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Abstract—We quantify the performance of wireless transmis- The integral then needs to be evaluated numerically either in
sions over random fading channels at high signal-to-noise ratio the PDF domain, or, in the transformed MGF domain via, e.g.,
(SNR). The performance criteria we consider are average proba- Fourier or Laplace transforms [3], [12]. Although this approach

bility of error and outage probability. We show that as functions . .
of the average SNR, they can both be characterized by two pa- enables numerical evaluation of the system performance and

rameters: the diversity and coding gains. They both exhibit iden- May not be computationally intensive, in general it does not
tical diversity orders, but their coding gains in decibels differ by offer insights as to what parameters determine system perfor-
a constant. The diversity and coding gains are found to depend mance in the presence of fading channels.

on the behavior of the random SNR’s probability density func- |, cartain simple cases, the average error probability can be
tion only at the origin, or equivalently, on the decaying order of .

the corresponding moment generating function (i.e., how fast the eyaluateq analytically [4], [9]. Even when such ?XaCt e_xpres-
moment generating function goes to zero as its argument goes toSIONS exist, they may be cumbersome to work with, which de-
infinity). Diversity and coding gains for diversity combining sys- fies the purpose of using them as criteria for optimizing system
tems are expressed in terms of the diversity branches’ individual design. In this paper, we aim at filling this gap between ana-
diversity and coding gains, where the branches can come from any yy4ica results and intuition with approximate (yet accurate) pa-

diversity technique such as space, time, frequency, or, multipath. . - .
The proposed analysis offers a simple and unifying approach to rameterizations. For the most part, we are interested in large

evaluating the performance of uncoded and (possibly space—time) SNR performance. We quantify average probability of error and
coded transmissions over fading channels, and the method appliesoutage probability, both in terms of two parameters: diversity

to almost all digital modulation schemes, includinghM -ary phase- gain and coding gain. In this paper, we will use the term “di-
zﬂ:g l|<(eeyilr?g’w ?‘t‘;]agorﬁte‘;;itaé?%'gr‘:gghrenr‘;ﬂ‘t-‘g‘é'toer(‘;t igr?d frequency-  yersity” interchangeably with “diversity gain,” unless otherwise
ying ' noted. The shift of focus from exact performance to large SNR
Index Terms—Coding gain, diversity, diversity combining, analysis allows one to gain insights regarding the factors deter-
fading channels, outage probability. mining the performance in fading. With simple calculations, we
will be able to unify the analysis of many communication sys-
|. INTRODUCTION tems (e.g., coded or uncoded, coherent or noncoherent) over a

. . large spectrum of fading channels (e.g., Rayleigh, Nakagami-m,
ERFORM.ANCE analys[s of coded or uncoded w!rele akagami-n, and Nakagami-q types). We will establish the fol-
transmissions over fading (flat, frequency-selective, %ng
time-selective) channels is often carried out in two steps: : . . . :

: - 1) The diversity and coding gains for average error rate de-
First, the exact or approximate (e.g., upper bounded) perfor- ) end onl or>1/ the behav%rg {3) around tr?e origind —
mance for a fixed channel realization is usually expressed 8 y it th | ? lated to th 9 t_t' b
as aQ function that depends on the random (instantaneous) h:asiso ?orfetshl:a ;no;yeﬁ[(;:nseor;gniﬁun(c)tios;é;lmp otic be-
signal-to-noise ratio (SNRy = f%, where# is the average - . ).

SﬁIR. The variable? cgepenﬂ)ds or?zhe chanZeI realization gand 2) The outage probability as a function of the average SNR
. : ; ’ 7 follows a “diversity-coding gain” pattern similar to that
has probgb|l|ty density function (PDI-_})(_[)’). In the second Zf the average erro>; rate ?hge outgge probability and the
step,_ the instantaneous performance is |r_1te_gratedmwbrto average error rate have iaentical diversity orders
obtain the average performance. For a unifying treatment basedg) The diversity and coding gains of a general diversity com-
on moment generating functions (MGF), see [12, Ch. 12]. o L T
Not in allgcases cagn the avera(\ge p()arformfamce be fo]und in bining sy_stem_ are expre§3|ble n terms (.Jf the |nd|y|dua|
closed form, although it can usually be written as an integral. Zair;Zgilxirsgybﬁ\ri]ggcgsgg)g212;rr?t?ricrlgiigi%erfltl)?ril::e
(MRC), and selection combining (SC), which all achieve
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[I. UNCODED SYSTEM AVERAGE ERROR PROBABILITY sionz over Rayleigh fading channélreceived in the presence

