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Abstract—We quantify the performance of wireless transmis-
sions over random fading channels at high signal-to-noise ratio
(SNR). The performance criteria we consider are average proba-
bility of error and outage probability. We show that as functions
of the average SNR, they can both be characterized by two pa-
rameters: the diversity and coding gains. They both exhibit iden-
tical diversity orders, but their coding gains in decibels differ by
a constant. The diversity and coding gains are found to depend
on the behavior of the random SNR’s probability density func-
tion only at the origin, or equivalently, on the decaying order of
the corresponding moment generating function (i.e., how fast the
moment generating function goes to zero as its argument goes to
infinity). Diversity and coding gains for diversity combining sys-
tems are expressed in terms of the diversity branches’ individual
diversity and coding gains, where the branches can come from any
diversity technique such as space, time, frequency, or, multipath.
The proposed analysis offers a simple and unifying approach to
evaluating the performance of uncoded and (possibly space–time)
coded transmissions over fading channels, and the method applies
to almost all digital modulation schemes, including -ary phase-
shift keying, quadrature amplitude modulation, and frequency-
shift keying with coherent or noncoherent detection.

Index Terms—Coding gain, diversity, diversity combining,
fading channels, outage probability.

I. INTRODUCTION

PERFORMANCE analysis of coded or uncoded wireless
transmissions over fading (flat, frequency-selective, or

time-selective) channels is often carried out in two steps:
First, the exact or approximate (e.g., upper bounded) perfor-
mance for a fixed channel realization is usually expressed
as a function that depends on the random (instantaneous)
signal-to-noise ratio (SNR) , where is the average
SNR. The variable depends on the channel realization, and
has probability density function (PDF) . In the second
step, the instantaneous performance is integrated overto
obtain the average performance. For a unifying treatment based
on moment generating functions (MGF), see [12, Ch. 12].

Not in all cases can the average performance be found in
closed form, although it can usually be written as an integral.
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The integral then needs to be evaluated numerically either in
the PDF domain, or, in the transformed MGF domain via, e.g.,
Fourier or Laplace transforms [3], [12]. Although this approach
enables numerical evaluation of the system performance and
may not be computationally intensive, in general it does not
offer insights as to what parameters determine system perfor-
mance in the presence of fading channels.

In certain simple cases, the average error probability can be
evaluated analytically [4], [9]. Even when such exact expres-
sions exist, they may be cumbersome to work with, which de-
fies the purpose of using them as criteria for optimizing system
design. In this paper, we aim at filling this gap between ana-
lytical results and intuition with approximate (yet accurate) pa-
rameterizations. For the most part, we are interested in large
SNR performance. We quantify average probability of error and
outage probability, both in terms of two parameters: diversity
gain and coding gain. In this paper, we will use the term “di-
versity” interchangeably with “diversity gain,” unless otherwise
noted. The shift of focus from exact performance to large SNR
analysis allows one to gain insights regarding the factors deter-
mining the performance in fading. With simple calculations, we
will be able to unify the analysis of many communication sys-
tems (e.g., coded or uncoded, coherent or noncoherent) over a
large spectrum of fading channels (e.g., Rayleigh, Nakagami-m,
Nakagami-n, and Nakagami-q types). We will establish the fol-
lowing.

1) The diversity and coding gains for average error rate de-
pend only on the behavior of around the origin
; as a result, they are also related to the asymptotic be-

havior of the moment generating function of .
2) The outage probability as a function of the average SNR

follows a “diversity-coding gain” pattern similar to that
of the average error rate. The outage probability and the
average error rate have identical diversity orders.

3) The diversity and coding gains of a general diversity com-
bining system are expressible in terms of the individual
branch diversity and coding gains. Special cases include
equal gain combining (EGC), maximum ratio combining
(MRC), and selection combining (SC), which all achieve
the same sum diversity even when the combined branches
are correlated, or, have SNRs following different PDFs.

