitimate hosts must be able to send 75 emails per day (best case situation)
• Must reduce spam from 3.2×10^{10} per day
• Must allow for factor of 4 in capabilities
• Must assume spammers work 24 hours per day, but legitimate hosts may be switched off when not being actively used

… so all we need to do is to pick “n”
Economic analysis I

- Spammers charge 0.001 to 0.030¢ per email
 - survey in Goodman & Rounthwaite, 2004
- PC costs $500 / three years 50¢ per day
 - and pay electricity bill! 25¢ per day
- Spammer invests $50K and buys 100 PCs:
 - Salary $30K/annum 100¢ per day
 - So break-even at 35,000 emails/day/PC if can charge 0.005¢ each (ie: total 3.5 million /day)

[Scott Richter does 21 million/day @ 0.020¢]
Economic analysis II

- But spammers used to charge 0.1¢ per email (which leads to a break even rate of 1750)
- Spam response rates badly documented
 - 0.0023% reported (Wall Street Journal, 2002)
- If 0.0023% and 0.1¢ then cost of ads is $4.35/sale. So viable for many products
 - $50/mortgage lead; $85/cellphone, $60/pills
- Legitimate email response rates 0.7 to 1.6%
Economic conclusion

- Good guys
 - 75 emails/host (best case)
- Bad guys
 - 1750 emails/host (if price returns to 0.1¢)
- BUT bad guys will have “factor of 4” advantage over many good guys
- So some headroom, but not much
Security analysis I

• Lots of *owned* machines out there
 – SORBS: 960K HTTP, 1.2M SOCKS proxies
 – Recent viruses have hit million+ machines each

• Currently easy to spot *owned* machines
 – they send a lot of email!

• But what if they computed “proof-of-work”
 – quietly giving results to sender systems
 – hard to spot and so likely to be long-lived
Security analysis II

- Nov 2003, 3.2×10^{10} spam emails
- Suppose one million machines hijacked for proof-of-work (spammers share them out!)
- So, they only need to do 32,000 each
 - consistent with ISP figures for abused hosts
- **If** want 99% of our mailboxes to be real then must restrict spam to 250/host per day
- & for just 0.1% to be spam, then 25 per day
Security conclusion

- **Good guys**
 - 75 emails/host (best case)

- **Bad guys**
 - 250 emails/host (if spam is just 1% of mailbox)

- No “factor of 4” advantage this time
 - unless spammers can choose *owned* machines

- **So very** limited headroom
 - & impossible to reach “one in a thousand” level
Real hosts: daily rates

93.5% < 75
BUT
0.13% > 1750
1.56% > 250

viz: this impacts real senders

albeit some are just [exempted]
mailing lists
Real hosts: hourly rates

Spammers run 24 hours/day, real users don’t!

1% > 73/hour
i.e. 1750/day

13% > 11/hour
i.e. 250/day

viz: this impacts lots of people
Conclusions

• HashCash payment for email is attractive
• **BUT** spammer profit margins per sale mean that they may well be able to afford the PCs to do the proof-of-work required
• **BUT** hijacking of end-user machines means impractical to restrict them to 1% of email
• Simplistic proof-of-work just doesn’t work!
“Proof-of-Work”
Proves Not To Work
Proven

Ben Laurie
ben@algroup.co.uk

Richard Clayton
rnc1@cl.cam.ac.uk

& thanks to

Demon

The Cambridge-MIT Institute