At high SNR, the average symbol error probability (SER) of noisen is given by

of an uncoded (or coded) system has been observed in certain y=hz+n (2
cases to be approximated by (see, e.g., [10], [15]) where z is independent and identically distributed (iid) with
energy Ey,, h has a Rayleigh distributed amplitude,is the
(1) AWGN with independent real and imaginary parts of equal
varianceN, /2, andy is the received signal. We have omitted
the time index in (2) for brevity. We defig := FE,/Nyp. The

PE ~ (Gc . ’7)_Gd

whereG. is termed theoding gain andGy is referred to as the
diversity gaindiversity order or, simplydiversity The diversity . : 5 -
orderG4 determines the slope of the SEP versus average S rﬁtantf;meou_s receive SNRvis = .|h| .Eb/NO n A7, where

curve, at high SNR, in a log-log scale. On the other hahdin = |h|*. Theinstantaneous SEP, inthis case bit-errorrate (BER),

decibels) determines the shift of the curve in SNR relative toi%PE(m :.Q(_V Z{H); S0,k = 2in AS2. If B[] - L t.he.””‘?
benchmark SEP curve ¢f—C+). Rayleigh distribution ofh| leads to an exponential distribution

) s ' ) .
Consider single-user uncoded communication over a rand@’: p(B) = e’ Itaccepts a Maclaurin series expansion as

fading channel. We consider here flat-fading channels, but th 2 h: 1+ Z'Esl(g__ﬁ)l/i!’ V(\j'hLCh means th_at;gzpr(ig of
results apply also to frequency-selective channels, if some mefihoothness (see Yis= 0, andthe parametein IS

ticarrier modulation (e.g., orthogonal frequency-division multi- IntegratingPe(0) in AS2 overp(/3), we obtain the average

plexing, or OFDM) is used so as to convert the channel to a P as

of subchannels free of intersymbol interference (ISI). We make ®

the following assumptions. Pg = /PE(ﬂ)p(ﬂ) dg. 3)
AS1) The instantaneous SNR at the receivefyis= (7, 0

wherey is a deterministic positive quantity, apds & Fqr BpsK over a Rayleigh channel (Example 1), the average
channel-dependent nonnegative random variable. TBgR is given byPg = 0.5(1 — \/3/(1 + 7)), which for large

average SNR is therefokey] = E[3]7; whenE[f] =  gNR can be approximated & ~ 1/(4%) [10, p. 818].
1, 4 is the average SNR.

AS2) The -dependent instantaneous SEP is given by | HicH SNR AVERAGE PROBABILITY OF ERROR
Pr(B) = Q(VEkB5), wherek is a positive fixed . ] ] ] ) )
C(;Ergstzant. ( v) P A. Relating Diversity and Coding Gains Wjth3), 3 — 0T

AS3) The PDRp(3) can be approximatédby a single “poly- Using the Gamma function defined by'(z) :=
nomial” term for3 — 07 (3 tends to 0 from above) as f0°° z*~te™® dz, we present our first result in the fol-
p(B) = aB + o(B"F°), wheree > 0, anda is a pos- lowing proposition.
itive constant. The parametequantifies the order of  Proposition 1: (Diversity and Coding Gains) The average
smoothness gj(/) at the origin. Bothu andt willbe  SEP of a system satisfying AS1-AS3 at high SNR depends only

determined by the channel PDF. on the behavior of(3) at3 — 0%. Specifically, at high SNR,
We intentionally do not requir&(5) = 1 in AS1. This will the average SEP is given by
allow us to present the results for various types of systems in 2tal (t + %)

a unifying form. The only caution that needs to be exercisedis  Pr = T (k)" 4o (T(Hl))
when one interprets the results: The coding gain is measurecW;(ich implies
the shift of thePg, curve relative to a curve of— %<, rather than
an average-SNR-based reference clifg3)y]~“<. Although

that the average SEP can be quantitatively param-
eterized with

the diversity and coding gains are performance indicators of the Ga=1t+1
systemit is convenient to think that the fading SNR(or the and
random variable3, when# is fixed) offers, or affords, certain ot (t + ;) G
; ; ; ; 2
diversity and coding gains. G.=k <T)
The fact that in AS2 we require the SEP to be in the form Va(t+1)

of aQ function implies that the channel is modeled as an addi- Proof: Let B be a fixed small positive number, small
tive white Gaussian noise (AWGN) one. Notice also that AS31ough to make the condition in AS3 hold true. The integral
is very mild and widely applicable. It parameterizés) as a (3) can be written as
polynomial only at the origin. IH(3) is “well-behaved” around 7
[ = 0 so that it accepts a Taylor series expansiof at 0 Py = /Q (\/ﬁ) p(B) dp
(the Maclaurin series) fgp > 0, thent in AS3 is just the first 0
nonzero derivative order gf(3) at3 = 0, anda = p(* (0)/t!. B
But in generalf need not be an integer (e.g., in the Nakagami-m
case).

