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ABSTRACT

Encoding of communication signals compensates for phase

distortions introduced by imperfect local oscillators, fad-
ing, and multipath effects. Differential encoding is general-
ized in this paper using a nonlinear transformation called
multi-lag High-order Instantaneous Moment (ml-HIM). The
ml-HIM decoder is capable of removing not only constant
phase ambiguity, but also Doppler frequency, Doppler rate,
and even higher-order phase distortions. The multiple lags
present in the ml-HIM are exploited to improve system
performance. Differential encoding is also generalized to
non-constant modulus constellations such as M-ary QAM
and AM-PM.

1. INTRODUCTION

In digital communication systems phase ambiguity and fre-
quency errors are likely to be present in the received sig-
nal, due to imperfect knowledge of the carrier’s phase and
frequency, fading, and multipath effects [3, Ch. 6]. Typ-
ically, phase distortions are captured in a term exp[78(t)],
which multiplies the received baseband data [see eq. (1)].
When phase variations are induced by the relative motion
between transmitter and receiver (such as in mobile and
satellite communications), the phase (t) is polynomial in
t, and its coefficients are related to the kinematics of the
moving station [8, p. 59]. The polynomial coefficients are
estimated first and the received data are multiplied next,
by exp[~76(t)], to remove phase distortions [4], [5].
Alternatively, phase errors can be pre-compensated by
differential encoding at the transmitter and incoherent de-
coding at the receiver. The latter eliminates the need for
carrier phase acquisition and tracking [3, Ch. 5], at the ex-
pense of additional signal power required to attain a given
probability of error (when compared to the ideal coherent
detection). Traditionally, information transmitted with dif-
ferential phase-shift-keying (DPSK) is encoded in phase dif-
ferences between two successive symbols. Although tolerant
to constant phase errors, differential detection systems are
sensitive to carrier frequency variations [9]. To overcome
this problem doubly-differential PSK (DDPSK) encoding
has been discussed recently in [9], based on less-known re-
sults from the Russian literature, [6] (see also [7] and [10]).
Interestingly, differential encoding has been restricted
only to MPSK signaling; i.e., constant modulus constella-
tions. In [4] though, blind phase recovery in Quadrature
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Amplitude Modulated (QAM) signals was proposed based
on fourth-order statistics (HOS) of the received data. Un-
fortunately, unambiguous estimates are guaranteed only if
phase errors lie in [~ /4, 7/4], and processing delay is in-
curred in order to collect the samples required for accurate
HOS estimation [4].

In this paper, we revisit the differential encoding idea
from a nonlinear signal processing perspective which relies
on the multi-lag High-order Instantaneous Moment (ml-
HIM) - a transformation originally introduced in {1} and
thoroughly studied in [2] (Section 2). Starting from the
well-known case of MDPSK modulation [3, Ch. 5], we
show how differential encoding can be interpreted in terms
of the ml-HIM, and how generalized differential encoding
techniques can be derived by means of the multi-lag HIM
(Section 3). This result is particularly useful both when
the additive noise is colored and when higher- than second-
order differential encoding is employed in order to eliminate
Doppler effects from the received data. We also show how
this approach can be successfully applied to non-constant
modulus constellations such as M-ary QAM and Amplitude-
Modulation Phase-Modulation (AM-PM) [3, Ch. 5] (Sec-
tion 4).

2. BACKGROUND

Consider transmission of a linearly modulated signal
through a linear time-invariant channel. We assume knowl-
edge of the channel and perfect symbol synchronization.
The complex envelope of the received signal after baseband
conversion is [3, Ch. 5], [5]:

re(®) = €N " w(l) fO(E ~ IT) +nct), (1)
{

where 6(t) models the phase distortion, gg") () is the cas-
cade of the transmitter’s signaling pulse and the channel’s
impulse response; T is the symbol period, and w(l)’s are the
transmitted complex symbols; noise n.(t) is assumed com-
plex white Gaussian, with two-sided power spectrum No/2.
After the receiving matched filter, g{"*(t), the signal
zc(t) = 1o * 087 (t) (+ denotes convolution) is sampled at
symbol rate 1/T, to obtain: z(n) = exp[j8(n)]5 ., w(l)g(n—
1) +v(n), with z(n) 1= 2.(nT;), v(n) := e % g8 (8)e=ne
and g(n) := ggtr) * ggrec) (#)|¢=n7.. The model is valid as far
as the mismatch between gﬁ”) (t) and gire® (%) due to 8(t)



can be neglected; i.e., the bandwidth of exp[76(%)] is small
as compared to that of g{"*(¢).

