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Abstract 

Vulnerability disclosure is an area of public policy that has been subject to considerable debate, particularly between 
proponents of full and instant disclosure, and those of limited or no disclosure. This paper is an attempt to 
empirically test the impact of vulnerability information disclosure and availability of patches on attackers’ tendency 
to exploit vulnerabilities on one hand and on the vendors’ tendency to release patches on the other. Our results 
suggest that while vendors are quick to respond to instant disclosure, vulnerability disclosure also increases the 
frequency of attacks. However, the frequency of attacks decreases over time. We also find that open source vendors 
patch more quickly than closed source vendors and that large vendors are more responsive.   

Keywords: Software Vulnerability, Full disclosure policy, attackers, patching behavior 

1. Introduction 

There is a contentious ongoing debate about how vulnerability information should be made public. While 
information about vulnerabilities enables some users to take precautions that prevent or reduce cyber 
security breaches, vulnerability information, especially when not accompanied by patches or 
workarounds, can benefit attackers more than users. There are many sources that report vulnerability 
information, ranging from federally funded quasi-government organizations like CERT/CC (the CERT® 
Coordination Center, the first computer security incident response team.) privately owned consulting companies.  
Traditionally, CERT has been a key player in the domain of vulnerability disclosure. A typical sequence 
of events in case of CERT is as follows. A benign identifier reports the vulnerability to CERT, which then 
contacts the vendors involved and provides them a certain time window to patch the vulnerability. After 
that time, CERT sends out public “advisories” warning users about the vulnerability. The advisories 
include links to patches if available and provide enough technical information about the vulnerability to 
enable users to take protective action. However, many identifiers also use public forums, such as the 
“Bugtraq” mailing list. Here, some identifiers make public all information including technical details of a 
vulnerability (sometimes also including the exploit code) even if the vendor has not released a patch.1  

While the proponents of instant disclosure claim that disclosing vulnerability information provides an 
impetus to the vendor to release patches early, the proponents of secrecy claim that instant disclosure 
leaves users defenseless against attackers who can exploit the disclosed vulnerability and therefore, are 
socially undesirable (see Elias 2001 and Farrow 2000)2. Gordon et al. [1999], while acknowledging the 
importance of these issues, point out the lack of hard evidence to assess the impact of various forms of 

                                                 
1 This type of disclosure is known as instantaneous disclosure. 
2See also the debate between Robert Graham and Bruce Schneier. http://www.robertgraham.com/diary 
/disclosure.html  LAST CHECKED??? 
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vulnerability disclosure. One major problem is lack of empirical evidence along a number of relevant 
dimensions. This paper is an attempt to empirically test the impact of vulnerability information disclosure 
and availability of patches on  

(i) Number of attacks seeking to exploit the vulnerability  
(ii) How promptly vendors release patches.  

The empirical estimates on attacker’s and vendors’ behavior are crucial for our ability to formulate an 
optimal disclosure policy. If the vendors do not patch quickly to instant disclosure then such policies are 
clearly socially detrimental and should be strongly discouraged. But even if they do patch earlier, we need 
to know how the attacker’s probability of attack changes with the disclosure, and with the patching. We 
investigate which types of vulnerabilities are more likely to be exploited by attackers, which need 
immediate user intervention and which are more likely to be patched by the vendor. We also examine if 
the large vendors and the open source vendors are more responsive.  

It has been argued by many researchers that Information security is not a problem that technology alone 
can solve and that it should be treated as a risk management problem [Schneier 2002]. Increasingly 
investments in countermeasures are being viewed within a risk management paradigm, not altogether 
different from those used for other business losses. But there is little empirical data to guide businesses on 
how to make this risk return tradeoff (Gordon, Loeb and Sohail [2003], Hoo [2000]).  

Using a game theoretic model Arora, Telang and Xu [2003] examine how disclosure affects vendor 
behavior, and the implications for when a social planner would optimally disclose a vulnerability. They 
find that although early disclosure could result in the vendor releasing a patch more quickly, it is not 
necessarily optimal. In general, they show that neither instantaneous disclosure nor secrecy policy is 
optimal. The optimal policy depends upon underlying factors such as how quickly vendors respond to 
disclosure by releasing patches, and upon how likely attackers are to find and exploit undisclosed or un-
patched vulnerabilities.  Our paper provides empirical evidence on these key underlying factors.  
Specifically, we investigate the impact of vulnerability disclosure on when vendors release patches, and 
of vulnerability disclosure and patching on the frequency of attacks seeking to exploit the vulnerability 
and the changes over time. 

Our preliminary empirical results are as follows. First, vulnerability disclosure increases the number of 
attacks on hosts, while the availability of patches reduces the number of attacks on hosts. Interestingly, 
the results also indicate that keeping vulnerability information secret may results in fewer attacks. Second, 
older vulnerabilities are less likely to be exploited by attackers than newer vulnerabilities. Similarly, 
vulnerabilities for which patches were released earlier are exploited less that those for which patches are 
relatively new. Third, instantaneous disclosure policy increases the probability of vendors fixing 
vulnerabilities and vendors are also more likely to patch and patch faster under instantaneous disclosure. 
Finally, open source software vendors patch faster than close source vendors, and large vendors are more 
responsive to vulnerabilities disclosed in their products. 

The reminder of this paper is organized as follows: section 2 focuses with the impact of vulnerability 
disclosure on attackers’ behavior and section 3 focuses on the impact of vulnerability disclosure policy on 
the vendors’ patching behavior. In both these sections, we provide details on our data collection and our 
analysis. We conclude with a summary of the results with a discussion in section 4. 

2. Impact of vulnerability disclosure and Patch availability on attack frequency  

This part of the paper deals with an empirical analysis of the impact of vulnerability disclosure and patch 
availability on the attackers’ tendency to exploit the vulnerability. In this part, we use the term “attack” to 
include attempts made by an attacker to compromise a remote host. This part is organized as follows: 
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Section 2.1 provides details about the data sources used in this paper. Section 2.2 contains a description of 
the econometric models and empirical estimates.  

Data 

We acquired two types of data for the purposes of this paper – data on security incidents and data on 
vulnerabilities that resulted in the security incidents. The first part of data comes from the honeypots run 
by www.honeynet.org and its affiliated members. A honeypot is a system that emulates a computer that is 
connected to the Internet. These are typically used to capture extensive data on information security 
attacks and motives of attackers [Spitzner 2000]. Unlike real networks where distinguishing between an 
attack and a legitimate traffic is not always possible, honeynets provides an easy way to detect attacks as 
honeypots by definition do not have legitimate network traffic [Stuart and Smith, 2000].  