Example 1: (Uncoded binary phase-shift keying (BPSK)
over a Rayleigh fading channel.) An uncoded BPSK transmis-

Q (\/ﬁ) p(B) dp + .762 (\/%) p(B) dp

/ L o= [af + o(8")] dedf

3

Iwe write a functionz(x) of x aso(x) if lim, o a(x)/x = 0.



WANG AND GIANNAKIS: A SIMPLE AND GENERAL PARAMETERIZATION QUANTIFYING PERFORMANCE IN FADING CHANNELS 1391

n Q p(B3) dB ook ]
// 1 Taﬂt—{—oﬂt]da}dﬂ (4a) °7 : /’.".‘\\.:\ .

// L =% [ap' + o(8")] dz B (4b)
B

- 7@ (VB7) p(8)ds (40)

where we have used AS3, and the definition ofd{e) function. v
We next evaluate the three terms (4a)—(4c) one by one start®1; 02 04 08 08 " 2 4 1s 18 2
from the last.
Since the@ function is monotonically decreasing, we have
Q(V/P7) < Q(v/B7) for 3 > B. Therefore, the last term canFl(% )1ThQ|(\/7" ast futT]ctlons Og)fgrv —d0 &me)mdblg dB; and anwexaronple
P e largery gets, the more epends s behavior around =

be upper bounded by (\/B¥ )_f§ / p(B)dp < Q(v/B7). Using

the Chernoff bound)(z) < e~* /2, we see tha@(,/B7), and

hence, term (4c) is(7~ (”1)). Proposition 1, only with a different coding gain. Specifically,
To show that the term (4b) is{3~(**1)) we ignore the)(5*) functions like v*Q?(-), v* exp(—gy), where p and ¢ are
term, and interchange the integration order to obtain positive numbers, or linear combinations of such functions, can

simply replace thé&) function in the proof of Proposition 1.

o0 = The fact that the error rate depends only on the probability
_a / / _g_zﬂt d@Bdx distribution of the output SNR at lowhas been observed earlier
V21 (but not proved) in [11, pp. 350 and 460] for Rayleigh channels
VB3 P in the context of diversity combiningProposition 1 subsumes
a x ) [11] as a special case, and can be viewed as a generalization of
= _M% / e T [zZ(t“) - (Bﬁ)(t“)} dz.  [11] that applies to a wider class of fading characteristics and

modulation schemes.

We also remark that the coding gain, as defined according to
It can be easily checked that the integral on the right-hand side does not depend on the value of the average SNR, but only
goes to zero a$ — oo, which shows that the second term (4bepends on thehapeparameter. andt of the SNRyy.

By

is alsoo(y~ (1), In Table I, we specialize Proposition 1 to some commonly
By interchanging the integration order, the integral in (4a) cat$ed fading distributions. Using the table, one can easily com-
be computed as pute the high SNR performance of many modulation schemes
. (e.g., [10, ch. 14]). We remind the reader that the Rayleigh dis-
P — 2Fz2al (L + %) ) ( (t+1)) tribution is a special case of Nakagamig= 1), Nakagami—n
E= V2r(t +1) (n = 0), and Nakagami-nfm = 1). The Nakagamt type

_ channel is also known as the Rician distributed channel with
and the proof is complete. U  the RicianK factor K = n2. The Nakagamin SNR PDF is

The intuition behind Proposition 1 is that when the averaggiso known as the chi-square distributig$),, with 2/m degrees
SNR is high, the system performance will be dominated f freedom.

the low-probability event that the instantaneous SNR becomesor the BPSK transmission in Example 1, we have- 1,
small; see Fig. 1. Therefore, only the behaviorygf3) at ¢ =0, k = 2. Therefore, the diversity gain 6, =t +1 =1,

B — 0T determines high SNR performance. In fact, agnd the coding gainis given 6y, = 2[I'(3/2)//7]~" = 4.So,

3 — 00, Q(V/7) behaves more and more like a delta functiothe high SNR BERPg = (45)~1, agreeing with the well-known

at the origin with decreasing amplitude (equal to the integradsult.

of Q(v/By) from 3 = 0 to o). Proposition 1 nicely links  The result of Proposition 1 is an asymptotic one, as it asserts
the order-of-smoothness pf3) at the origin to the diversity only large SNR performance. However, the following observa-
gain and also quantifies the coding gain using two parametefigns are important: 1) in many cases, the SEP curve usually be-
namelya andt, of p(53). Itis not difficult to extend Proposition comes a straight line at moderate SNR (e.g., a few decibels); 2)
1 to functions other than th@ function. Observing Fig. 1, one the SEP curves are often concave, the Rician case being an ex-

should be convinced that if we replace tefunction by any ception, so the high SNR performance can be linearly extended
function of~ that behaves like a delta function with decreasing

amplitude asy — oo, we should obtain a result similar to 2The authors thank the reviewer who pointed out this reference.
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TABLE |
PARAMETERSt AND @ IN AS3 FOR CERTAIN FADING DISTRIBUTIONS