Section II presents the model and basic assumptions. Sec-
tion III contains our major results on high SNR average error
probability analysis. Section IV deals with outage probability,
and links outage probability to average error rate. Section V
discusses several special cases not treated in Section III, and
applies the results of Section III to analyze the performance of
coded systems. Section VI concludes the paper.
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II. UNCODEDSYSTEM AVERAGE ERRORPROBABILITY

At high SNR, the average symbol error probability (SEP)
of an uncoded (or coded) system has been observed in certain
cases to be approximated by (see, e.g., [10], [15])

(1)

where is termed thecoding gain, and is referred to as the
diversity gain, diversity order, or, simplydiversity. The diversity
order determines the slope of the SEP versus average SNR
curve, at high SNR, in a log-log scale. On the other hand,(in
decibels) determines the shift of the curve in SNR relative to a
benchmark SEP curve of .

Consider single-user uncoded communication over a random
fading channel. We consider here flat-fading channels, but the
results apply also to frequency-selective channels, if some mul-
ticarrier modulation (e.g., orthogonal frequency-division multi-
plexing, or OFDM) is used so as to convert the channel to a set
of subchannels free of intersymbol interference (ISI). We make
the following assumptions.

AS1) The instantaneous SNR at the receiver is ,
where is a deterministic positive quantity, andis a
channel-dependent nonnegative random variable. The
average SNR is therefore ; when
, is the average SNR.

AS2) The -dependent instantaneous SEP is given by
, where is a positive fixed

constant.
AS3) The PDF can be approximated1 by a single “poly-

nomial” term for ( tends to 0 from above) as
, where , and is a pos-

itive constant. The parameterquantifies the order of
smoothness of at the origin. Both and will be
determined by the channel PDF.

We intentionally do not require in AS1. This will
allow us to present the results for various types of systems in
a unifying form. The only caution that needs to be exercised is
when one interprets the results: The coding gain is measured by
the shift of the curve relative to a curve of , rather than
an average-SNR-based reference curve . Although
the diversity and coding gains are performance indicators of the
system, it is convenient to think that the fading SNR(or the
random variable , when is fixed) offers, or affords, certain
diversity and coding gains.

The fact that in AS2 we require the SEP to be in the form
of a function implies that the channel is modeled as an addi-
tive white Gaussian noise (AWGN) one. Notice also that AS3
is very mild and widely applicable. It parameterizes as a
polynomial only at the origin. If is “well-behaved” around

so that it accepts a Taylor series expansion at
(the Maclaurin series) for , then in AS3 is just the first
nonzero derivative order of at , and .
But in general, need not be an integer (e.g., in the Nakagami-m
case).

Example 1: (Uncoded binary phase-shift keying (BPSK)
over a Rayleigh fading channel.) An uncoded BPSK transmis-

1We write a functiona(x) of x aso(x) if lim a(x)=x = 0.

sion over Rayleigh fading channelreceived in the presence
of noise is given by

(2)

where is independent and identically distributed (iid) with
energy , has a Rayleigh distributed amplitude,is the
AWGN with independent real and imaginary parts of equal
variance , and is the received signal. We have omitted
the time index in (2) for brevity. We define . The
instantaneous receive SNR is , where

.TheinstantaneousSEP,inthiscasebit-errorrate(BER),
is ; so, in AS2. If , then the
Rayleigh distribution of leads to an exponential distribution
of : . It accepts a Maclaurin series expansion as

, which means that the order of
smoothness (see AS3) is , and the parameterin AS3 is 1.

Integrating in AS2 over , we obtain the average
SEP as

(3)

For BPSK over a Rayleigh channel (Example 1), the average
BER is given by , which for large
SNR can be approximated as [10, p. 818].

III. H IGH SNR AVERAGE PROBABILITY OF ERROR

A. Relating Diversity and Coding Gains With ,

Using the Gamma function defined by
, we present our first result in the fol-

lowing proposition.
Proposition 1: (Diversity and Coding Gains) The average

SEP of a system satisfying AS1–AS3 at high SNR depends only
on the behavior of at . Specifically, at high SNR,
the average SEP is given by

which implies that the average SEP can be quantitatively param-
eterized with

and

Proof: Let be a fixed small positive number, small
enough to make the condition in AS3 hold true. The integral
(3) can be written as
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(4a)

(4b)

(4c)

where we have used AS3, and the definition of the function.
We next evaluate the three terms (4a)–(4c) one by one starting
from the last.

Since the function is monotonically decreasing, we have
for . Therefore, the last term can

be upper bounded by . Using
the Chernoff bound , we see that , and
hence, term (4c) is .