The data consists of network traces from 14 honeypots operating on different operating environments – 
Linux, Solaris, OpenBSD and Windows – collected for several weeks over the course of a year. The 
honeypots were placed behind a firewall, with each honeypot having a separate IP address. The honeypots 
had no legitimate applications hosted on them. The honeypot data primarily consists of tcpdump traces of 
individual packets, both inbound and outbound. The data so captured consists of data on all the TCP/IP 
packets that entered or left any of the 14 honeypots along with the date and time, nature of the packet 
(payload), the source and destination addresses and also the source and destination processes. The data 
captured were stored in a secured remote database  

Data from honeypots are a valuable resource because they do not face the usual biases due to selection in 
detection and in reporting, present in most field data. Therefore, it is easier to classify attacks and 
eliminate false positives. However, though providing many advantages, there are some limitations as 
well.  First, an actual system will have legitimate traffic, so that the frequencies of attempted break-ins 
may systematically vary from those implied by the honeypot data. Further honeypots cannot provide 
insight into targeted attacks on an organization, nor for internal attacks that are mounted by employees 
with an organization. But despite these limitations, honeypots are a valuable data source, particularly in 
view of the paucity of reliable field data and the strong selection biases that such field data likely contain.  

Extracting attack data 

We created our key variable – the frequency of attacks targeting a vulnerability – by matching attack data 
with attack traffic signatures. Attack signatures are a set of rules that identify malicious packets and link 
them to specific vulnerabilities targeted. These signatures are based on packet payload, destination port 
and address, source port and address, packet sequence number, protocol or any combination of these. The 
attack signatures were acquired from publicly available source, specifically, Whitehats 
(www.whitehats.com) and Snort database (http://www.snort.org/cgi-bin/done.cgi). We implemented a 
custom parser based on WinTcpdump library and matched the tcpdump traffic from honeypots with attack 
signatures and collated them with vulnerabilities. This provides us with a count of the number of attempts 
to exploit a specific vulnerability, henceforth called the number o f attacks, over a given period3

Vulnerability data 

We selected 308 unique vulnerabilities at random from the from the Common Exposures and 
Vulnerability (CVE) ICAT database. The CVE ICAT database is a publicly available database that 
contains information about software vulnerabilities. The database aggregates information about software 
vulnerabilities from other public forums like CERT, Bugtraq or ISS. This database currently contains 
information on about 6000 vulnerabilities disclosed in various public forums from 1989 to 2004. Each 

                                                 
3 Each tcpdump data file consists of tcp logs accumulated from 12:01 AM of the start day till 12:00 AM of the end 
day during a period. Each period of observation typically contains about 5 days of observation. 
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vulnerability has a unique identifier known as CVE-ID and is further characterized by other descriptors 
like date of publication, severity type, vulnerability type4 and vendor whose software is vulnerable. We 
augmented vulnerability information with information on patches and exploit code5. While information 
on patches fixing vulnerabilities was acquired from the web site of different vendors, data about the 
availability of exploit code was acquired from different publicly available forums like Bugtraq 
(www.online.securityfocus.com), mailing list ARChives at AIMS (http://marc.theaimsgroup. com ), ISS 
(www.Xforce.ISS.net) and  Packetstorm (www.packetstorm.org).   

The data so assembled consists of 2772 observations over 9 weeks from Nov. 2002 to Dec 2003 for 308 
different vulnerabilities. Of 308 vulnerabilities, 73 vulnerabilities had no patches6 released by the vendor. 
About 160 vulnerabilities were made public on the same day7 when a patch fixing them was also released. 
About 75 vulnerabilities were patched before information about the vulnerability was made public.  

We classify vulnerabilities as either secret8, published9 or patched. A secret vulnerability is one that is 
neither patched nor published, a published vulnerability is published but not patched, and a patched 
vulnerability is both published and patched. In this paper, publishing a vulnerability is interpreted as the 
act of making information about a vulnerability public through public forums like CERT, Bugtraq etc. or 
by the vendor on its website. Tables 1 through 3 provide descriptive statistics of the sample.   

Table 1 – Period wise breakup of vulnerabilities 

Period Number of days of observation Patched Published Secret 

Period 1Nov 2002 5 206 78 24 
Period 2 (Jan 2003) 6 210 77 21 
Period 3 (Jan 2003) 5 210 77 21 
Period 4 (Jan 2003) 7 210 77 21 
Period 5 (Mar 2003) 7 212 78 18 
Period 6 (May 2003) 7 223 77 8 
Period 7 (Sep 2003) 7 231 75 2 
Period 8 (Nov 2003) 7 231 75 2 
Period 9 (Dec 2003) 7 233 75 0 

                                                 
4 Severity type consists of identifiers for how severe the vulnerability is based on the possible damage that could 
result on the attacked host.  Severity type includes security protection, confidentiality, integrity and availability. 
Vulnerability type denotes the technical characteristics of the vulnerability such as input validation error, boundary 
condition error, buffer overflow, access validation error, exceptional condition, environmental error, configuration 
error, race condition and other vulnerability 
5Exploit code also includes cases where no actual code is provided but where explanations on how to exploit the 
vulnerability are available.  
6 Vulnerabilities that were never patched would take a value of zero for the elapsed patch days but the dummy 
variable that denotes “not patched” vulnerabilities would take on a value of 1.  
7 Vulnerabilities that have been patched before they were published were deemed to have been patched and 
published on the same day.  
8 Vulnerabilities for which elapsed patch days and elapsed publish days are both less than zero are secret 
vulnerabilities. All secret vulnerabilities in our sample were eventually disclosed. 
9 These are vulnerabilities that have been published but not yet patched and would contain a positive value for 
elapsed publish days and negative values for elapsed patched days.  
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Table 2 – Descriptive statistics 

 Secret Published patched

Average number of attacks per host per day (attacks) 0.3145 5.45 2.50

Std. Deviation of average number of attacks 0.351 20.33 5.01

No of exploited vulnerabilities 22 59 57

Average age of exploited vulnerabilities (days from publication)10 -231 899.61 868.92

Minimum age of  exploited vulnerabilities (days from publication) -364 95 10

Maximum age of  exploited vulnerabilities (days from publication) -116 2144 2022

Average age of patches for exploited vulnerabilities (days from patch)11 233 -70.8 771.95