Channel Type p(B) t a
Rayleigh e’ t=0 a=1
Nakagami-gq p(B;q) = I—Z‘J‘ﬁ exp (—%) Iy (L%ﬁ) t=0 a= %

2

Nakagami-n | p(8;n) = (1 + n2)e ™ exp(—(1 +n2)B)L(2ny/ AT +n2)B) | t=0 |a=(1+n)e™

m—1

Nakagami-m p(B;m) = % exp(—mp) t=m-1| a=m™/T(m)

Proposition 2: (Exact Average Error Probability) Suppose
thatp(/3) can be expanded in a series form at the origin

I—1
p(B) =D it +o(BH ) 7
1=0
wheret is a positive number, and(3:*1=1) is the remainder
term (the Lagrange remainder in the Maclaurin series). Then
the average SEP is given by
— 2t aD (t4i+3)
Pg = Z -
(it 1)

Bit Error Rate

At o, (,—y—(t-‘rl)) ‘

(8)
If I = oo, then the termy(3~(*1) is zero and therefore not
needed, and the equality (8) holds true for large enoudr
B R 1 which the series converges.
. L L = - = - = 0 Proof: Since Py in (3) is a linear functional op(53), we

/N can apply the proof in Proposition 1 to eaéht? term in (7) to

. . . . obtain (8). O
Fig. 2. BER of BPSK transmission over Nakagami-m channels wit0.5, . . . 0o i
1.2 4. As an example, using the identitkp(z) = ) .-, z"/i!,
the Nakagami-m PDF can be written afs;m) =

o o(=1L)fmm*igm=1+i /(T(m)i!). Using the result in

to the low SNR region, and be used as an upper bound to g{%position 2, the exadty, for the BPSK in Example 2 can be
low SNR performance.

written as

Example 2: (Nakagami-m channel) Consider BPSK trans- © (“1)imm D (i 4 ) (1 mi
missions over a Nakagami-m channel. The input-output  pp = Z : 2. <j> (9)
relationship is also given by (2), except thiat= |h|? is now o 2/m(m)L(i+1)(m +i) \¥

a random variable following the Nakagami-m distributionvhich converges foff > m.
p(B,m) as in Table I. The exact BER can be expressed in At large SNR, the first term will dominate and can be used to

closed-form [2, eq. (42)] define the diversity and coding gains. A few more terms can also
- be used if the first term is not the dominant one at low to medium

1/ 3 -m SNRs. Whenl = oo, the convergence of the series expression

Pg = p / (1 m sin2 </>> d¢ ®) in (8) needs to be checked before using it: it may not converge

for very low SNRs. But we underscore that even if the series
Using the result of Table | and Proposition 1, the BER at higxpansion op(/3) in Proposition 2 does not exist, Proposition 1

SNR can be written as can still be used. In cases where the exact SEP can be evaluated
1 1 in closed form, or, as a single and simple integral like those in
m r (m + 5) ~—m i
Pp———— 2/ 3 (6) [2], we do not encourage using (8) as a replacement, although
2y/7l(m) it does provide an alternative way of evaluating the exact

The exact (5) and approximate (6) are compared in Fig. 2, fbhe results in this paper build intuition for understanding fading
m =0.5, 1, 2, 4. We can see that the approximate result @#annel performance, provide accurhigh-SNRperformance
Proposition 1 correctly predicts the diversity and coding gaififiteria when simple methods for evaluating performance or op-
although for largen, the asymptotic behavior of the BER-SNRiimizing system design are not otherwise available.
curve shows up at relatively high SNR (e.g., for= 4, we need , , ,
5> 15 dB).  B. Link With the Decaying Behavior of the MGF

Although the diversity and coding gains in Proposition 1 are The order of smoothnessf p(/3) at the origin is related to
accurate at high SNR, in some cases we can obtain more adbe-decaying order with which thmoment generating function
rate or even exact results for low to medium SNRs. M(s) := E[e*’] decays as a function &f Corresponding to
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Propositon 1, we have the following result based on the MG#here because of the nature of the problem, the negative sign is
of p(3), which is sometimes easier to obtain thdy) itself. necessarily discarded. We have that

Proposition 3: (MGF) Suppose AS1-AS3 and the following i 5
additional assumptions hold: 29 (1 . 2d
L o : Ppr— = sin™ ¢ d¢
1) p(p) is infinitely smooth (all derivatives exist) for alf T \ k¥
excepts = 0; do1 1 4
2) for s — oo, |Ma(s)] = bls| " + o(|s| ). Il (L) (10)
The diversity and coding gains are then given, respectively, by Vrl(d+1) ky
G —d from which the diversity and coding gains follow easily. [
d=% . Example 3: (Correlated Nakagami-m with MRC) To demon-
24=1p0 (d + %) ¢ strate the usefulness of Proposition 3, we consider multichannel
Ge = Val(d + 1) reception withL-branch MRC fromcorrelated Nakagami-m

