Efficient Mining of Closed Patterns with Tough Constraints

Jianyong Wang
Digital Technology Center
University of Minnesota
Outline

• Motivation
 - Why is frequent pattern mining so fundamental in data mining?

• Recent progress in pattern discovery
 - Closed/Maximal frequent pattern mining
 - Constrained pattern discovery

• The BAMBOO algorithm
 - LPCLOSEST
 - Search space pruning
 - Further optimizations

• Experimental results
 - Comparison with LPMiner, CFP-tree and CLOSET+
 - Scalability test

• Conclusion
Part _ Recent progress in pattern discovery
- A survey

• Motivation
• Recent progress in pattern discovery
 - Closed/Maximal frequent pattern mining
 - Constrained pattern discovery
• The limitations with the current solutions
What is a frequent pattern?

- Pattern (set of items, sequence, etc.) that occurs together frequently in a database [AIS93]

 » Given a support threshold, \(min_{sup} \), an itemset \(X \) is frequent if \(Sup(X) \geq min_{sup} \)

- Finding regularities in data

 » What products are often purchased together? — beer and diapers?!

 » What are the subsequent purchases after buying a PC?

 » ……
Why is frequent pattern mining so fundamental in data mining

- Foundation for several essential data mining tasks
 - Association, correlation, causality analysis
 - Association based classification and clustering
 » [Liu98] Integrating Classification and Association Rule Mining. KDD98.
 » [Li01] CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules. ICDM01.
 » [Yin03] CPAR: Classification based on Predictive Associative Rules. SDM’03
Problem with the frequent pattern mining algorithm

- **Observation**
 - A lot of existing frequent itemset mining algorithms
 » Apriori, FP-growth, OP, PPmine, AFOPT, Inverted matrix, …

- **Problem**
 » Too many frequent patterns if the support threshold is low

- **Popular solutions**
 » Closed (or Maximal) frequent patterns
 » Constrained frequent pattern mining
Maximal frequent itemset Mining

• Mining maximally frequent itemsets
 - Maximally frequent itemset \(X\)
 » No superset of \(X\) is frequent
 » E.g., the set of frequent itemsets \(=\{a:5, b:6, c:4, ab:4, bc:3, ac:4, abc:2\}\), then only itemset abc is maximally frequent.
 - More concise result set and more efficient algorithm
 - But may lose information
 » We cannot get the exact support of each frequent itemset
Closed itemset Mining

- Mining frequent closed itemsets
 - Closed itemset Y
 » There exists no itemset Y', such that $Sup(Y) = Sup(Y')$ and $Y' \supseteq Y$ hold.

- Typical frequent closed itemset mining algorithms
 » A-Close, CLOSET, MAFIA, CHARM, CFP-tree, CARPENTER, CLOSET+

- A bunch of different mining strategies/techniques
 » Search order, data representation, data compression, search space pruning, pattern closure checking schemes
Closed itemset Mining Strategies

• Search order

- Breadth-first search vs. depth-first search

 » Depth-first search is more efficient than breadth-first search for mining long patterns
Closed itemset Mining Strategies

• Data representation

 - Horizontal vs. vertical data formats

 » Need further performance study to compare these two schemes in terms of scalability, runtime and space usage efficiency

	I1	I2	I3	I4	I5	...
T1	1	1	1	0	1	...
T2	0	1	1	1	0	...
T3	1	0	1	0	1	...
T4	1	0	1	1	1	...
...
Closed itemset Mining Strategies

- Data compression technique
 - FP-tree
 - diffset: Differences in the tids of a candidate pattern from its parent pattern

<table>
<thead>
<tr>
<th>tid</th>
<th>itemset</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>f, c, a, m, p</td>
</tr>
<tr>
<td>20</td>
<td>f, c, a, m, p</td>
</tr>
<tr>
<td>30</td>
<td>f, c, a, b, m</td>
</tr>
<tr>
<td>40</td>
<td>f, b</td>
</tr>
<tr>
<td>50</td>
<td>c, b, p</td>
</tr>
</tbody>
</table>