No of unexploited vulnerabilities 95 630 1909

Average age of unexploited vulnerabilities (days from publication) -109 1182.88 1092.80

Minimum age of unexploited vulnerabilities (days from publication) -363 27 4

Maximum age of unexploited vulnerabilities (days from publication) 0 3278 5548

Average age of patches for unexploited vulnerabilities (days from patch) -116 -3.96 991

 
 

Table 3 - Vulnerability by type 

 Number of vulns. Number of observations 

Vulnerability only affecting windows hosts 53 477 

Vulnerability only affecting Linux hosts 17 153 

Vulnerability only affecting Solaris hosts 11 99 

Vulnerability only affecting all UNIX hosts 25 225 

Vulnerability only affecting all hosts 10 90 

Other vulnerabilities+ 192 1728 

+Other vulnerabilities are those that not operating system vulnerabilities but vulnerabilities that pertain to 
application software that reside on an operating system that affects host, such as FTP client software vulnerability.  

2.1. Empirical estimates 
In the first part of this section we examine the average effect of patches and vulnerability disclosure. In 
the second part, we will examine the effect of elapsed days from the availability of patches and the effect 
of elapsed days from publishing on the attack frequency.  

Average effect of patching and publishing: Results from Non Parametric Analysis 
To understand the effect of patching we compare the differences in attacks per host per period between 
patched vulnerabilities and published vulnerabilities. Column (5) of table 4 indicates that availability of 
patches increases attacks on hosts at the rate of 0.02 attacks per day. Similarly, a comparison between 

                                                 
10 The age of a vulnerability is measured as the difference, in days, between the date of publication of vulnerability 
and the first day of the observation period, and takes negative values if the date of observation precedes publication. 
11 The age of patch is measured as the difference, in days, between the date of release of patch by vendor and the 
first day of the observation period, taking negative values if the date of observation precedes the release of the patch. 
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published vulnerabilities (column 7) and secret vulnerabilities (column 2) suggests that disclosure of 
vulnerability information too increases the number of attacks on hosts at the rate of 0.02 attacks per day. 
The “average effects” reported in table 4 are the difference between the change over time in attacks 
between patched and un-patched, and between secret and published vulnerabilities.  These estimates 
implicitly control for vulnerability characteristics by looking at changes over time within a vulnerability.  
However, these results do not explicitly control for time and location effects, for which we turn to 
regression results. 
 
Vulnerability characteristics vs. attack “fixed effects”: Regression results 
There are two ways of controlling for vulnerability characteristics in a regression framework: Controlling 
for vulnerability characteristics, and including vulnerability fixed effects. We show the results from both. 
We regress the number of attacks on patched, secret and published. We can either estimate a fixed effect 
model with vulnerability specific dummies or we can include vulnerability specific details. If denotes 
the number of attacks of vulnerability type i on during period t, then we estimate, 

itA

 ititittttiit epublishedretlocationstimedummieA ++++++= 2120 sec ββδδδα   (1) 

where iα  denotes the vulnerability fixed effects,  are dummy variables indexing time 
periods to control of time effects, and  is the dummy variable that denotes the location of 
honeypots from which data was gathered.. We set  secret

tstimedummie
ilocation

i=1, if vulnerability type i is secret and 0 
otherwise, and similarly , if the vulnerability has been published and 0 otherwise.  1=itpublished
The average number of attacks on vulnerabilities that have been patched and published is  

^

2

^^

0

^__
)0secret,0|( δδδα +++=== tiititit publishedAE            (2) 

The average number of attacks on the vulnerabilities that have not been patched but published is  
^

2

^

2

^^

0

^__
)0secret,1|( βδδδα ++++=== tiititit publishedAE       (3) 

The average effect of patching is 

      (4) 2

^____
)]0sec,1|()0secret,0|([ β−===−== itititititit retpublishedAEpublishedAE

The average number of attacks on vulnerabilities that are “not patched” and “not published” is  
^

1

^

2

^^

0

^__
)1secret,0|( βδδδα ++++=== tiititit publishedAE       (5) 

Using (3) and (5) the average effect of “publishing” is  
^

1

^

2

____
)]1sec,0|()0secret,1|([ ββ −===−== itititititit retpublishedAEpublishedAE  (6)    

Table 5 provides the estimated result using both fixed effects (column 2) and vulnerability specific 
characteristics (column 3). Since the results are different in both scenarios, it suggests that the available 
vulnerability characteristics may be insufficient to account for all the heterogeneity across vulnerabilities. 
We focus henceforth on the results using vulnerability fixed effects. 
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Table 4: Difference in means of average number of  attacks per host per day 
 Patched 

(1) 
Differe
nce in  

(1) 
betwee

n 
periods 

(2) 

Publish
ed (3) 

Differe
nce in 

(3) 
betwee

n 
periods   

(4) 

Effect 
of 

patchin
g  = (2) 

– (4)     
(5) 

Secret    
(6) 

Differe
nce in 

(6) 
betwee

n 
periods   

(7) 

Effect of 
publishing 
Col.(7) – 

col.(2)      
(8) 

Period 1 
(Nov 
2002) 

0.05 
(0.002) 

- 0.22 
(0.11) 

- - 0.004 
(0.001) 

- - 

Period 2 
(Jan 

2003) 

0.06 
(0.001) 

0.01 
(0.003) 

0.53 
(0.03) 

0.31 
(0.14) 

-0.30 
(0.14) 

0.06  
(0.005) 

0.056 
(0.01) 

0.05       
(0.01) 

Period 3 
(Jan 

2003) 

0.06 
(0.002) 

0  2.29 
(0.23) 

1.76 
(0.26) 

-1.76 
(0.26) 

0.04 
(0.004) 

-0.02 
(0.01) 

-0.02  
(0.01) 

Period 4 
(Jan 

2003) 

0.07 
(0.004) 

0.01 
(0.01) 

0.18 
(0.17) 

-2.11 
(0.40) 

2.10 
(0.41) 

0.10 
(0.009) 

0.06 
(0.01) 

0.05       
(0.02) 

Period 5 
(Mar 
2003) 

0.11 
(0.000) 

0.04 
(0.004) 

0.32 
(0.010) 

0.14 
(0.18) 

-0.10 
(0.18) 

0.06 
(0.004) 

-0.04 
(0.01) 

0  

Period 6 
(May 
2003) 

0.13 
(0.002) 

0.02 
(0.002) 