. _ S fading channels having an arbitrary power correlatign, [,
Proof: Sincep(/3) is everywhere infinitely smooth except;, _ 1,2,..., L, across the paths. The PDF of the combined

at = 0, the decaying order alM(s) only depends on the gNR - — S, v, cannot be found in simple form. But the

behavior ofp(3) at3 = 0. The result can then be proved basefigk of ~ can be written [8] as in (11), shown with (12)-(15)

on Proposition 1 by noticing that the single-sided Laplace trang ihe bottom of the next page. We let— oo, and notice

form of gt is T'(¢ + 1)/s'*1, which means that = d — 1 and that M(s) = (=)L det™"(,/75;) TI-,(m/5)™, where

a = b/I'(d) in Proposition 1. S det(/pi;) is the determinant of the x L matrix whose(i, j)th
An Alternative Proof:Using the identity Q(z) = engry is/pi;. Applying Proposition 3, we obtain diversity gain

(1/7) Ji? exp(—(2)/(25in §)) dg, = > 0 (see, e.g., [2, eq. equal tomL, as long as the correlation mattx;] is nonsin-
(17)]), we can write the average SEP of (3) with AS1-AS3 agyylar. At high SNR, the SEP is given by

P, 1 7 76 kB~ (3) dBde Po ~ gmL—3 det_m(\/ij)mmLLF (mL n %)
_ — X M n |
B2 ) )P\ T 2an2g )P V2r D(mL+ 1), 7!
00 We can see that the correlation increadés by a factor
L " det™"(y77) = 1.
== [ M| —c=gr | do.
T 2sin” ¢

C. Diversity Combining

Using the additional assumption 2) in the proposition, we canDiversity combining offers a well-appreciated means of
approximate the integrand for largeasb((k7)/(2sin? ¢))~¢, improving communication performance over fading channels.

! vra(t-2)" v (-2) )
. -
M(S)Zﬁ(l—%)_mdet v (1- %) 1 oy (1- ) an
=1 : : : :
v (t-=)" v (- 2)” X
— i
oo = 2Ll T (L4 ¥, Ga,) [Hl Gq,T (%)} l -