In this work, we assume 8(n) := 8y + 27 fen + Taen?,
with 8o denoting the phase offset, while f. and a. are the
Doppler shift and rate, respectively (higher order terms can
be considered as well). If the Nyquist condition is satisfied,
sampling every t, = nTs, we have g(n) = §(r) [3, p. 326],
where §(n) denotes the Kronecker delta function. We thus
arrive at the discrete-time model:

z(n) = w(n) OH2rfertracn?) Ly @)

We wish to encode w(n) to wg(n) so that #(n) in (2) does
not affect recovery of wa(n) from z(n) samples.

Our decoding scheme relies upon the multi-lag Higher-
order Instantaneous Moment (ml-HIM) which for on-line
implementation is defined recursively as: zi1(n) := z(n),
z2(n;ma) 1= z1{n)zi(n -~ m1),...,

zr(n;my,me, ..., mr1) = gp-1(n;ma,..., Mr—2)
X Thoi(n—me_1;my, .. ,ME—2) . (3)

To illustrate the role of ml-HIM in differential encoding, let
f(n) = 8y and the digital modulation be M-ary DPSK; i.e.,
w(n) := exp[jy(n)] is assumed 1i.d., drawn from a discrete
M-ary alphabet set {exp[j(27k/M + <o)] ﬁi;l, with prob-
ability 1/M each; wlo.g. we assume ¢o = 0. Let wq(n)
denote the differentially encoded sequence defined as:

waln) = d¥a(n) _ ald(n)4da(n-1)] w(n)wa(n —1). (4)
From (2), the received discrete-time signal is given by:

£(n) = wa(n)ed Pt Ientracn?) 4y (5)

At the receiver, w(n) can be recovered by “inverting” (4):

w(n) = ed¥(n) o gilba(n)=da(n-1)] _ wa(n)wi(n —1) . (6)

In the noise-free case, if fo = 0 and a. = 0, w(n) is de-
coded using (6). When noise is present, the decoder out-
put must be quantized; e.g., in the binary case (BDPSK)
w(n) € {-—1,1}, the transmitted sequence is recovered via:

W(n) =sgn{z(n)s"(n - 1)}, (M

where sgn{-} denotes the signum function. The encoding-
decoding strategy in (5)-(7) is not affected by the phase
shift o, and in the noise-free case we have:

w(n) = z(n)z*(n ~ 1) = wa(n)wi(n — 1) = w(n) . (8)

Eq. (8) shows that the decoder implements nothing but the
second-order HIM defined in (3) and evaluated for m; =
1. This observation suggests how to generalize the idea of
differential encoding to the case where §(n) is not simply a
constant 8.
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3. ML-HIM DIFFERENTIAL DECODING

Consider the ml-HIM (up to the fourth order) of the noise-
free signal in (5): z1(n) = wai(n) expj(fo+27 fen+raen?)],
z2(n;m1) = we(n)wi(n — m1) exp[j(2nfemi — Taem? +
2ra.min)], and with k = 3,4 we find from (3):

z3(n;mi,me) = wa(n)wi(n —mi)wi(n — ms)

X wa(n —my —my) *TTI2 | (9)

z4{n;m1, m2, m3) = wa(n)wi(rn—mi)wiln—mz)wi(n—ms)
xwa(n — my — m2)wa(n — m1 — m3)wg(n — my — m3)

X wy(n — my —mo ~ms) . (10)
To remove constant phase, the decoder implements the
second~order ml-HIM. The third-order ml-HIM removes
both constant phase and Doppler frequency, but not
Doppler rate, for which it is necessary to resort to the
fourth-order ml-HIM. Generalizing (4), the encoder should
correspondingly implement: wg(n) = w(n)wa(n — m1),
wa(n) = wn)wa(n — mi1)wa(n — m2)wi(n — my — mz),

wa(n) = wn)wa(n — ma)wa(n — mz)wa(n — m3)

xwy(n — m1 — m2)wi(n — m1 ~ ma)wi(n — my — m3)
X wa(n — my — mz — mg) . (11)
To assure causality, we select 0 < m1 < m2 < ms. Induc-
tively, to remove a @Qth-order polynomial phase distortion
8(n), we must encode with the kth-order ml-HIM, and select
k = @Q + 2. Under the white noise assumption, zx is known
to be an unbiased and mean-square sense consistent esti-
mator of w(n) [11]. Taking into account that w(n) comes
from a finite alphabet, our w(n) estimate is obtained as:

w(n) = a}ztg(gsin lw(n) — zr(nyma, ... ,me—1)| . (12)

The decoding strategy of (9) with m1 = my = 1, was
proposed in [7] under the term Double Differential PSK
{DDPSK). Probability of error was also derived for symbol
by symbol detection [6], [7]. Binary and M-ary PSK and
the possibility of multiple symbol detection was discussed in
[9]. Cascading n first-order differential encoding blocks and
numerically computable probability of error expressions for
binary DDPSK, were reported in [10]. Approximately 4 dB
of excess SNR is required to attain a given error probabil-
ity using binary DDPSK relative to binary DPSK without
Doppler frequency.