0.37 
(0.014) 

0.05 
(0.02) 

-0.03 
(0.02) 

0.11 
(0.017) 

0.05 
(0.02) 

0.03        
(0.02) 

Period 7 
(Sep 

2003) 

0.01 
(0.000) 

-0.12 
(0.002) 

0.01 
(0.007) 

-0.36 
(0.02) 

0.24 
(0.02) 

0 

 

-0.11 
(0.02) 

0.01       
(0.02) 

Period 8 
(Nov 
2003) 

0.01 
(0.005) 

0     
(0.005) 

0.02 
(0.002) 

0.01 
(0.01) 

-0.01 
(0.01) 

0 0 0 

Period 9 
(Dec 
2003) 

0.01 
(0.004) 

0 

 

0.001 
(0.001) 

-0.02 
(0.003) 

0.02 
(0.003) 

0 0 0 

Averag
e effect 

    0.02 
(0.13) 

  0.02 
(0.003) 

Notes: Standard errors in parentheses.  

The results in table 5 qualitatively similar to the differences-in-means estimates.  From table 5, the 

coefficient of  is -0.17 while the coefficient of   is -0.20. Both the estimates are statistically 
significant at 10%. Thus, the availability of patches is associated with an increase of about 0.17 attacks 
per host per day, while publishing vulnerabilities is associated with an increase of about 0.03 attacks per 
host per day. Clearly, patching information benefits attackers as well: If users do not patch right away. 

^

2β
^

1β

7 



Since not all users may patch quickly, attackers have an incentive to try out attacks even for those 
vulnerabilities that have been patched. The result also suggests that, on average, both published 
vulnerabilities and patched vulnerabilities are likely to be exploited more than secret vulnerabilities.  

Table 5: Impact of Patching and Publishing (OLS estimates) 
Variables Specification 1: 

 vulnerability characteristics+ 
Specification 2: 

 vulnerability fixed effects 
Windows 0.15        (0.96) - 

UNIX -0.04        (-0.26) - 
All 0.02        (0.13) - 
Linux 0.01        (0.05) - 
Secret -0.25***  (-2.92) -0.20*     (1.67) 
Published 0.51*      (1.72) -0.17**  (1.90) 
Location -0.43         (-0.72) -0.06      (0.67) 
Time dummies (8) Yes Yes 
N 2772 2772 
Notes: *** p < 0.01 * p < 0.10. +Estimates include security protection, confidentiality, integrity, availability, 
input_validation, boundary_condition, buffer_overflow, access_validation, exceptional_condition, config error, 
other_vuln. besides Windows, UNIX, all, Linux and others, which denote vulnerability specific effects.  

One of the limitations of the above method in understanding the effect of availability of patches and 
vulnerability information disclosure is that it is possible that both the effects could have been averaged 
over attacks that are irrelevant. For example there are many attacks that are not exploited by attackers 
because the vulnerabilities pertain to very old versions of the software. The descriptive statistics in table 3 
reveal that vulnerabilities not exploited by attackers generally tend to be much older than those that were 
exploited. In the analysis that follows we specifically consider the effect of age of the vulnerability and 
age of the patch on the number of attacks on hosts per day. In order to account for the fact that the 
vulnerabilities that are exploited tend to be older on average, we use a second order polynomial of elapsed 
days from date of publication of vulnerability and elapsed days from release of patch to understand the 
effect of elapsed days from availability of patches (elapsed patch days) and elapsed days from availability 
of vulnerability information (elapsed publish days).  

Time effect of patching and publishing:  
The probability of a vulnerability being exploited is a function of the attacker’s fixed cost to attack 
relative to the gains from attacking relative to the gains from attacking. We use the number of elapsed 
days from the date of publication of the vulnerability as a proxy for attacker’s fixed cost to attack. With 
time, attackers gather more information about vulnerabilities and the resulting proliferation of tools to 
exploit vulnerability reduces the fixed cost to attack. Since the fixed costs decrease with time, more 
attackers exploit unpatched vulnerabilities over time.  

The availability of patches decreases the proportion of hosts that are not patched. Increased patching 
makes it less probable that an attacker will try to exploit a vulnerability on a given host. We use the 
number of elapsed days from the release of the patch as a proxy for both these effects of patch 
availability. Since it is likely that newer versions of the vulnerable software are released with patches 
fixing vulnerabilities, elapsed days from patching could be a reasonable proxy for the proportion of hosts 
that are patched. For example, more recent build of Windows XP comes with service packs that contain 
patches for vulnerabilities. This would suggest that proportion of machines patched would steadily grow 
over time reducing the number of attacks. In order to study the time effects of patches and information 
disclosure we use the following specification:  
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We assume that the number of attacks that are observed on a host during a day, , is normally 
distributed, but since the number attacks cannot be negative, we use the Tobit specification: 

itA

*),0max(

)(])1[(

)1(*
2

76
2

5

4321

itit

ititpubpubpatch

patchitititittiit

AA

uutttnopatch

tnopatchpatchedpublishednopatchA

=

+≡+++−+

−+++++=

Xδδδδ

δδδδτα

        (7)  

In (7) above, is the random disturbance with .  and  are the elapsed patch 

months and elapsed publish months respectively, where these can take negative values and  and 

 are quadratic terms to capture non linearities in time effects.

itu ),0(~ 2σNuit patcht pubt
2

patcht
2

pubt 12 We assign a common vulnerability 
fixed effect dummy to attacks that are not exploited in any time period. In case of vulnerabilities that were 
exploited, each has a vulnerability specific dummy. This implies that we have 59 vulnerability dummies 

iα  though there are 308 vulnerabilities in all. As in the case of the linear model, , in case 
of a published vulnerability (vulnerability that was published and not patched) and secret = 1  in case of a 
secret vulnerability (vulnerability that was neither published nor patched). Time effects are included in 
the form of time dummies, 

1=itpublished

tτ . Table 6 provides the result of estimation. 

Table 6 Tobit regression – Effect of elapsed patch days and elapsed publish months 
Dependent variable – Average number of attacks per day per host (z-statistics in parentheses) 

Variable Coefficient Estimate 

Not Patched dummy -35.81*** (-4.72) 
Patched & Published dummy -34.32*** (-5.06) 
Published & Not Patched dummy 19.39***(2.56) 
Elapsed patch months*(1-Not Patched) 0.39       (0.80) 
Elapsed publish months 0.10       (0.25) 
Elapsed publish months squared -0.002     (-0.41) 
Elapsed patch months squared*(1-Not Patched) -0.002     (-0.32) 
Time dummy variable included (8) Yes 
Vulnerability dummy variable (59) Yes 
Vulnerability technical characteristics included No 
No. of observations 2772 
Log likelihood -632.20 
No of vulnerabilities 308 
σ (Std deviation) 12.69 
Notes: *** p < 0.01  ** p<0.05 * p < 0.10.  