To show that the term (4b) is we ignore the
term, and interchange the integration order to obtain

It can be easily checked that the integral on the right-hand side
goes to zero as , which shows that the second term (4b)
is also .

By interchanging the integration order, the integral in (4a) can
be computed as

and the proof is complete.
The intuition behind Proposition 1 is that when the average

SNR is high, the system performance will be dominated by
the low-probability event that the instantaneous SNR becomes
small; see Fig. 1. Therefore, only the behavior of at

determines high SNR performance. In fact, as
, behaves more and more like a delta function

at the origin with decreasing amplitude (equal to the integral
of from to ). Proposition 1 nicely links
the order-of-smoothness of at the origin to the diversity
gain and also quantifies the coding gain using two parameters,
namely and , of . It is not difficult to extend Proposition
1 to functions other than the function. Observing Fig. 1, one
should be convinced that if we replace thefunction by any
function of that behaves like a delta function with decreasing
amplitude as , we should obtain a result similar to

Fig. 1. Q(
p
��) as functions of� for � =0, 5, and 10 dB; and an example

p(�). The larger� gets, the more (3) depends onp(�)’s behavior around� = 0.

Proposition 1, only with a different coding gain. Specifically,
functions like , , where and are
positive numbers, or linear combinations of such functions, can
simply replace the function in the proof of Proposition 1.

The fact that the error rate depends only on the probability
distribution of the output SNR at lowhas been observed earlier
(but not proved) in [11, pp. 350 and 460] for Rayleigh channels
in the context of diversity combining.2 Proposition 1 subsumes
[11] as a special case, and can be viewed as a generalization of
[11] that applies to a wider class of fading characteristics and
modulation schemes.

We also remark that the coding gain, as defined according to
(1) does not depend on the value of the average SNR, but only
depends on theshapeparameter and of the SNR .

In Table I, we specialize Proposition 1 to some commonly
used fading distributions. Using the table, one can easily com-
pute the high SNR performance of many modulation schemes
(e.g., [10, ch. 14]). We remind the reader that the Rayleigh dis-
tribution is a special case of Nakagami-q , Nakagami-n

, and Nakagami-m . The Nakagami- type
channel is also known as the Rician distributed channel with
the Rician factor . The Nakagami- SNR PDF is
also known as the chi-square distribution with degrees
of freedom.

For the BPSK transmission in Example 1, we have ,
, . Therefore, the diversity gain is ,

and the coding gain is given by . So,
the high SNR BER , agreeing with the well-known
result.

The result of Proposition 1 is an asymptotic one, as it asserts
only large SNR performance. However, the following observa-
tions are important: 1) in many cases, the SEP curve usually be-
comes a straight line at moderate SNR (e.g., a few decibels); 2)
the SEP curves are often concave, the Rician case being an ex-
ception, so the high SNR performance can be linearly extended

2The authors thank the reviewer who pointed out this reference.
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TABLE I
PARAMETERS t AND a IN AS3 FOR CERTAIN FADING DISTRIBUTIONS

Fig. 2. BER of BPSK transmission over Nakagami-m channels withm =0.5,
1, 2, 4.

to the low SNR region, and be used as an upper bound to the
low SNR performance.

Example 2: (Nakagami-m channel) Consider BPSK trans-
missions over a Nakagami-m channel. The input-output
relationship is also given by (2), except that is now
a random variable following the Nakagami-m distribution

as in Table I. The exact BER can be expressed in
closed-form [2, eq. (42)]

(5)

Using the result of Table I and Proposition 1, the BER at high
SNR can be written as

(6)

The exact (5) and approximate (6) are compared in Fig. 2, for
0.5, 1, 2, 4. We can see that the approximate result of

Proposition 1 correctly predicts the diversity and coding gain,
although for large , the asymptotic behavior of the BER-SNR
curve shows up at relatively high SNR (e.g., for , we need

).
Although the diversity and coding gains in Proposition 1 are

accurate at high SNR, in some cases we can obtain more accu-
rate or even exact results for low to medium SNRs.

Proposition 2: (Exact Average Error Probability) Suppose
that can be expanded in a series form at the origin

(7)

where is a positive number, and is the remainder
term (the Lagrange remainder in the Maclaurin series). Then
the average SEP is given by

(8)
If , then the term is zero and therefore not
needed, and the equality (8) holds true for large enoughfor
which the series converges.