Here, we exploit the degrees of freedom offered by the
different lags in order to optimize the system performance.
To select the lags, we adopt the deflection criterion. Con-
sider first the case of M-ary PSK and suppose we want to
remove a constant phase 8y (fe = ae = 0). The decision at
the receiver relies on the noisy second-order HIM:

z2(n,m1) = w(n) + wa(n)e’®v* (n — my) + wi(n — m1)

x e77%0(n) + v(n)v*(n — m1) := w(n) + d(n;m:1) , (13)
where both w(n) and d(n;m1) are zero mean. We wish to
select my that maximizes the deflection:

_ _var{w(n)} _  E{jw(n)*}
D(mi) = var{d(n;mi)} ~ E{|d(n;m1)[>}

(14)



The m; that maximizes D may not always minimize the
probability of error, but we expect it to improve perfor-
mance relative to mi; = 1. Inserting (13) into (14) and
observing that |w(n)| = |wae(r)| = 1, we obtain: D =
1/(2¢% + ot), which does not depend on m;; hence, our
best choice is m; = 1 because it minimizes the number
of “training” symbols required to initialize the differential
decoder [3, p. 211]. But what if the noise samples are corre-
lated due to a mismatch between gt"*?(¢) and g{"(£)? To
investigate this aspect, we further assume that v(n) is an
MAC(1) process; i.e., v(n) = v7(n) +bvr(n — 1), where vr(n)
is an i.i.d. zero mean Gaussian sequence with variance o7
such that 02 = (14 b*)o?. The deflection now becomes:

x [6(m1 — 1) +8(m1 +1)] , (15)

and depends on m;. Causality requires m1 > 0, and if
deflection is to be maximized with the minimum number of
redundant symbols, the best choice is m; = 2. In general,
if L, derotes the memory of »(n), the minimum m; that
maximizes deflection is my = L, + 1.

The advantage offered by multiple lags is even more
pronounced when Doppler frequency is also present and
the decoder implements the third-order ml-HIM. In the
presence of noise, the third-order ml-HIM can be written
as z3(n;mi,m2) = w(n) + d(n;m1, mz). Evaluation of
E{]d(n;m1, m2)|?} involves 15 x 15 terms, but most of them
are zero mean. Skipping details we find:

b1 (m1,m2) = 402 +60% + 408 + 05 + [20,2, +50%

+ 405 + 0316(m1 — m3) . (16)
The deflection in (16) does not depend on the values of
8, fe, and «oe. The choice m; = m2 = 1, corresponds to
the DDPSK system proposed in [7], [10], and is the worst
one in terms of SNR. On the contrary, m2 > mi = 1 offers
the same performance and in order to minimize the training
symbols we select my = 2. Fig. 2a shows D(m1,m2) in (16)
versus SNR with the solid line corresponding to mi = ma2
and the dashed to m; # mo.

The deflection of z4(n; m1, m2, m3) can be evaluated with
the same technique, but the calculation involves (2% —1) x
(2% — 1) terms. We derived it via Monte Carlo simulations
using 5 x 10° symbols for each set of lags. Fig. 2b depicts
D(my,ma,m3) versus SNR for (my,mz2,ms) = (1,1,1),
(1,1,2), (1,2,4), (2,3,4), (1,2,3), (1,4,8). Cascading
three first-order differential encoding {decoding) cells cor-
responds to (m1,mz,m3) = (1,1,1), and yields the low-
est deflection due to the presence of dependent samples in
z4(n; m1, mz, ma) (note that samples z(n — 1) and z{n — 2)
appear three times each in z;). When the number of de-
pendent samples in the ml-HIM decreases, the deflection
increases. When (mi1, m2, ms) = (1,1,2), z4 contains z(n),
z{n—4), and two replicas of z(n—1), z(n—2), and z(n—3).
When (m3,m2, ms) = (1,2, 3), £(n—3) is present two times;
in all other cases the noise samples are independent and the
deflection reaches its maximum.