Impact of elapsed patch and publish months 
The results are explained using figures 1,2,3,4 and summarized using figure 5. These figures have been 
constructed using the predicted values of the tobit regression reported in table 6. In each of these figures 

                                                 
12 Note that though all secret vulnerabilities are eventually disclosed (else they would not be in the sample), not all 
vulnerabilities are patched. Time elapsed since patch is thus not defined for unpatched vulnerabilities, and we handle 
this by only estimating the relevant coefficients for patched vulnerabilities, as shown in table 6. 
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X-axis represents time in elapsed calendar days and Y-axis represents )()()(
^^^

σσ
σφ δXδX δX +Φ=itAE , 

where (.)(.),φΦ and σ  represent normal CDF, normal PDF and estimated variance respectively. Figure 1 
shows the effect of publishing a vulnerability using a test case in which the vulnerability is published at 
t=0. In other words, the vulnerability depicted in the figure changed stats from secret to published at t=0. 
From figure 1, publishing a vulnerability sharply increases the expected number of attacks when 
published and then increases more gradually with time. 

 

 

 

 

 

 

 

 

 
 

Figure 1 Simulated impact of publishing without patch 

Case1-Published at t=0

-5.00

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

-400 -200 0 200 400 600 800 1000 1200

t

E
xp

ec
te

d 
#a

tta
ck

s/
ho

st
/d

ay

Figure 2 shows the impact of patching a vulnerability that was already published at t= -300  but patched 
at t=0. The sharp drop in the expected number of attacks per day per host after patching of vulnerability 
clearly indicates that patching deters attackers. But after patching, with elapsed patch days the expected 
number of attacks per day per host increases with time, which may be an artifact of our specification.   

 

 

  

 

 

 
 
 

 
 
 
 
 

Case2: Published t=-300 & Patched at t=0
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Figure 2 Simulated impact of patching a known vulnerability 

The trajectory of secret vulnerabilities is depicted in figure 3. As expected secret vulnerabilities are attract 
the fewest attacks, though the closer the vulnerability gets to being published the expected number of 
attacks per day per host increases, albeit  that the average number attacks is only around 0.02. 
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Figure 3 Simulated impact of secrecy 
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Vulnerabilities that were patched and published on the same day still get exploited more by attackers than 
secret vulnerabilities, as shown in figure 4. The figure depicts a small spike around at t=0. Further, the 
expected number of attacks per day per host increases with time, although the average number of attacks 
is still small, around 0.05 

 

Figure 4 – Simulated effect of patching and publication  
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To summarize our results, both patched and published vulnerabilities attract more attacks than the secret 
vulnerabilities and published vulnerabilities that have no patches tend to get the most attacks. Further, 
with time, the number of attacks per day per host increases in the case of patched vulnerabilities but the 
number of attacks per day per host decreases with time in the case of published vulnerabilities. The results 
are summarized for a vulnerability published at t=0 and patched at t=200.  

Although our results indicate that secrecy is effective in reducing attacks, this should not be over-
interpreted because our results do not address the question of damage, and neither do we entertain here 
the possibility of users mitigating or avoiding damage from attacks if informed of the vulnerability but 
without a patch.  The results do underscore the importance of understanding user patching behavior. As 
noted, release of a patch appears to increase the number of attacks. This could be many users apparently 
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do not install the patch. It could also be that the patch helps attackers develop better exploits, but it 
remains true that unless attackers expect significant delays among a substantial fraction of users in 
installing the patch, there would be little point in attacking.  Thus, a promising area for future research is 
to understand the factors that condition the speed with which users install patches, and in particular, the 
quality of the patch. 
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Figure 5- Simulated attack life cycle 
 

3. Impact of vulnerability disclosure policy on vendors’ patching behavior 

This part of the paper presents an empirical analysis of the impact of various forms of vulnerability 
disclosure policies on when vendors release patches. We begin by discussing the data sources and then 
present the results.  

3.1 Data 
We acquired data from two sources. The first source is a sample of vulnerabilities published in 
SecurityFocus database. To generate a random sample of instantly published vulnerabilities and to get 
detailed vulnerability information, we used CVE ID from CVE ICAT database and matched it with a 
random sample of SecurityFocus online software vulnerabilities. SecurityFocus is one of the most popular 
software security online communities in the world. The vulnerability information published on 
SecurityFocus is mainly from the ‘Bugtraq’ mailing list, which serves as a forum for security experts to 
exchange up-to-the-minute information on viruses, security flaws and exploits. Currently, the 
SecurityFocus database contains more than 7000 vulnerabilities, mainly published from 1999 to 2004. 
‘Bugtraq’ is a high volume, full disclosure mailing list for the detailed discussion and announcement of 
computer security vulnerabilities. Though the vulnerability information reported to Bugtraq is published 
instantaneously on Bugtraq, not all the vulnerabilities first published by Bugtraq correspond to 
instantaneous disclosure: Sometimes identifiers who discover the vulnerability notify vendors first and 
report to Bugtraq after a few days. In such cases, publication of vulnerability on Bugtraq is done only 
after the information about the patch fixing the vulnerability is acquired from vendors. In our data, we 
have tried to identify the instantly disclosed vulnerabilities by finding out the time when vendors are 
notified about the vulnerabilities (by verifying the date from other sources like visiting vendor site or 
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from CERT). The data so collated thus contains only vulnerabilities that would conform to the definition 
of instantaneous vulnerability disclosure. 

The second source consists of data on vulnerabilities is acquired from CERT/CC.13 As in the case with 
‘Bugtraq’ vulnerabilities, we matched CERT/CC vulnerabilities with CVE numbers in the CVE ICAT 
database. CERT/CC gets the vulnerability reports from individuals, open source parties, vendors and 
research institutes. Vulnerabilities disclosed by CERT/CC fits the definition of partial disclosure as 
CERT/CC does not release all technical information about a vulnerability. CERT/CC typically notifies 
vendors first after getting the vulnerability reports and provides vendors 45 days to patch the vulnerability 
before making the vulnerabilities public (CERT/CC, 2000). Further, in almost all cases, CERT/CC 
discloses information about vulnerability only after vendors issue patches fixing the vulnerability.  