Proof: Since in (3) is a linear functional of , we
can apply the proof in Proposition 1 to each term in (7) to
obtain (8).

As an example, using the identity ,
the Nakagami-m PDF can be written as

. Using the result in
Proposition 2, the exact for the BPSK in Example 2 can be
written as

(9)

which converges for .
At large SNR, the first term will dominate and can be used to

define the diversity and coding gains. A few more terms can also
be used if the first term is not the dominant one at low to medium
SNRs. When , the convergence of the series expression
in (8) needs to be checked before using it: it may not converge
for very low SNRs. But we underscore that even if the series
expansion of in Proposition 2 does not exist, Proposition 1
can still be used. In cases where the exact SEP can be evaluated
in closed form, or, as a single and simple integral like those in
[2], we do not encourage using (8) as a replacement, although
it does provide an alternative way of evaluating the exact.
The results in this paper build intuition for understanding fading
channel performance, provide accuratehigh-SNRperformance
criteria when simple methods for evaluating performance or op-
timizing system design are not otherwise available.

B. Link With the Decaying Behavior of the MGF

The order of smoothnessof at the origin is related to
the decaying order with which themoment generating function

decays as a function of. Corresponding to
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Propositon 1, we have the following result based on the MGF
of , which is sometimes easier to obtain than itself.

Proposition 3: (MGF) Suppose AS1–AS3 and the following
additional assumptions hold:

1) is infinitely smooth (all derivatives exist) for all
except ;

2) for , .
The diversity and coding gains are then given, respectively, by

Proof: Since is everywhere infinitely smooth except
at , the decaying order of only depends on the
behavior of at . The result can then be proved based
on Proposition 1 by noticing that the single-sided Laplace trans-
form of is , which means that and

in Proposition 1.
An Alternative Proof: Using the identity

, (see, e.g., [2, eq.
(17)]), we can write the average SEP of (3) with AS1–AS3 as

Using the additional assumption 2) in the proposition, we can
approximate the integrand for largeas ,

where because of the nature of the problem, the negative sign is
necessarily discarded. We have that

(10)

from which the diversity and coding gains follow easily.
Example 3: (Correlated Nakagami-m with MRC) To demon-

strate the usefulness of Proposition 3, we consider multichannel
reception with -branch MRC fromcorrelatedNakagami-m
fading channels having an arbitrary power correlation, ,

, across the paths. The PDF of the combined
SNR, , cannot be found in simple form. But the
MGF of can be written [8] as in (11), shown with (12)-(15)
at the bottom of the next page. We let , and notice
that , where

is the determinant of the matrix whose th
entry is . Applying Proposition 3, we obtain diversity gain
equal to , as long as the correlation matrix is nonsin-
gular. At high SNR, the SEP is given by

We can see that the correlation increases by a factor
.

C. Diversity Combining

Diversity combining offers a well-appreciated means of
improving communication performance over fading channels.

...
...

...
...

(11)

(12)

(13)

(14)

(15)
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There are many mechanisms that can offer diversity reception,
including space, frequency, angle-or-arrival, polarization, time,
and multipath diversity. The reader is referred to [11, Ch.
10] for detailed discussion on these diversity techniques and
performance; also see [12, Ch. 9] for recent treatments on
performance analysis of diversity combining.

Let denote the SNR for theth branch in the combining
process, , and let denote the combined SNR.
Three popular diversity combining techniques and their corre-
sponding are as follows.

• Maximum Ratio Combining (MRC): .
• Equal Gain Combining (EGC):

.
• Selection Combining (SC): .

In EGC, the combining is coherent in the sense that the diver-
sity branches are first phase-locked (i.e., co-phased) and then
combined with equal weights. We will focus on the effect of
diversity combining on performance in terms of diversity and
coding gains, allowing the diversity branches to come from any
of the flavors (e.g., space, time, or frequency, etc.). The next
result expresses diversity and coding gains achieved by those
combining techniques, in terms of diversity and coding gains of
the individual branches. The resulting expression is useful for
evaluating in a unifying manner the diversity combining system
performance as well as the performance of coded systems.