Database

FP-tree
Closed itemset Mining Strategies

• Existing search space pruning methods
 - Item merging
 » If every transaction containing itemset X also contains itemset Y but not any proper superset of Y, then $X \cup Y$ forms a frequent closed itemset and there’s no need to search any itemset containing X but no Y
 - Sub-itemset pruning
 » If prefix itemset X is a proper subset of an already found frequent closed itemset Y and $\text{sup}(X) = \text{sup}(Y)$, prefix X can be safely pruned from the search space
Closed itemset Mining Strategies

- Database projection methods
 - E.g., CLOSET+ adopts two projection methods
 - Bottom-up physical projection
 - Top-down pseudo projection

<table>
<thead>
<tr>
<th>tid</th>
<th>item list</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>f, c, a, m, p</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>f, c, a, m, p</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>f, c, a, b, m</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>f, b</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>c, b, p</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tid</th>
<th>item list</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>f, c, a, m</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>f, c, a, m, p</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>f, c, a, b, m</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>f, b</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>c, b, p</td>
<td></td>
</tr>
</tbody>
</table>
Closed itemset Mining Strategies

• Subset checking techniques
 - Used to check whether a pattern is closed or not
 - Index structure
 » CHARM: Sum of transaction IDs
 » CLOSET+
 (1) 2-level hash indexed result tree structure for dense datasets
 (2) Pseudo projection based upward-checking for sparse datasets
Two-level hash-indexed result tree

- Compressed result tree structure
- Search space shrinking for subset checking
 - If itemset S_c can be absorbed by another already mined itemset S_a, they have the following relationships:
 1) $\text{sup}(S_c) = \text{sup}(S_a)$
 2) $\text{length}(S_c) < \text{length}(S_a)$
 3) $\forall i, i \in S_c \Rightarrow i \in S_a$
 - Measures to enhance the checking
 » Two-level hash indices – support and itemID
 » Record length information in each result tree node
Two-level hash-indexed result tree
Pseudo-projection based upward checking

- Result-tree may consume much memory for sparse datasets
- Subset checking without maintenance of history itemsets
 - For a certain prefix X, as long as we can find any item which (1) appears in each prefix path w.r.t. prefix X, and (2) does not belong to X, any itemset with prefix X will be non-closed, otherwise, if there’s no such item, the union of X and the complete set of its locally frequent items with support $\text{sup}(X)$ will form a closed itemset.
Pseudo-projection based upward checking

- E.g., Prefix $X='c:4'$

<table>
<thead>
<tr>
<th>f</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>m</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

- E.g., Prefix $X='am:3'$

![Diagram](image)
Constrained frequent itemset Mining

• Anti-monotone constraint P
 - If $A \subseteq B$ then $P(B) \Rightarrow P(A)$ or $\neg P(A) \Rightarrow \neg P(B)$
 » E.g., $\text{Support (S)} \geq \text{min_sup}$

• Monotone constraint Q
 - If $A \subseteq B$ then $Q(A) \Rightarrow Q(B)$ or $\neg Q(B) \Rightarrow \neg Q(A)$
 » E.g., $\text{Support (S)} \leq \text{max_sup}$
Constrained frequent itemset Mining

• Convertible anti-monotone constraint P
 - If there is an order _ according to which S_1 is a prefix of S_2, then $P(S_2) \Rightarrow P(S_1)$ or $\neg P(S_1) \Rightarrow \neg P(S_2)$
 » E.g., $\text{avg_price } (S) \geq c$ and descending order

• Convertible monotone constraint Q
 - If there is an order _ according to which S_1 is a prefix of S_2, then $Q(S_1) \Rightarrow Q(S_2)$ or $\neg Q(S_2) \Rightarrow \neg Q(S_1)$
 » E.g., $\text{avg_price } (S) \geq c$ and ascending order
Dualminer: A dual-pruning algorithm for itemsets with constraints [Bucila02]

Support(a) < min_sup
All its supersets can be pruned

Support(cd) > max_sup
All its subsets can be pruned
Limitations with these solutions

• Closed or Constrained pattern mining are useful in
 - Shrinking the result set
 - Improving the efficiency

• Cannot handle some tough constraints
 - Useful in mining interesting patterns, e.g.,
 » A tough constraint is not an anti-monotone, monotone constraint, or convertible constraint.

