Turing and computations in pure maths

Andrew Odlyzko
School of Mathematics
University of Minnesota
Minneapolis, MN 55455, USA
odlyzko@umn.edu
http://www.dtc.umn.edu/~odlyzko
Preliminary version, July 20, 2013

Alan Turing made numerous significant contributions to the theory, art, and practice of computation. The most famous ones were the creation of the foundations of the theory of computability, and the cryptanalysis of German ciphers. What is much less known is that throughout his professional life, Turing kept coming back to some fascinating and still largely unsolved computational problems in pure maths, where he also made notable advances. These researches involved the design of a special purpose analog mechanical computer in the late 1930s, as well as some of the earliest applications of digital computers after World War II, and some theoretical papers.

The problems that drew Turing’s attention involved prime numbers, those positive integers greater than 1 that are not divisible by any positive integers other than themselves and 1, namely 2, 3, 5, 7, 11, ... Primes were identified as fundamental blocks of arithmetic by ancient Greeks, and have been objects of study ever since. Much of the flourishing subject of number theory is devoted to primes. Most of the interest of both the professional mathematicians and the numerous amateurs who have been drawn to this area is simply intellectual, driven by pure curiosity. However, there are also practical applications of primes, ranging from concert hall acoustics to cryptology, where they are at the foundations of the Diffie-Hellman, RSA, and other ciphers.

When Turing went to the University of Cambridge, that institution was home to some of the foremost number theorists of the era, such as Hardy, Ingham, and Littlewood. Under their influence, and that of a fellow student, Stanley Skewes, Turing was drawn to a very fundamental problem on the distribution of primes. It has been known for two thousand years that there are infinitely many primes. Inspection of initial segments of integers shows that primes appear to be becoming sparser and sparser the further one goes; there are 25 of them below 100, 168 below 1000, 1229 below 10000, and 9592 below 100000. But just how sparse do the primes get? It was conjectured around 1800 that \(\pi(x) \), the number of primes up to \(x \), should be about \(\text{Li}(x) \), where \(\text{Li}(x) \), the logarithmic integral, is a smooth function that is easy to compute and grows like \(x/\log x \). This was proved to be true a century later. But just how good is this approximation? If the Riemann Hypothesis (RH) is true, the difference \(\text{Li}(x) - \pi(x) \) never gets much larger than the square root of \(x \).

The RH, which is a century and a half old, is regarded as the most famous and most significant unsolved problem in mathematics. It is a statement about the locations of an infinite number of points in the complex plane, the zeros of the Riemann zeta function. The RH was one of the 23 problems posed by the famous mathematician Hilbert in 1900 as challenges, and it is one of the 7 Clay Mathematics Institute Millennium Prize Problems.
posed in 2000, with a $1 million award for a solution. The RH has attracted enormous
attention for a combination of reasons. It is old, and had been attacked unsuccessfully
by many famous researchers. It has important implications for several areas. Further, it
connects seemingly disparate areas, namely the discrete primes with the zeros of a con-
tinuous function. Even more tantalizingly, the RH implies that those discrete primes, the
very fundamental components of arithmetic, exhibit quasi-random behavior.

Turing’s work in number theory revolved around the RH and the associated zeros of
the zeta function. Much of what he did, especially the parts connected with Skewes, dealt
with a conjecture related to the RH, namely that \(\pi(x) \) is always strictly less than \(\text{Li}(x) \).
This conjecture, if true, would imply the RH. All the direct numerical evidence we have
supports it. It is known to be true for \(x < 10^{14} \), and there are heuristic arguments to
suggest it is true at least up to \(10^{30} \). However, a century ago it was shown to be false. (The
proof did not imply anything about the RH itself, the relation was strictly one way, with
this conjecture implying the RH, but not vice versa.) The initial proof did not indicate
where the first counterexample might occur. We still do not know precisely where it occurs,
but Skewes, Turing’s student colleague, friend, and collaborator, showed that it is no larger
than the enormous number

\[10^{10^{10^{963}}} \]

Later research has shown there is a counterexample below “only” \(10^{317} \), a number still far
beyond the reach of modern computers and known algorithms.

Skewes’ and Turing’s work on the \(\pi(x) \) vs. \(\text{Li}(x) \) question involved investigations of the
zeros of the zeta function. This was likely one of the motivations for Turing’s design of a
special purpose machine for computing the zeta function, for which he obtained what was
in 1939 a generous £40 grant from the Royal Society. The other motivation was simply to
check whether the RH was true. A few years earlier, it had been verified that the first 1041
zeros of the zeta function do indeed satisfy the RH, and Turing wanted to go about four
times further. Unfortunately World War II intervened, so this machine was never built.

After the War, Turing had access to the Manchester Mark I, one of the earliest general
purpose digital computers. He used it to investigate the RH. He did not get much further
than the pre-War verification, though, as the digital technology was still primitive. As he
wrote in his paper describing his results,

If it had not been for the fact that the computer remained in serviceable condition
for an unusually long period from 3 p.m. one afternoon to 8 a.m. the following
morning it is probable that the calculations would never have been done at all.

This quote shows both how primitive the early computers were, and how enthusiastic
Turing was about the RH. Not many people would have been willing to stay up all night
waiting for the results (which came out on paper tape, with output printed in based 32,
which Turing had learned to read at sight)!

With time, technology improved and better algorithms were found. As a result, Turing’s
computations of the zeta function have been superseded, and today we know that the RH
is satisfied by the first \(10^{13} \) zeros. However, even the latest computations rely on a clever
 technique of Turing’s that simplifies the task of demonstrating that all zeros of the zeta
function have been found.
An interesting observation is that as time went on, Turing grew increasingly skeptical about the RH, to the point that he talked openly to his colleagues about its likely falsity. At that time, such skepticism was not uncommon among number theorists, but over the past half a century it has decreased. It would have been interesting to find out how Turing would have reacted to the developments that led to the change of opinions in favor of RH. As it is, we don’t even know why he doubted its truth. All we can say is that he was fascinated by the question, and kept returning to it. In the process he developed some original computational techniques and employed early digital computers in a novel way.