Proposition 4: (Diversity Combining) Assume AS1-AS3,
suppose that offers diversity gain and coding gain

, , and suppose that ’s are mutually inde-
pendent. Let and be positive real numbers. Then, the
aggregate diversity gain and coding gain for ,
where , are given by and

as in (12), respectively, where all the summations and
products are from to .

Proof: We only give the sketch of the proof here. Thanks
to Proposition 1, we only need to specify the parametersand
(cf. AS3) of the PDF of the combined. Since ’s are indepen-
dent, the PDF of is the convolution of the PDFs of ’s. Via
single-sided Laplace and its inverse transforms, we can relate
the parameters and of to those of ’s. Using Proposition
1, and can be related to ’s and ’s.

Remark 1: Notice that the different diversity branches can
have not only different SNRs, but also different types of PDFs.

When , , Proposition 4 specializes to MRC by setting
, and to SC by letting . EGC corresponds to

choosing , , and .
Corollary: EGC, MRC, and SC all achieve the same sum

diversity . The coding gains are given as
in (13), in (14), in (15), respectively, where in
reaching (15), we have used the fact that for small
positive .

For -ary signaling over Rayleigh and Rician channels with
diversity combining, the asymptotic error performance has been
given in [1, Th. 1], where the coding gain is found in an integral
form. Our result here is more general and does not involve any
integral.

Example 4: (Space–Time Codes from Orthogonal Designs)
Consider an orthogonal space–time block code designed for a

system with transmit and receive antennas. The SNR at
the receiver is [14]

(16)

where is the channel gain from theth transmit to the th
receive antenna. This setup boils down to an MRC system with

branches. When ’s are iid complex Gaussian random
variables, each term offers a diversity order 1, and the total
diversity is, therefore, . In this case, we can also view

as a single random variable, chi-square dis-
tributed with degrees of freedom, which is actually the
Nakagami-m distribution with (see Example 2).

Our result in Proposition 4 allows one to assert that even
if ’s are drawn from different distributions, the space–time
block coded system diversity is still the sum diversity associ-
ated with each of the ’s. For example, if the ’s are iid Nak-
agami-m distributed with parameter, the overall diversity will
be . According to Example 3, such an aggregate diver-
sity is provided by correlated Nakagami-m channels, as long as
the correlation matrix is nonsingular. We can view as the
diversity factor provided by the multipath antenna array struc-
ture, and as the diversity provided by each flat channel from
one transmit antenna to one receive antenna.

For space–time block or trellis codes that are not orthogonal,
pairwise error probability is often analyzed. The analysis even-
tually also boils down to an equivalent MRC system. The results
in this and the previous section are then directly applicable (see
also Section V).

IV. OUTAGE PROBABILITY

In addition to the average SEP,outage probability is
another often used performance indicator when communicating
over fading channels. It is defined as the probability that the
instantaneous SNRfalls below a certain threshold [13]

(17)

Since is always nonnegative, the outage probability is just the
probability distribution function of evaluated at :

. We have the following simple result concerning
outage probability.

Proposition 5: (Outage Probability) Under AS3, for large
enough , the outage probability is

Therefore, for large enough SNR ( , as a function
of follows the same pattern as the average SEP, and can be
written as , where the outage diversity ,
and the coding gain are

and (18)
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It then follows that

and

(19)
Proof: Direct evaluation using the definition in (17).

Proposition 5 discloses that at high SNR, the outage proba-
bility curve and the average probability curve as functions of
are only different by a constant shift in decibels.

Corollary: To every result pertaining to and there will
be a corresponding result for and . Propositions 2–4 de-
veloped for average SEP also apply to with the modifica-
tion specified in (19).

Example 5: (Outage Probability) Consider to be Nak-
agami-m distributed with parameter. Using Proposition 5
and Table I, the outage probability can be approximated at high
SNR as

(20)

The exact outage can be found by definition as

(21)

where the two-argument function is the lower in-
complete Gamma function: .

The approximate and exact expressions for outage proba-
bility, (20) and (21), are compared in Fig. 3 for ,
both as functions of . It can be seen that the outage probability
follows the same behavior as the average SEP (cf. Fig. 2); they
are different by only a shift in SNR, the amount of which is
given by the ratio in (19). If we negate the tick labels
of the x-axis of Fig. 3 (e.g., ), we can also
interpret the x-axis as in decibels; the same figure then
depicts the cumulative distribution function ofwhen ,
with a reversed x-axis.