We further augmented the data on vulnerabilities with statistical information about vendors such as firm 
type (Open Source or closed source), and sales and employment data from a  variety of sources, including 
Yahoo! Finance, Hoover's Online and Dun & Bradstreet's Million Dollar Database. Thus each observation 
in the sample contains vendor characteristics and vulnerability characteristics, including vulnerability 
class, exploit range, loss type, exposed system type and exposed component type and severity14.  

Using the data gathered, the number of days taken by the vendor to patch the vulnerability has been 
calculated using the typical life cycle of a software product. A typical life cycle of a software product can 
be described as follows (Arbaugh et al., 2000): At time ‘0’ the product is released by a vendor and used 
by users. A vulnerability is discovered by a benign user15 and reported at t0. Notice that if the 
vulnerability is reported to CERT/CC, then CERT/CC will contact vendor first, while if the vulnerability 
is reported to SecurityFocus, SecurityFocus will make it public immediately. Assume that vendors know 
about the vulnerability when they are notified about it or that they became aware on account of the 
vulnerability being published elsewhere. Disclosure policy T requires that this vulnerability is kept secret 
until time t0 + T and disclosed after that, so that T = 0 if the vulnerability is instantly disclosed. Vendors 
provide a patch16 for this vulnerability at a calendar time τ +t0

17. Attackers might find and exploit at time 
t0 0+s. We take “notify vendor date” or “first known public date”, which ever is earlier, as t . We use time τ 
to measure the time vendors take to patch the vulnerability.  

                                                 
13 CERT/CC, a major reporting center for Internet security problems, is a federally funded research and development 
center (FFRDC) operated by Carnegie Mellon University. 
14 vulnerability natures include the following fields: lunch type (remote or local), vulnerability class (Input 
validation error, Access validation error, Exceptional condition handling error, Environmental error, Configuration 
error, Race condition, Design error and others), Loss type (loss of availability, loss of confidentiality, loss of 
integrity, loss of security protection and others), Exposed System Component (Operating system, Protocol stack, 
Server application, Non-server application, Hardware, Communication protocol, Encryption module and others) and 
Destination type (Windows system, Unix System, Apple System) and others.  
15 A benign user is one not interested in exploiting this vulnerability. Also note that if an attacker discovers the 
vulnerability first then it will immediately attack and any disclosure policy is a moot. 
16 We use a loose definition of “patching” to include not only the vendor’s official patch, but also the release of a 
new version, workaround and any other type of remediation. 
17 Note that τ can be higher or lower than T if vulnerability is not disclosed immediately.  
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TABLE 7 Summary statistics by Year, Disclosure Policy, patched/un-patched, open/close source 

 1999 2000 2001 2002 2003 Total 
Avg. time to patch 
Measured by days 

92.69  
(139.40) 

66.19  
(142.09) 

179.84 
(603.65) 

66.66 
(164.13) 

67.13 
(226.02) 

103.36 
(365.77) 

Patched/Total 62 39 61 43 27 41 

 
(CERT/CC) 

Partial disclosure policy 
(Buqtraq) 

Instant disclosure policy Total 

Avg. days to patch  101.21                    
(373.36) 

126.38                    
(271.91) 

103.36 
(365.77) 

Patched/Total 40% 57% 41% 

Employee Size (k) 43.07                    
(91.14) 

40.46                     
(67.40) 

42.92 
(89.98) 

Open source/Total 12% 11% 12% 

Severity18 2.66                      
(0.58) 

2.43                      
(0.62) 

2.64  
(0.59) 

 UN-PATCHED PATCHED Total 

Employee Size (k) 43.77                     
(95.66) 

41.73                     
(81.33) 

42.92 
(89.98) 

Open source/Total 11% 14% 12% 

Severity 2.63                      
(0.61) 

2.66 
(0.55) 

2.64 
(0.59) 

 Close source Open source Total 

Avg. days to patch  449.98                    
(536.17) 

376.52                    
(476.08) 

441.21 
(529.83) 

Patched/Total 41% 47% 41% 

Severity 2.65                     
(0.59) 

2.61 
(0.60) 

2.64 
(0.59) 

Employee size (k) 46.48                     
(92.60) 

3.89 
(34.52) 

42.92 
(89.98) 

 

Table 7 describes our sample.  Table 7 suggests the following; (1) vulnerabilities in the CERT/CC and 
Bugtraq samples tend to be similar in that key variables like vendor size, vendor type and the severity 
level have similar average values in both samples. Moreover, a higher percentage of vulnerabilities are 
patched under instantaneous disclosure policy in our sample. (2), average vendor response time is longer 
for the vulnerabilities published on SecurityFocus than on CERT/CC, although the difference is not 
statistically significant. Moreover, as we shall discuss later, controlling for vulnerability specific factors, 
vendor response for Bugtraq reported vulnerabilities is quicker than for CERT/CC reported ones. (3) 
Although open source software vendors are on averaged 1/16th the size of the average close source 
software vendors, we find that 5% more vulnerabilities are patched in the Open-source software than 
close source software. And among those patched, the average time to patch is about 73 days shorter for 
the open source vulnerabilities than the close source. 
                                                 
18 There are three levels of severity defined in the CVE database.  As discussed later, CERT/CC has a much finer 
gradation for vulnerabilities, with each vulnerability assigned a severity score between 0 and 180. 
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3.2 Model Specification and Estimation 
The key question is how vendors respond to disclosure. Arora, Telang and Xu (2004) point out that the 
vendors incur two types of costs. One is the patch development cost. The more resources a vendor 
allocates to patching, the shorter is the time taken to patch. Obviously, patching cost is closely related to 
the nature of the vulnerability and the software.  It is intuitive to suggest that the patching cost decreases 
with time. Because fewer resources need to be assigned to create the patch and hence costs are lower.  

However, waiting also costs the vendors by exposing its customers to attack from time t0 + s to time τ +t0. 
Obviously, the expected cumulative customer loss over time from being attacked though the vulnerability 
is increasing with time. Currently, software vendors are not liable for information security breaches of 
their customers due to vulnerabilities in their products (Varian, 2000). But vendors still internalize some 
of the losses suffered by their customers in the form of reputation loss and loss of future sales, and 
increased maintenance or support cost. How much of the customer costs vendor internalizes depends on 
factors such as its size, the nature of the market, and the intensity and nature of competition, which we do 
not explicitly model. Instead, we assume that the vendor minimizes the following cost function by 
choosing τ, the patch release time (cf. Arora, Telang and Xu, 2004). 