PP (5, Ga) T (35

Gq, 1 %
Hl GC! r (Gdz + §) ¢

—1

B _ (L—1) By
GOMRO) _ 267l T (5 4+ 22, Ga,) [T, Ga, T (Ga,)] 2. (13)
cx - G
r (1 + El Gd:) |:Hl Gczdlr (Gdz + %)}
I — — L Zl St l 72(‘]
GPGO) _ 92(F=2, Ga) I s & T (3 4+ 2, Ga,) [I1, Ga, T (2Gq,)] 2 (14)
c -
_ (14X, Ga) [T, G (Ga, + )]
FoL1 (L=1) &
o[BS (4 5, 60) | S )
“ ol e T (G + 1)
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There are many mechanisms that can offer diversity receptieystem withV, transmit andV,. receive antennas. The SNR at
including space, frequency, angle-or-arrival, polarization, timthe receiver is [14]
and multipath diversity. The reader is referred to [11, Ch. N, N
10] for detailed discussion on these diversity techniques and SNR — Z Z Ihs '|2& (16)
performance; also see [12, Ch. 9] for recent treatments on 1 Ny
performance analysis of diversity combining.
Let v, denote the SNR for th&h branch in the combining Whereh;; is the channel gain from thgh transmit to thejth
process] = 1,..., L, and letys, denote the combined SNR.receive antenna. This setup boils down to an MRC system with
Three popular diversity combining techniques and their corrd: V.. branches. Wheh;;’s are iid complex Gaussian random
spondingys; are as follows. variables, each,; term offers a diversity order 1, and the total
. . . L diversity is, thereforeN;N,.. In this case, we can also view
» Maximum Ratio Combining (MRCYys =352y . §~No T\ |hij|? as a single random variable, chi-square dis-
* Equal (%am 9 Combining (EGC): tributed with2 N, V,. degrees of freedom, which is actually the
ve = (/L) V) _ Nakagami-m distribution withn = N, N, (see Example 2).
* Selection Combining (SClis = maxi<i<z Y- Our result in Proposition 4 allows one to assert that even
In EGC, the combining is coherent in the sense that the divéfr-;;’s are drawn from different distributions, the space-time
sity branches are first phase-locked (i.e., co-phased) and tiwck coded system diversity is still the sum diversity associ-
combined with equal weights. We will focus on the effect ohted with each of thg;;’s. For example, if thé;;’s are iid Nak-
diversity combining on performance in terms of diversity andgami-m distributed with parameter, the overall diversity will
coding gains, allowing the diversity branches to come from amgmN; N,.. According to Example 3, such an aggregate diver-
of the flavors (e.g., space, time, or frequency, etc.). The nesity is provided by correlated Nakagami-m channels, as long as
result expresses diversity and coding gains achieved by théise correlation matrix is nonsingular. We can viéwN\,. as the
combining techniques, in terms of diversity and coding gains diversity factor provided by the multipath antenna array struc-
the individual branches. The resulting expression is useful faure, andn as the diversity provided by each flat channel from
evaluating in a unifying manner the diversity combining systemme transmit antenna to one receive antenna. O
performance as well as the performance of coded systems.  For space—time block or trellis codes that are not orthogonal,
Proposition 4: (Diversity Combining) Assume AS1-AS3, pairwise error probability is often analyzed. The analysis even-
suppose thay; = (5 offers diversity gairG;; and coding gain tually also boils down to an equivalent MRC system. The results
Gq,l =1,2,..., L, and suppose tha’'s are mutually inde- in this and the previous section are then directly applicable (see
pendent. Lep and{c;} £, be positive real numbers. Then, thealso Section V).
aggregate diversity gaifi ;s and coding gairt?.x, for v = 37,
where := (31, a,f")'/?, are given byGus = 3 G4 and
G.s as in (12), respectively, where all the summations and
products are froni = 1 to L. In addition to the average SE®utage probabilityP,; is
Proof: We only give the sketch of the proof here. Thankanother often used performance indicator when communicating
to Proposition 1, we only need to specify the parametensdt  over fading channels. It is defined as the probability that the
(cf. AS3) of the PDF of the combineg! Sinces;’s are indepen- instantaneous SNR falls below a certain threshotg, [13]
dent, the PDF ofs is the convolution of the PDFs ¢f;’'s. Via
single-sided Laplace and its inverse transforms, we can relate
the parameterg andt of (3 to those off;’s. Using Proposition Pyt := PO <y < yn) =
1, G4x andG.x, can be related t6/y;’'s andG;'s. O
Remark 1: Notice that the different diversity branches can . . _ L
have not only different SNRs, but also different types of PDFSINCEY IS always nonnegative, the outage probability is just the
Whene; — 1,1, Proposition 4 specializes to MRC by settindroPapility distribution function of} evaluated atn: Pou =
p = 1, and to SC by lettingg — oco. EGC corresponds to P(y < 4th). We have the following simple result concerning
choosinge; = 1/V/L, VI, andp = 1/2. outage probability. -
Corollary: EGC, MRC, and SC all achieve the same sum Proposition 5: (Outage Probability) Under AS3, for large

diversityGys = 3. G4 . The coding gains are given é%mc) enoughy, the outage probability is

=1 j5=1

IV. OUTAGE PROBABILITY

Jth

5

p(B) dp. 17)

o'\

in (13), G((EGC) in (14), Gﬁszc) in (15), respectively, where in a Yeh t+1 ot
reaching (15), we have used the fact that) ~ 1/ for small Pout = i1 ( 5 ) +o (7_(’+ )) .
positivez. O '

For M -ary signaling over Rayleigh and Rician channels witiherefore, for large enough SNR & o), P, as a function
diversity combining, the asymptotic error performance has beehy follows the same pattern as the average SEP, and can be
givenin[1, Th. 1], where the coding gain is found in an integratritten asP,., ~ (O.7)~ 9+, where the outage diversity,,
form. Our result here is more general and does not involve aagd the coding gai®.. are
integral.

Example 4: (Space-Time Codes from Orthogonal Designs) 1 < a )W

Consider an orthogonal space—time block code designed for a Oa=t+1 and O = % t4+1

(18)
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10 T T T FRTE P
't then follows that 1 S\ T ]
b4l 8\ &= B S e
O,=G; and O.= 1 lw G.. v\\,\. N T
Yth m \\v\\:v\\\. .............
(19) NN N m=0.5
Proof: Direct evaluation using the definitionin (17).0  F = % W0 N0 TN g
Proposition 5 discloses that at high SNR, the outage prokg [ \ SN N TSN
bility curve and the average probability curve as functions of ¢ AN
are only different by a constant shift in decibels. $ A W \\\ ™!
Corollary: To every result pertaining 6, andG.. there will S N A\
be a corresponding result far; andO.. Propositions 2—4 de- ‘°’2‘_ SR SRS S E\:‘;, NG 1
veloped for average SEP also applyftg,; with the modifica- iy LN
tion specified in (19). B O m N
Example 5:(Outage Probability) Considey to be Nak- R B\
agami-m distributed with parametet. Using Proposition 5 ' \
and Table I, the outage probability can be approximated at hi 5 0 5 20 2 %0
SNR as T
mm—1 m Fig. 3. Outage probability of Nakagami-m channels with=0.5, 1, 2, 4.
Pout & = <7—*> (20)
I'(m) \ 7 . : :
For other cases, some special treatment is needed as we will de-
The exact outage can be found by definition as tail in the following.
Jth
% mm gm—1 r (m, %) A. Generic Binary Signaling
Fout = / I'(m) exp(-mff) df = T'(m) (1) A generic BER expression for binary transmissions over
0 AWGN is [12, eq. (8.100)]
where the two-argument functidi{m, m~;y, /%) is the lower in-
complete Gamma functio’(m, z) = [, u™ =" exp(—u)du. (ﬁ)“ 3 wi,
The approximate and exact expressions for outage proba- py = No / .COSG __No i
bility, (20) and (21), are compared in Fig. 3 for, = 0 dB, I'(v) / (sin ) 1+2v 2sin” 0