• Can we push tough constraints into closed itemset mining?
 - E.g., length-decreasing support constraint
Length-decreasing support constraint

• Definition
 - Given a database TDB, function $f(x)$ is a length-decreasing support constraint w.r.t. TDB, if:
 $\sup(Y) \geq f(|Y|)$, where $|Y|$ is the length of itemset Y
 - An itemset Y is valid (or frequent) if:
 $|TDB| \geq f(x) \geq f(x+1) \geq 1$
Some typical length-decreasing support constraint
Part II: Closed itemset mining with length-decreasing support constraint

- The BAMBOO algorithm
 - LPCLOSET
 - Search space pruning
 - Further optimizations

- Experimental results
 - Comparison with LPMiner, CFP-tree and CLOSET+
 - Scalability test
Running example

- \(f_{list} = \langle f:4, c:4, a:3, b:3, m:3, p:3, i:1 \rangle \),
- The length-decreasing support constraint \(f(x) \):
 \[
 f(x) = \begin{cases}
 4, & \text{if } x \leq 3 \\
 3, & \text{if } 4 \leq x \leq 5 \\
 2, & \text{if } x \geq 6
 \end{cases}
 \]

Table 1 a transaction database TDB

<table>
<thead>
<tr>
<th>tid</th>
<th>itemset</th>
<th>ordered item list</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>a, c, f, m, p</td>
<td>f, c, a, m, p</td>
</tr>
<tr>
<td>20</td>
<td>a, c, d, f, i, m, p</td>
<td>f, c, a, m, p, i</td>
</tr>
<tr>
<td>30</td>
<td>a, b, c, f, m</td>
<td>f, c, a, b, m</td>
</tr>
<tr>
<td>40</td>
<td>b, f</td>
<td>f, b</td>
</tr>
<tr>
<td>50</td>
<td>b, c, p</td>
<td>c, b, p</td>
</tr>
</tbody>
</table>
LPCLOSET

- FP-tree structure
- Bottom-up divide-and-conquer
- Search space pruning
- Closure checking scheme
- Simply integrating the length-decreasing support constraint
• **FP-tree representation**

![FP-tree diagram](image)

<table>
<thead>
<tr>
<th>Header table H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
</tr>
<tr>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
</tr>
<tr>
<td>m</td>
<td>3</td>
</tr>
<tr>
<td>p</td>
<td>3</td>
</tr>
</tbody>
</table>
• Bottom-up divide-and-conquer
Search space pruning

- Item-merging
 » Given a prefix P, all its locally frequent items with the same support as P can be safely merged with P to form a new prefix
 » E.g., $P = p:3$ with local item set \{c:3, f:2, a:2, m:2\}

new prefix $P' = pc:3$ with local item set \{f:2, a:2, m:2\}
Search space pruning

- Sub-itemset pruning
 - Given a prefix P, if it is a sub-itemset of another already mined closed itemset with the same support, prefix P can be safely pruned
 - E.g., $a : 3 \subseteq fcam : 3$

 Prefix $a : 3$ can be pruned
LPCCLOSET

- Closure checking scheme
 - Result tree with sum of transaction IDs as index
LPCLOSEST

• If $\text{sup}(P) \geq f(|P|)$ and P is closed, output P as a closed itemset satisfying the length-decreasing support constraint

• Result-tree pruning
 – No need to store a prefix itemset which cannot pass the checking of the length decreasing support constraint in the result tree
 – Implication
 » Check support constraint prior to pattern closure checking
Search space pruning based on the length-decreasing support constraint

- Previous methods adopted by LPMiner
 1) Transaction pruning
 2) Node pruning
 3) Path pruning

- Smallest Valid Extension (or SVE) property
 » Given an itemset P, $SVE(P) = \min(l | f(l) \leq \text{sup}(P))$
 » E.g., if $P=b:3$, $SVE(P)=4$

$$f(x) = \begin{cases}
 4, & \text{if } x \leq 3 \\
 3, & \text{if } 4 \leq x \leq 5 \\
 2, & \text{if } x \geq 6
\end{cases}$$
Deeply pruning

- **Invalid Item**

 » *Given a prefix* P, its projected database $TDB|_P$, *and any item* x, we use $\text{COUNT}^x[i]$ to record the total number of occurrences of item x in transactions of $TDB|_P$ no shorter than i.

