Networking Research in Digital Technology Center

Zhi-Li Zhang
Department of Computer Science and Engineering
Outline

- Networking Trends
- Research Challenges
- What We’re Doing in DTC
 - project highlights
Networking Trends

Internet is the network!

- It’s big!
- It’s diverse!
- It’s complex!
- It’s everywhere (almost)!
- … and it keeps growing and changing!
Internet Growth
measured by number of Autonomous Systems (ASes)

AS: separately administered network domain

Source: Geoff Huston, http://bgp.potaroo.net
What Has Become of Internet

- Cyberspace and Virtual Communities
 - keep in touch with friends and strangers
- Information Service Platform
 - deliver all kinds of information
- Global Information Repository
 - store and search for all kinds of information
- Enormous Super-Computer
 - process information ("grid computing")

... we increasingly depend on it!
More gadgets are plugged in …

- servers, desktops, laptops, …
- PDAs, cell phones, blackberries, …
- *soon toasters, fridges, … 😊*

Wireless technologies revolutionizing Internet!
- WiFi, bluetooth, 3/4G cellular networks, …

High-tier

Low-tier

Wide Area

Local Area

High Mobility

Low Mobility

pervasive computing

smart space

DTC Open House -- May 2, 2003
Networking Research: Zhi-Li Zhang
Diverging Trends ...

- **Internet Core: concentration**
 - high bandwidth, dense connectivity
 - data centers: computing, storage, ...

- **Internet Edges: diversification**
 - “smart” to “dumb” devices
 - PCs with increasing processing and storage capacities
 - small devices with limited computing, memory, power, ...
 - broadband to narrowband
 - “always on” to intermittent connectivity

Challenges and Opportunities!
- overcome heterogeneity, seamlessly integrate
- new services & “disruptive” technologies
New (& Old) Research Challenges

Well, networking is like plumbing ... nothing really glorious!

- making services highly available and reliable
 - "always on" Internet, no broken pipes, ...
- providing quality of service for applications
 - fast and fat pipes, specialized pipes, ...
- in particular, making Internet secure
 - protect pipes against malicious users

Internet: critical global information infrastructure, big, complex, massively distributed, and changing!
It’s All About Services!

Beyond bit pipes!

- Facilitating and enabling creation, deployment & delivery of services
 - existing, emerging and yet to be imagined
- Tapping and realizing potentials of new technologies
 - wireless technologies, sensor technologies
 - harness & leverage “disruptive” technologies
- Is current Internet architecture adequate?
 - what are limitations?
 - how to enhance and evolve Internet (incrementally)?
- New Internet architecture(s) for service overlays, pervasive computing, smart space,?
It’s Economy, Stupid!

Lesson from burst of “Internet bubble”

- Users:
 - technology adoption depends on users
 - providing values to users
 - useful, enjoyable, make life easier, ……

- Service providers:
 - generate revenues and reduce costs: capex, opex, etc.
 - viable business models: competitive nature of marketplace

Internet research & development needs to consciously take economic factors into account

- stagnation & ossification vs. sustained growth
Networking Research in DTC

Some Project Highlights

- **FILAR**: Failure Insensitive Load Adaptive Routing
 - making individual networks highly available and resilient
- Enhancing BGP (Border Gateway Protocol)
 - making Internet as a whole more stable and robust
- Secure Name Service (SNS)
 - protecting critical information services and resources
- **SOI**: Service-Oriented Internet Architecture
 - unifying service overlay substrate for service delivery
- Internet Economics
- **Pie**: (smart) Personal information environment
Why Failure Matters?

- Failures occur frequently in networks
 - faulty interface, flaky links, router crashes, fiber cuts, ...
 - mostly transient, last seconds to minutes
 - OC48 link down for 6 seconds: 3 million packets may be lost!

- Existing Approaches
 - Traditional routing protocols (OSPF/ISIS)
 - react to failures, slow convergence time
 - MPLS-based solutions
 - centralized, a lot of configuration, not adaptive
 - Packet delayed/lost during failure recovery phase
 - bad for Voice over IP (VoIP) & other emerging applications
FILAR for High Service Availability

- **FILAR**: nearly 100% forwarding continuity
 - prepare for (instead of react to) failures
 - adapt to changes while ensuring stability

- **Key Ideas**
 - local failure inference
 - local rerouting
 - interface-specific forwarding

- **Other Advantages**:
 - no change to forwarding plane
 - minimal change to routing plane

- In collaboration with Sprint (& Cisco)
BGP and Internet: A Quick Primer

- Internet comprised of many Autonomous Systems (ASes)
- BGP is the routing protocol gluing Internet together
 - announce network reachability to outside world
 - propagate routes learned to neighbors ("path vectors")
 - policy-driven: selectively accept/tell what are learned

- Issues with BGP:
 - Local failures/changes have global ripple effects
 - Long convergence time
 - can take up to 15 min
 - Inadequate in supporting many operational/service needs
 - traffic engineering, reliability,...
Enhancing BGP for Global Stability