both as functions of. It can be seen that the outage probability
follows the same behavior as the average SEP (cf. Fig. 2); th@herew andv are real constants between 0 and 1, which take
are different by only a shift in SNR, the amount of which igjifferent values for orthogonal coherent binary frequency-shift
given by the ratioO./G. in (19). If we negate the tick labels keying (BFSK), orthogonal noncoherent BFSK, antipodal co-
of the x-axis of Fig. 3 (.910 dB — —10 dB), we can also herent BPSK, antipodal differentially coherent BPSK (DPSK),
interpret the x-axis as,/7 in decibels; the same figure thenand correlated coherent binary signaling [12, Table 8.1].
depicts the cumulative distribution function gfwheny = 1, In fading channels, the instantaneous SR, will be re-
with a reversed x-axis. U placed byy = 37, wherey := E,/N, now denotes average
We remind the reader that, as in the case of average SEP,BR&NR, ands is a random variable with unit mean. Supposing
“diversity-coding gain” result for outage probability is accuratéhat the PDF ofs satisfies the conditions of Propositions 1 and
only for large SNR and hence, small outage probability. Propg:-we can apply the same technique used in the proof of Proposi-
sition 5 is useful in two aspects: 1) it helps to build insightsion 3, with some additional properties of Laplace transforms, to
and 2) it simplifies large SNR outage probability calculationbtain the following expression for the high-SNR average BER

Certainly, exact solutions should be used when they are easyderivation details are omitted due to lack of space):
obtain.

2 Hval(t+v+1) 1\
PE ~ —
V. SPECIALIZING AND GENERALIZING (t+ 1)T'(v) uA
We have assumed that for a given SNR realization, the SEP 211 (d +v) [ 1 d
is given by a@ function as in AS2. There are cases where this :—dF(d)F(v) <E>
is not true. ForM -ary amplitude-shift keying with coherent de-
tection, the SEP is given by [12, eq. (8.3)] whereu, t, b, andd are constants describing the behavios(@f)
2(M — 1) 6E. and its MGF, as used in Propositions 1 and 3.
Fe==——C\\mar -1 (22) _ _
0 - B. M-ary PSK With Coherent Detection

which is only a scaled version of@ function. The results we  For M-ary PSK,M > 2, the exact SEP cannot be written
have derived are applicable with a trivial modification (multiplias a single&) function. Two solutions are possible in this case.
cation of Pg by a constant, which translates to a chang@iih  One is to approximate the SEP through the union boiad<
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2Q(\/2E,/Nysin(r/M)) [12, eq. (8.25)]. The results we de-to find than the coding gain). In such cases, some approxima-
rived in Section Ill can then be applied to this upper bound. Aions or upper bounds can be used, along the lines of [12, Sect.
other solution, which is exact, is based on the following expre8:2.1.6].

sion for the SEP of\f-ary PSK:
E. Coded System Performance

(M=1)7

1 7 37 sin? (1) To analyze the performance of a coded transmission, with ei-
Pg=— / exp <— ) de (23)

—— ther single or multiple antennas, a pairwise error probability
sin” (PEP) analysis is often pursued, and a union bound is com-
) . puted to quantify the average performance [12, Ch. 12]. All
wherey = E;/Ny is the average symbol SNR. Adopting thene SEP results we developed in Section 11l apply directly to
same technique we used in deriving (10), we can find the fQlie pEpP analysis step. The instantaneous PEP for one channel
lowing high-SNR SEP: realization usually depends on a random variable that repre-
(M—1)x sents the Euclidean distance between the pair of received sig-
b sin2o \* 1\ nals being analyzed [12, eq. (12.13)]. The Euclidean distance
Ppr | — / <m> d (-) (24) is in the same form as the SNR that shows up in MRC. For
correlated fading channels, evaluating the average PEP is there-
fore equivalent to evaluating the average performance of an un-
whereb andd are parameters as in Proposition 3, and the expregsged system with MRC. For example, Proposition 3 allows