   ):,()( XTCV τλθτ +=  

C is the cost of patching, τ is the time to patch, θ is the cost to the customer and λ is the fraction of loss 
hat vendor internalizes. T is the disclosure policy. Note that the disclosure policy T affects the customer 
cost. If vulnerability is disclosed without a patch then the customers are subject to attacks and hence their 
costs go up. This means that the vendor’s cost increases as well (if λ > 0) and hence it will release the 
patch earlier (Arora, Telang and Xu, 2004). This is the main hypotheses we test with our data.  

In our data, we have many un-patched vulnerabilities as well. Clearly, vendors make decision on whether 
to patch, and then when to patch it. If the cost of patching is too high compared to the loss to customer 
then vendor may never patch it. Therefore we conduct the empirical analysis with in two steps. First, we 
estimate whether vendors provide a patch and how this probability changes with disclosure policy and 
other key factors. Second, conditional on a patch, we estimate how the time to patch changes with 
disclosure policy. 

3.3 Whether to patch 
A vendor’s decision of whether to patch is based on a comparison of patching cost and loss due to 
delaying patching. In short, if the optimal solution of the vendor cost function leads to τ* = ∞19, then 
vendor never patches. We denote the vendor decision of whether to patch as PATCH =1 if the vendor 
decides to patch, and PATCH =0 if the vendor decides not to patch. Since we do not observe θ (t, X) or C 
or λ, we use a reduced form probit specification for the probability that vendor chooses to patch 

uVulSALEdislosureinstXtPATCHP
m

k
kk ++++== ∑

=1
210 _),1( αβββ  

where inst_disclosure is a dummy variable = 1if the vulnerability is published under instantaneous 
disclosure policy; SALE is the vendor’s annual sales, a measure of size; Vulk is a vector of the 
vulnerability characteristics; u is an i.i.d., zero-mean normal disturbances. 20

                                                 
19 In practice τ* =∞ simply means that It should be large enough.  As long as we not observe a patch within the time 

ility (It is part of Vulk vector), which ranges 
period of our data collection we treat it as un-patched vulnerability.  
20 We use the “CERT severity score” to measure the severity of vulnerab
between 0 and 180. However, we don’t have this metric for vulnerabilities only published on Bugtrag. To generate 
the “CERT severity scores” for Bugtraq sample, we do the following. First we regress CERT severity scores (for the 
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The probit model estimate results are presented in Table 8.  These results highlight the following: 
i) The average probability of patching, controlling for the vendor types and vulnerability 

characteristics, is significantly higher under instantaneous disclosure policy than CERT/CC 
policy. Therefore, the results confirms that instant disclosure pushes the vendors to patch 
sooner. Note that the impact of inst_policy in a probit specification is 

  ∑ ∑
= =

++Φ+++Φ
m

k

m

k
kkkk VulSALEVulSALE

1 1
2020  )(-) 71.0( αββαββ

where Φ(z) is the standard normal cumulative distribution function. In this sample, the 
average effect of instantaneous disclosure policy is estimated to increase the probability of 
patching by about 28.7%. 

ii) Larger vendors are more likely to patch than small vendors.  
iii) The vulnerability severity, measured by cert_severity_score, has a positive effect on PATCH, 

which suggests that sever vulnerabilities are more likely to be patched by the vendors.   
iv) Vulnerabilities that can cause confidentiality loss are less likely to be patched. But 

vulnerabilities in non_server type of applications21 are more likely to be patched.  
 

Table 8 Probit model regression (Closed Source Sample Only)  
Dependent Variable: PATCH  

Variable Coef. (t-statistics) 
Constant -0.54 (-5.00) 
Inst_disclosure              0.71** (5.57) 
SALE   0.003** (6.73) 
cert_severity_score 0.004* (2.38) 
launch_remotely -0.13 (-1.47) 
Confidentiality_loss -0.28** (-2.76) 
integrity_loss 0.06 (0.60) 
availabiliy_loss -0.003 (-0.04) 
operating_system -0.013 (-0.22) 
network_protocol_stack 0.42 (1.28) 
server_application 0.002 (0.02) 
non_server_application 0.29** (3.12) 
Hardware 0.65 (1.58) 
Communication_protocol -0.11 (-0.82) 
encryption_module -0.93 (-3.31) 
Windows 0.02 (0.18) 
Unix 0.08 (1.15) 
Number of obs = 2608 
Log likelihood =-1654.66; Pseudo R2 = 0.0548 

 

                                                                                                                                                             
CERT sample of vulnerabilities) on various vulnerability characteristics. Then we use the estimated coefficients to 
predict the CERT severity score for vulnerabilities in the bugtraq sample, using those characteristics. 
21 Server applications are programs providing some service to other (client) programs (cf. http://dict.die.net/server/ ).  
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Figure 6 the distribution of τ  (days)  

 

 

 

 

 

 

 

 

 

 

 Figure 7:  Proportion of unpatched vulnerabilities over time 
 

When to patch  
Now we test whether instantaneous disclosure policy plays a significant role in vendor’s optimal patching 
time τ*(assume vendors do provide a patch). We first plot the patching time to help us understand the 
distribution of patching time across two policies. Figure 6 shows that the patching time in the sample 
resembles an exponential distribution. Figure 7 shows that there are significant differences in patching 
time between the vulnerabilities published on CERT/CC and Security Focus. Not only are a higher 
percentage of vulnerabilities patched under instantaneous disclosure policy, they are also patched faster. 

Given the duration nature of our data, we estimate vendor’s patching time using Proportional Hazards 
Model (Kiefer, 1988) with the patching time as the duration under risk. We use the Cox proportion model 
with a baseline hazard given by Box-Cox specification. The covariates (like disclosure policy, severity 
etc) proportionally shift the hazard function. We take the “time to patch” observation as duration, with 
each starts from some t0 (normalized at 0) and ends at some τ + t0 (when the patch is available). Any un-
patched vulnerability can be interpreted as right censored data. The estimation results with Proportional 
Hazards Model are presented in table 9. As in the previous part, we use the fitted Cert_severity_score to 
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represent the severity of vulnerability in estimation. Results from all observations are presented in column 
(1). Column (2) contains the estimation results from the close source sample only.  