- Analyzing global BGP behavior and dynamics
 - from UMN (thanks to NTS) and other vantage points
- Limiting BGP path exploration problem
 - fast invalidation of “obsolete” routes
 - embed “path dependency” using sequence numbers
- Dampening route flaps
 - effectively identify route flaps
 - localize instability
- Codifying routing policies
 - minimize misconfiguration
- “Shadow” control plane
 - policy consistency check
 - diagnostics
Secure Name Service

- Protecting critical information services and resources
 - front-end and back-end servers, databases, ...
 - prevent unauthorized accesses and denial-of-service attacks

- Extension of Domain Name Service (DNS)
 - place critical services and resources in secure name zones
 - virtualize resources, conceal IP addresses from outside
 - establish explicit trust relations among trusted domains

- Key Components:
 - Domain-level trust management (domain trust managers)
 - key exchange among domains, users always authenticated
 - Secure name resolution (secure name servers)
 - secure name query returns “secure handle,” not IP address
 - Secure packet forwarding (security checkpoints & gateways)
 - packets carry “security tags”, authenticated at entry points

 protect, monitor and counter-act
Secure Name Service Operations

TTP : Trusted Third Party
TM : Trust Manager
SNS : Secure Name Server
SC : Security Checkpoint
SG : Security Gateway

Domain 1
Zone A
SNS1
TM1
host1
SG1
SC1

Domain 2
Zone B
SNS2
TM2
SG2
server

TTP to Domain 1 via TM1
TTP to Domain 2 via TM2

Attack traffic filtered out
SOI: Service-Oriented Internet

- Beyond network connectivity
 - current IP infrastructure: host-to-host connectivity
- Facilitating service deployment and service delivery
 - rapid service creation and deployment
 - high service availability, reliability, QoS, security, ...
 - flexible built-in support for economic incentives
- Key Abstractions:
 - service clouds: (“application service provider networks”)
 - new two-level location-independent addressing scheme:
 - service id identifying a service cloud
 - object id identifying an entity within a service cloud
 - service layer:
 - unifying service overlay substrate, built on top of IP
SOI Architecture Illustration

service cloud A

users
servers

service points of presence
service gateways

common service gateway sublayer

service-specific delivery sublayer

network domain 1

routers

network domain 2
Internet Economics

In collaboration with Andrew Odlyzko

- Internet Evolution and Impact of Economics
 - Business relations between ASes
 - peering, transit (customer-provider), etc.
 - How they shape Internet structure and evolution
- New Business Models for Service Deployment & Delivery
 - Service models: billing, settlement, etc.
 - Cost/benefit analysis, e.g.,
 - economic efficacy of IP multicast and proper settlement model
 - business models for overlay services
- Mechanisms and Architectures:
 - How to enable new services and meet their requirements
Pie: (smart) Personal Info Environment

- Bottom-up approach to (eventually) build smart space
 - start with personal info and computing resources
 - integrate, simplify and make life easier for individuals
 - extend to groups, communities and so forth later
- A Simple Example: LIVIDO
 -- Location Independent Virtual Internet Document Organizer
 - organize documents virtually across platforms, across file systems
 - auto-synchronization, version control, backup, etc.
 - an undergraduate directed research project
- Pie: extending LIVIDO to other info & resource mgmt
 - personalized name and directory services
 - personalized event handler and notification
 - remote execution, context-aware computing
Networking Faculty in DTC

- "Core" Networking Faculty
 - David Du (networking, multimedia, storage)
 - Zhi-Li Zhang (networking, multimedia, middleware)
 - Yongdae Kim (security)
 - Andrew Odlyzko (Internet economics)

- Will have more soon!
 - ADC/Qwest chairs, CSE new networking faculty

- Others doing research related to networking:
 - Jaideep Srivastavara, Anand Tripathi, Jon Weissman,

DTC Open House -- May 2, 2003
Networking Research: Zhi-Li Zhang
Funding and Collaboration

- Multi-Million $$ from Gov. Funding Agencies
 - National Science Foundation
- Active Collaboration with Industry
 - Sprint
 - CISCO
 - IBM
 - Honeywell
 -
 - Industrial Research Partners Always Welcome!
- More than a dozen Ph.D students, plus many more MS and undergrads involved in networking research
DTC OPEN HOUSE: May 2, 2003

Networking Research in DTC
Zhi-Li Zhang

Thank You!
DTC OPEN HOUSE: May 2, 2003

Networking Research in DTC
Zhi-Li Zhang

Questions?
Networking Research in DTC

Project Highlighted

- **FILAR**: Failure Insensitive Load Adaptive Routing
- Enhancing BGP (Border Gateway Protocol)
- Secure Name Service (SNS)
- **SOI**: Service-Oriented Internet Architecture
- Internet Economics
- **Pie**: (smart) Personal information environment

URL: http://www.cs.umn.edu/research/networking