sion in the bracket is a constant depending on the constellatigfto analyze coded transmissions over correlated Nakagami-m
size M. fading channels using the results in Example 3. Coded trans-
. . missions through correlated Rician channels can also be treated
C. M-ary QAM With Coherent Detection using Proposition 3 because the PDF, and hence the MGF, of the
For M-ary QAM constellation, based on [12, eq. (8.10)] andombined SNR can be obtained thanks to the underlying Gaus-
the integral representation of th@*(-) function of [12, eq. sianity.
(4.9)], we can similarly obtain the following high-SNR SEP:  Due to the fading correlation, the average PEP usually de-
p pends on the positions of nonzero entries in the difference be-
4b VM -1 <2(M - 1)) tween the analyzed pair of received signals. Applying the union
VM 3 bound after the PEP analysis is then complicated. For more de-

M

PE%

x tails on this subject and related performance analysis issues per-
3 4 d .. . . .
2 g 4 VM -1 29 4 1 taining to coded transmissions over correlated fading channels,
/s VA Sin 5 the readers are referred to, e.g., [6], [7], and references therein.
0 0

s
2

F. On the “Amount of Fading”

Proposition 1 has revealed that the asymptotic behavior of the
D. M-ary FSK With Non-Coherent Detection SEP versus average SNR curve is dominated by the behavior of

the PDF of the fading SNR near the origin. However, other char-
Based on the SEP expression of [12, eq. (8.66)] for non% g ¢

wherey = E; /Ny, andb andd are as in Proposition 3.

o Cteristics have been studied to describe the severity of fading
herent FSK transmissions over AWGN channels, we can readily, s For example, themount of fading (AFvas introduced
verify the fading channel performance ' ’

in [5] as a figure quantifying the fading PDF; see also [12, Sect.
2.2]. It is defined as

= M-1\ 1 m
e Sl (e ()
: mzz:l( : mJm1Tmr! ap . vabl _ ER? - ER)’
(25) TEN T ERP )
wherey = E;/Ny. Under the assumptions of Proposition 3,
(25) can be approximated at high SNR by wherevar[-] denotes variance. The AF for Nakagami-q (Hoyt),

Nakagami-n (Rice), and Nakagami-m fading is giver2by +

Y ¢H/1 + ¢»)2 (1 + 202)/(1 + n2)?, and1/m, respectively

<§> [12, Sect. 2.2]. We can see that only in the Nakagami-m case,
the amount of fading relates directly with the diversity order of

Remark 2: Besides the transmission and detection schemi® SEP; in the other two cases, the AF is not linked directly to
that we have discussed so far, there are some other cases wtieraverage SEP. To illustrate this point, consider approximating
the exact diversity and coding gain can be found, sudifeexry a Nakagami-n (Rice) distribution with a Nakagami-m distribu-
differential PSK with two-symbol differential detection, basetion. By equating the AF for the two PDFs, the following rela-
on [12, eq. (8.90)]. The result is similar to what we have givetion can be obtained between the parameteasdm (see, e.g.,
in previous cases, and thus will not be presented. [12, eq. (2.26)]m = (1 +n?)2/1 + 2n>.

There are also some cases, such\&sry orthogonal sig-  In Fig. 4, we compare the PDF of the Rician and Nakagami-m
naling with coherent detection, for which the exact diversity arapproximation forn = 1 and2.5, and correspondingly for
coding gains are difficult to find (the diversity gain may be easiern = 1.33 and3.89. We can see that the approximation is quite

S (M) (Y

m=1

PE%
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by diversity and coding gains at high SNR. They have the
same diversity gain but differ in the coding gain in decibels
by a constant. The diversity and coding gains depend on the
instantaneous SNR’s PDF only through its behavior close to
the origin. When the PDF of the fading SNR can be expanded
in a Maclaurin series, the exact average error probability can
be expressed as a series. We also related the diversity and
coding gains to the moment generating function of the PDF
of the fading SNR, and demonstrated its usage by evaluating
the error probability for MRC reception through correlated
Nakagami-m fading channels. A diversity combining system’s
diversity and coding gains were expressed as functions of
the individual branches’ diversity and coding gains, using
which we showed that EGC, MRC, and SC can all achieve
sum diversity, even for different types fading branches. The
proposed method is quite general, and enjoys wide applicability.
Examples include performance analysis of coded transmissions
over correlated fading channels, and communications over time-
and/or frequency-selective channels with single or multiple
antennas.

The high SNR approximations are especially useful for
performance analysis of wireless data communications, where
severe fading renders necessary a large average SNR for
achieving a target BER. For some other applications, e.g.,
speech communications, low BER values (and hence, low
average SNR values) may be important. The results in the paper
are also helpful in conceptual understanding of performance
limiting factors in communications over fading channels and
various diversity techniques.
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