Table 9  Estimation of Vendor’s patching behavior22  
Dependent Variable = Time elapsed before patching 

 All Close source 
 (1) (2) 

Variables Haz. Ratio Wald’s test 
statistics Haz. Ratio Wald’s test 

statistics 
Inst_disclosure 1.69** (5.18) 2.24** (6.43) 
Cert_severity_score 1.00 (1.37) 1.01** (2.60) 
Open_source 1.32** (3.38)   
Launch_remotely 1.03 (0.27) 0.97 (-0.20) 
Confidentiality_loss 0.61** (-4.23) 0.68** (-2.80) 
Integrity_loss 0.85 (-1.30) 0.95 (-0.35) 
Availabiliy_loss 0.84** (-2.74) 0.90 (-1.41) 
Operating_system 0.89 (-1.77) 1.01 (0.06) 
Network_protocol_stack 1.65 (1.36) 2.09 (1.86) 
Server_application 1.06 (0.48) 1.14 (0.97) 
Non_server_application 1.52** (3.82) 1.80** (4.27) 
Hardware 1.05 (0.11) 1.34 (0.56) 
Communication_protocol 0.98 (-0.15) 1.02 (0.10) 
Encryption_module 0.16** (-4.22) 0.21** (-3.30) 
Windows 0.93 (-0.70) 0.91 (-0.80) 
Unix 1.04 (0.51) 1.05 (0.57) 
Sales   1.00** (5.08) 
* significant at 5% level. ** significant at 1% level. 

The hazard ratio is simply exponent of estimated coefficients. If it is greater than 1 then that parameter 
decreases the “time to patch” and hence leads to a quicker patch. Instantaneous disclosure policy in both 
columns is positive and significant. So, in our sample, vulnerabilities published on Bugtraq not only are 
patched with higher probability (see the probit results in table 8), they are also patched significantly 
faster. Open source is estimated to be positive and significant suggesting that open source vendors 
respond faster than close source vendors. The focus of our analysis is not necessarily to argue about the 
relative efficacy of open source software products.  However, our results clearly suggests that open source 
vendors are more responsive in patching disclosed vulnerabilities.  Also note that the hazard ratio of 
instantaneous disclosure policy in column (2) is greater than in column (1), which suggests that the 
instantaneous disclosure policy has larger impact on the close source vendors than on open source 
vendors.  

The vulnerability severity in column (2) is positive and significant. Therefore, vendors’ patching time for 
more critical vulnerabilities is shorter. As expected, vendors patch the severe vulnerabilities quickly. 
Vendor size (measured by sale in the close source group) is positive and significant. Therefore, large 
vendors patch faster then smaller ones. Clearly, large established vendors have more to lose in terms of 
reputation and hence respond more effectively.  Insofar as size is correlated with market power, the 
results indicate that the lower costs associated with size dominate any disincentive effect due to market 
power.  Alternatively, larger firms may patch more quickly because the loss is proportional to the number 
of users whereas the cost of patching is not.   
                                                 
22 Proportional hazard model is applied in estimation with “time to patch” as the dependent variables. The other 
variables are defined same as table 8 
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Some vulnerability characteristics are also estimated to be significant in both models. Vulnerabilities that 
the loss type is “confidentiality” or “availability” are expected to be patched slower. And vulnerabilities 
in server applications are expected to be patched faster. Probably, vulnerabilities in the server applications 
cause higher losses prompting vendors to patch earlier.  

The above analysis was done with all vulnerability data (patched or unpatched). We also repeat the 
analysis with only the patched vulnerabilities. The policy variable is then significant at 10% confidence 
interval and the sign and general magnitude remains the same.  

To summarize, we find that first, instantaneous disclosure policy makes vendor’s more likely to patch 
their product. Therefore, the instant disclosure parties, like SecurityFocus, may contribute in an important 
way to the problem of managing software security23. Second, the optimal patching time of the vendors is 
smaller in instantaneous disclosure policy than partial disclosure policy, which means vendors patches 
more quickly under instantaneous disclosure policy. Third, open source vendor are more likely to be 
patch than close source. Finally, average optimal patching time for open source software is shorter than 
close source software.  

4 Summary & Conclusion 
Our paper provides critical empirical estimates on attacker and vendor response.  To our knowledge, this 
is the first systematic empirical examination of either of these questions, and marks a contribution 
towards understanding how vulnerability information should be disclosed. Our results indicate that early 
disclosure forces vendors to patch earlier. At the same time, the first set of results imply that disclosing a 
vulnerability increases the frequency of attacks. Clearly, there is a tradeoff in disclosing vulnerability. 
The release of a patch for a known vulnerability decreases the number of attacks but the release of a patch 
for a hitherto unkown vulnerability increases the number of attacks. Thus, even when a patch is available, 
disclosing a vulnerability increases the frequency of attacks. Clearly, attackers believe that not all users 
will patch in time. One must not rush to draw conclusions about public policy since, as noted, we lack 
information on successful attacks (e.g., those that would overcome the countermeasures that may exist in 
reality). We also lack information on the severity of damages. Finally, our results exclude by construction 
the possibility of users responding to vulnerability disclosure (without patches) in ways that would 
mitigate or avoid loss from attacks. 

Our second set of results provide insights into how vendors respond. We find that open source vendors 
are quicker to patch when vulnerability is found in their products. Given the attention on the open source 
vs. close source debate, this is an important finding since the quality of a software product also depends 
on the ex-post support a vendor provides (Arora, Caulkins and Telang 2003. Similarly, large vendors are 
more responsive to defects in their products. Vendors are also more responsive to more severe 
vulnerabilities.  Our results are therefore broadly consistent with a rational model in which vendors 
internalize some, but not all, of the customers’ losses. 

While our results are interesting, there are a number of qualifications. First, we only observe attack 
frequency and not the actual loss. While higher frequency would correlate with more losses, a more 
precise analysis with loss information would be an interesting future work. Second, Honeypots data could 
be biased. Trivial attacks may be over-represented, and more sophisticated attacks or internal attacks 
launched from within an organization are under-represented. Similarly, there may be important 
unobserved differences across vulnerabilities reported by Bugtraq and CERT/CC that may confound our 
findings on instant disclosure. Given the importance of these issues and little empirical work, we hope 
that our study paves the way for more research with new and possibly better data sources. 

                                                 
23 We reiterate the fact that such instant disclosure need not be socially optimal (cf. Arora et al, 2004).  
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