Symbol error rate (SER) curves were obtained by averag-
ing over 8 x 107 decisions for binary PSK with parameters
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b = n/8, fo = 0.05, a. = 0 (Fig. 3a), and a. = 0.0015
(Fig. 3b). Fig. 3a shows the SER for lags (m1,m2) = (1,1)
(dashed line) (1,2) (dashdotted), (1,3) (circles), (1,4) (x-
marks). The solid lines in Figs. 3a and 3b denote the SER
of an ideal (i.e., with 8(n) = 0) binary PSK. As expected,
the choice (m1, m2) = (1, 1) is the worst one also in terms
of probability of error performance, while all other choices
are equivalent; hence, (my, m2) = (1,2) should be selected
because it minimizes the number of training symbols. For
a target SER of 107°, 4.5 dB of additional SNR is required
when m1 = my = 1 are used instead of ideal BPSK with
0o = fe = 0. But if we select (m1,m2) = (1,2), approxi-
mately 2.8 dB of additional SNR is only necessary.

The SER of this system does not depend on the values
of 6 and fe, but is affected by the Doppler rate a.. To
remove the Doppler rate effect, the system has to implement
the fourth-order ml-HIM at the decoder. Fig. 3b shows
the SER of such a system for §o = «/8, fo = 0.05, and
ae = 0.0015 with lags (m1,m2, m3) = (1,1,1) (upper solid
line), (1,1,2) (dashed), (1,2,4) (dotted), (2,3,4) (cixcles),
(1,2,3) (dashdotted). The results show that selecting the
lags appropriately improves the performance considerably,
relative to the system in [10] which uses m1 = mz = ms =
1. For example, selecting (m1, m2, ms) = (1,2, 3) requires
only 4.5 dB of additional SNR relative to the ideal BPSK,
while adopting m1 = mz = mg3 = 1 incurs greater loss. We
note that all sets of lags that correspond to independent
noise samples guarantee the same SER, but the optimal
choice in terms of SER is (mi,m2,m3) = (1,2,3), whose
deflection is slightly lower than that corresponding to the
maximum D (see Fig. 2b).

4. NON-CONSTANT MODULUS SIGNALS

Consider 16-QAM modulated symbols w(rn) = a(n) +
Jb(n) = p{n)expljp(n)] with 1i.d. a{n) and b(n) drawn
from the discrete alphabet set {#£1,+3}. Suppose that only
phase and Doppler frequency errors are present in z(n). To
remove phase and Doppler frequency errors with the third-
order ml-HIM encoder, we define @(n) := w(n)/p(n) =
exp[je(n)], and @q(n) := wa(n)/p(n). At the differential
encoder output, we have (see Fig. 1): wa(n) = p(n)wq(n)
where, according to (9), wa(n) is:

Da(n) = B(n)Ba(n—m1)Wa(n—m2)Bi(r—m1 —mz2). (17)
At the receiver, we decode by normalizing the ml-HIM:

z3(n; m1, ma2)
[z(n — mi)z(n — m2)z(n — my — m2)|’

Ta(n;ma, ma) =

and applying the decision rule in (12) as follows:
W(n) = aﬁ(%rlrﬁm |w(n) — Za(n; m1, m2)] . (18)

In Fig. 4a we plot the real versus imaginary parts of the re-
ceived signal (2,000 noise-free 16-QAM symbols) when the
uncoded w(n) is transmitted over the channel with phase
and frequency errors (6, = n/8, fo = 0.05, a. = 0). Fig.
4b depicts real versus imaginary parts of z3, when wa(n) is
transmitted with differentially encoded phase according to



Wy(n) = W(n)wa{n — m)

wmPolar |ER) =¢ HIM

Form IEncoder

[ Jwdl

Figure 1. Non-constant modulus signal encoder

(17). It is evident that in the absence of noise the constel-
lation is recovered perfectly. The sames plots with noise at
SNR= 25 dB are depicted in Figs. 5a and 5b. Figs. 6a and
6b show the deflection of Z; and the corresponding SER
versus SNR for (my,m2) = (1,1), (1,2), (1,3), and (1,4),
obtained based on 2 x 10° symbols and with parameters
6o = 7/8, fe = 0.05, and a. = 0. Due to the multilevel
constellation (which is less tolerant to noise than BPSK)
the loss is greater than in Fig. 3b; however, part of this
loss can be recovered if the symbol-by-symbol decision is
replaced by multiple symbol detection as suggested in [9].
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