We remind the reader that, as in the case of average SEP, the
“diversity-coding gain” result for outage probability is accurate
only for large SNR and hence, small outage probability. Propo-
sition 5 is useful in two aspects: 1) it helps to build insights;
and 2) it simplifies large SNR outage probability calculation.
Certainly, exact solutions should be used when they are easy to
obtain.

V. SPECIALIZING AND GENERALIZING

We have assumed that for a given SNR realization, the SEP
is given by a function as in AS2. There are cases where this
is not true. For -ary amplitude-shift keying with coherent de-
tection, the SEP is given by [12, eq. (8.3)]

(22)

which is only a scaled version of a function. The results we
have derived are applicable with a trivial modification (multipli-
cation of by a constant, which translates to a change in).

Fig. 3. Outage probability of Nakagami-m channels withm =0.5, 1, 2, 4.

For other cases, some special treatment is needed as we will de-
tail in the following.

A. Generic Binary Signaling

A generic BER expression for binary transmissions over
AWGN is [12, eq. (8.100)]

where and are real constants between 0 and 1, which take
different values for orthogonal coherent binary frequency-shift
keying (BFSK), orthogonal noncoherent BFSK, antipodal co-
herent BPSK, antipodal differentially coherent BPSK (DPSK),
and correlated coherent binary signaling [12, Table 8.1].

In fading channels, the instantaneous SNR will be re-
placed by , where now denotes average
bit SNR, and is a random variable with unit mean. Supposing
that the PDF of satisfies the conditions of Propositions 1 and
3, we can apply the same technique used in the proof of Proposi-
tion 3, with some additional properties of Laplace transforms, to
obtain the following expression for the high-SNR average BER
(derivation details are omitted due to lack of space):

where , , , and are constants describing the behavior of
and its MGF, as used in Propositions 1 and 3.

B. -ary PSK With Coherent Detection

For -ary PSK, , the exact SEP cannot be written
as a single function. Two solutions are possible in this case.
One is to approximate the SEP through the union bound:
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[12, eq. (8.25)]. The results we de-
rived in Section III can then be applied to this upper bound. An-
other solution, which is exact, is based on the following expres-
sion for the SEP of -ary PSK:

(23)

where is the average symbol SNR. Adopting the
same technique we used in deriving (10), we can find the fol-
lowing high-SNR SEP:

(24)

where and are parameters as in Proposition 3, and the expres-
sion in the bracket is a constant depending on the constellation
size .

C. -ary QAM With Coherent Detection

For -ary QAM constellation, based on [12, eq. (8.10)] and
the integral representation of the function of [12, eq.
(4.9)], we can similarly obtain the following high-SNR SEP:

where , and and are as in Proposition 3.

D. -ary FSK With Non-Coherent Detection

Based on the SEP expression of [12, eq. (8.66)] for nonco-
herent FSK transmissions over AWGN channels, we can readily
verify the fading channel performance

(25)
where . Under the assumptions of Proposition 3,
(25) can be approximated at high SNR by

Remark 2: Besides the transmission and detection schemes
that we have discussed so far, there are some other cases where
the exact diversity and coding gain can be found, such as-ary
differential PSK with two-symbol differential detection, based
on [12, eq. (8.90)]. The result is similar to what we have given
in previous cases, and thus will not be presented.

There are also some cases, such as-ary orthogonal sig-
naling with coherent detection, for which the exact diversity and
coding gains are difficult to find (the diversity gain may be easier

to find than the coding gain). In such cases, some approxima-
tions or upper bounds can be used, along the lines of [12, Sect.
8.2.1.6].