 » *If* $\forall i$, $\text{COUNT}^x[i] < f(i+|P|)$, *item* x *is called invalid and can be safely pruned from* $TDB|_P$.

 » *E.g., in our running example,* $\text{COUNT}^b[i]=3$ ($1 \leq i \leq 2$), $\text{COUNT}^b[i]=2$ ($i=3$), $\text{COUNT}^b[i]=1$ ($4 \leq i \leq 5$), and $\text{COUNT}^b[i]=0$ ($i \geq 6$), *item* b *is invalid.*

$$f(x) = \begin{cases}
4, & \text{if } x \leq 3 \\
3, & \text{if } 4 \leq x \leq 5 \\
2, & \text{if } x \geq 6
\end{cases}$$
• **Deeply pruning**

 - **Unpromising prefix**

 » Given a prefix P, its projected database $TDB|_P$, we use $\text{COUNT}^P[i]$ to record the total number of transactions in $TDB|_P$ with a length no shorter than i.

 » Prefix P is called an unpromising prefix, if $\forall i, \text{COUNT}^P[i] < f(i+|P|)$

 » E.g., for prefix $p:3$, its projected database $TDB|_{p:3} = \{<fcam:2>, <cb:1>\}$, we have: $\text{COUNT}^{p:3}[i]=3$ ($1 \leq i \leq 2$), $\text{COUNT}^{p:3}[i]=2$ ($3 \leq i \leq 4$). Prefix $p:3$ is an unpromising prefix and can be pruned.

\[
f(x) = \begin{cases}
4, & \text{if } x \leq 3 \\
3, & \text{if } 4 \leq x \leq 5 \\
2, & \text{if } x \geq 6
\end{cases}
\]
Further optimization

- **SVE-based enhancement**
 - *Do we need to count all the projected transactions upon checking whether a prefix P is promising or not?*
 - *No, the transactions with a length shorter than $SVE(P)$ can be ignored!*

- **Binning-based enhancement**
 - *If the maximal transaction length is max_l, we need to maintain a total number of max_l counts in order to check whether an item is invalid or not*
 - *Manipulating a non-trivial memory is costly, can we relax a little the memory usage?*
BAMBOO algorithm

• Further optimization
 – Binning-based enhancement
 » We can maintain m counts, where 1 ≤ m ≤ max_l, denoted as COUNTx[1..m], corresponding to length l₁, l₂, …, and lₘ, that is, COUNTx[i] records the number of transactions no shorter than lᵢ in which item x appears.
 » Item x is called a relaxed invalid item if the following holds: COUNTx[m] < f(max_l) and COUNTx[i] < f(lᵢ₊₁)
 » Relaxed invalid items can be safely removed from mining
BAMBOO algorithm

• Use item merging and relaxed invalid item pruning methods to prune unpromising items
• Use transaction pruning method to prune some unpromising transactions
• Build FP-tree
• Mine FP-tree in a bottom-up divide-and-conquer manner
 – Apply unpromising prefix pruning, result-tree pruning and sub-itemset pruning methods to prune the search space
 – If an itemset is closed and pass the length-decreasing support constraint, output it as a valid pattern
• Stop when all the items in the global header table have been mined
Experimental results

- Comparison with LPMiner

Connect dataset
Experimental results

- Comparison with CFP-tree and CLOSET+

Connect dataset
Experimental results

- Comparison with CFP-tree and CLOSET+

Gazelle dataset
Experimental results

- Scalability and effectiveness of the pruning methods

T10I4D100k dataset
Conclusions

- How to push deeply the length-decreasing support into closed itemset mining?
 - Tough constraint
 - Downward-closure property cannot hold

- BAMBOO solution
 - Search space pruning
 » unpromising prefix pruning
 » invalid item pruning
 - Further optimization techniques
 » SVE and binning based enhancement
 - Much better performance than LPMiner and CLOSET+
That’s it,
thanks for your attention!