E. Coded System Performance

To analyze the performance of a coded transmission, with ei-
ther single or multiple antennas, a pairwise error probability
(PEP) analysis is often pursued, and a union bound is com-
puted to quantify the average performance [12, Ch. 12]. All
the SEP results we developed in Section III apply directly to
the PEP analysis step. The instantaneous PEP for one channel
realization usually depends on a random variable that repre-
sents the Euclidean distance between the pair of received sig-
nals being analyzed [12, eq. (12.13)]. The Euclidean distance
is in the same form as the SNR that shows up in MRC. For
correlated fading channels, evaluating the average PEP is there-
fore equivalent to evaluating the average performance of an un-
coded system with MRC. For example, Proposition 3 allows
us to analyze coded transmissions over correlated Nakagami-m
fading channels using the results in Example 3. Coded trans-
missions through correlated Rician channels can also be treated
using Proposition 3 because the PDF, and hence the MGF, of the
combined SNR can be obtained thanks to the underlying Gaus-
sianity.

Due to the fading correlation, the average PEP usually de-
pends on the positions of nonzero entries in the difference be-
tween the analyzed pair of received signals. Applying the union
bound after the PEP analysis is then complicated. For more de-
tails on this subject and related performance analysis issues per-
taining to coded transmissions over correlated fading channels,
the readers are referred to, e.g., [6], [7], and references therein.

F. On the “Amount of Fading”

Proposition 1 has revealed that the asymptotic behavior of the
SEP versus average SNR curve is dominated by the behavior of
the PDF of the fading SNR near the origin. However, other char-
acteristics have been studied to describe the severity of fading
effects. For example, theamount of fading (AF)was introduced
in [5] as a figure quantifying the fading PDF; see also [12, Sect.
2.2]. It is defined as

(26)

where denotes variance. The AF for Nakagami-q (Hoyt),
Nakagami-n (Rice), and Nakagami-m fading is given by

, , and , respectively
[12, Sect. 2.2]. We can see that only in the Nakagami-m case,
the amount of fading relates directly with the diversity order of
the SEP; in the other two cases, the AF is not linked directly to
the average SEP. To illustrate this point, consider approximating
a Nakagami-n (Rice) distribution with a Nakagami-m distribu-
tion. By equating the AF for the two PDFs, the following rela-
tion can be obtained between the parametersand (see, e.g.,
[12, eq. (2.26)]: .

In Fig. 4, we compare the PDF of the Rician and Nakagami-m
approximation for and , and correspondingly for

and . We can see that the approximation is quite
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Fig. 4. Approximate Rician PDF using Nakagami-m PDF.

Fig. 5. Approximate Rician PDF using Nakagami-m PDF: error probability
performance.

good, except for small, which is important for system perfor-
mance. We depict in Fig. 5 the exact performance of a BPSK
transmission over these two types of channels, together with the
high-SNR BER predicted by Proposition 1. We can see that the
Nakagami-m approximation offers a good match to the exact Ri-
cian performance in the low SNR region, but there is clearly a
mismatch in diversity between the Rician channel performance
and the performance of its Nakagami-m approximation. The
mismatch in BER becomes smaller for small SNRs, however,
when the amount of fading decreases . On the other
hand, the result of Proposition 1 predicts the diversity order cor-
rectly, and provides good approximation to the BER for medium
to large SNR when is small (AF large).

VI. CONCLUSIONS

We have shown that under mild assumptions, both the average
error probability and the outage probability can be characterized

by diversity and coding gains at high SNR. They have the
same diversity gain but differ in the coding gain in decibels
by a constant. The diversity and coding gains depend on the
instantaneous SNR’s PDF only through its behavior close to
the origin. When the PDF of the fading SNR can be expanded
in a Maclaurin series, the exact average error probability can
be expressed as a series. We also related the diversity and
coding gains to the moment generating function of the PDF
of the fading SNR, and demonstrated its usage by evaluating
the error probability for MRC reception through correlated
Nakagami-m fading channels. A diversity combining system’s
diversity and coding gains were expressed as functions of
the individual branches’ diversity and coding gains, using
which we showed that EGC, MRC, and SC can all achieve
sum diversity, even for different types fading branches. The
proposed method is quite general, and enjoys wide applicability.
Examples include performance analysis of coded transmissions
over correlated fading channels, and communications over time-
and/or frequency-selective channels with single or multiple
antennas.

The high SNR approximations are especially useful for
performance analysis of wireless data communications, where
severe fading renders necessary a large average SNR for
achieving a target BER. For some other applications, e.g.,
speech communications, low BER values (and hence, low
average SNR values) may be important. The results in the paper
are also helpful in conceptual understanding of performance
limiting factors in communications over fading channels and
various diversity techniques.
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