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|PRELIMINARY VERSION |

Using Feferman-Vaught techniques a condition on the fine spectrum of an
admissible class of structures is found which leads to a first-order 0-1 law.
The condition presented is best possible in the sense that if it is violated
then one can find an admissible class with the same fine spectrum which
does not have a first-order 0-1 law.

If the condition is satisfied (and hence we have a first-order 0-1 law) we
give a natural model of the limit law theory; and show that that the limit
law theory is decidable if the theory of the directly indecomposables is
decidable. Using asymptotic methods from the partition calculus a useful
test 1s derived to show several admissible classes have a first-order 0-1 law.

1 Front-loaded classes

We will continue using the notation of Part I, the first paper [1] of this
sequel.

First we study, in an abstract setting, the key property of fine spectra
which suffices to prove 0-1 laws exist. In this section a subscripted
lower case letter is used for members of a sequence, e.g. (ay), and

the corresponding upper case letter for the partial sum function, e.g.

A(x) = Tn<p an.



LEMMA 1.1. For (a,) a sequence of non-negative integers the following

are equivalent:

Altx)

(a) Jim A0) =1 for all [some] x > 1.

(b) lim ZZ(Z;L)) =1 for all [some] x > 1.
A nt1

(c) lim 2™ =1 for all [some] x > 1.

n—00 ‘4(33'”)
We also obtain further equivalent statements by replacing tx by t/x in
(a), and nz by n/x in (b).

PrROOF. Regarding the ‘for all x’ versions one has (a) = (b), (c).
Likewise for the ‘for some x’ versions. Also, in each case the ‘for all
x’ version implies the ‘for some 2’ version. Thus for the equivalences
(a)—(c) it suffices to show that the ‘for some 2’ versions of (b), (c) each
imply the ‘for all 2’ version of (a).

First suppose the ‘for some’ version of (b) holds. Choose u > 1 such

that 4
lim (nu)

For n sufficiently large we have un > n + 1, and consequently

A(n+1) < A(nu)

= 1.

YSTAm S Am)
Thus Aln+1)
i A(n) L.
Then
| < Alty) < A(([t]+Du) AL+ D) A(lt] +1)



So At
A At L
Then for any positive integer s we have
. A(tu®)
A At L.

Given any x > 1 choose a positive integer s such that 1 < x < u?.

Then

Alte) _ A(tu’)
1< <
TOA@) 7A@
implies
im Altz) =1
t—o0 A(t) '

Next suppose the ‘for some’ version of (c) holds. Choose u > 1 such

that Ayt
lim - (™)

Then, for u" < t < u™*!, we have vt < tu < «"*?, and then

A(umt?) S Altu)

= 1.

>1
A(ur) = A(t) —
SO
Altu)
im ———- =
Now, as in the previous case, we have, for any = > 1,
Altx)
v A(f) L

To see that one can replace nx by n/x in (b) it suffices to note the

following:

A@lnz)) _ A(na)
A(L@Me))) = A(m) 25



and for n > x A(I_/J) A( /)
Aelnfe]) = Am) =t

The same argument shows that one can replace tx by t/x in (a).

DEFINITION 1.2. A sequence of non-negative integers (ay) is said to

be front-loaded if A(z) us slowly varying, i.e., for all x > 0,

Altx)

e Alt) 1.

A class K of finite structures s front-loaded if its fine spectrum s front-

loaded.

THEOREM 1.3. The Dwrichlet convolution product of finitely many front-

loaded sequences 1s front-loaded.

PrOOF. It suffices to consider two front-loaded sequences, say (a;)
and (b,). We want to show that the sequence (¢,) defined by ¢, =

imln @mbn/m 1s front-loaded. Now

C(x)= > ar- B(x/k).

k<zx

We have to prove, for x > 1 and § > 0, that there is a t¢(z, J) such that
C(tx) < (146)-C(t) for t > to(z,9).
Since the b-sequence is front-loaded,

B(tr) < (146/2) - B(t) for t > t,(x, ),



and we assume t; > x. Then

C(txr) = > ar-B(tz/k)

< ]Z:i%/tl ar - B(tx/k)) + B(t1) - (A(tx) — A(tx/ty))
< (146/2) - (X (ar - B(t/k)) + B(t1) - (A(tx) — A(te/t1))
= (144/2)- Ck?;) + o(A(t))

since the a-sequence is front-loaded, which completes the proof. =

The next item is essentially Lemma ZZZ of Part I.

LEMMA 1.4 Let K be an admissible class. Then the follounng are

equivalent:
(a) K is front-loaded.
(b) Prob(is divisible by A) =1 for all A € K.
(c) Prob(is divisible by A) =1 for some nontrivial A € K.

PROOF. Observe that

is divisible by A
Proby(is divisible by A} = ligy ~KU 115 dvisible by A)
n—0o0 TK<n)
d
_ i KD

where d is the size of A. Then apply Lemma 1.1. m

LEMMA 1.5. An admassible front-loaded class K 1s loaded.



PrROOF. Let Fy,...,F; be a partition of F, and let ry,...,7r. be a se-
quence of nonnegative integers. Choose any algebra A with at least r;

factors from each F;. Then

r(n |is divisible by A) _ i (n|isin FZ" - FZ™)

o) = () =1

Thus, by Lemma 1.4, Proby(is in Fzm... szrk) = 1, so K is loaded.

2 Logical Aspects

THEOREM 2.1. Suppose that K 1s admassible. If K is front-loaded then

we have the following:
(a) K has a first-order 0-1 law.

(b) Let R be a selection of representatives from the isomorphism equiv-
alence classes of F, and let T = (IIR)*. Then, for ¢ a first-order
sentence, Proby (¢) =1 iff T |= ¢.

(c) If the first-order theory of F is decidable then so is the limit law
theory of K, i.e, the set of first-order ¢ with Proby(¢) = 1.

If, on the other hand, K 1s not front-loaded, then there is an admassible
K" with the same fine spectrum as K, and K' does not have a first-order
0-1 law.

PROOF.

(a) Examining the proof of part (a) of Theorem XXX in Part I we see

in the front-loaded case that p;, = 0 if any j; < ¢. Thus at

1111 jZ—l
most one nonzero term survives in the formula for the cumulative

probability of ¢, namely p. ., and this term has the value 1.

.....



(b)

Given a first-order sentence ¢ let Feferman-Vaught sequences be
determined as in the proof of part (a) of Prop YYY in Part I,
and also the F;. By regrouping the factors of T by ‘members of

the same F;’, we have
TgT()X ---XTg_l,

where T; = (II(RNF;))*. T will satisfy ¢ iff the structures from
K with at least ¢ factors from each F; satisfy ¢ (by Lemma ZZZ
in Part I), and the latter holds iff ¢ is in the limit law theory.

Suppose Th(F), the first order theory of F, is decidable. Given a
first-order sentence ¢ we now show how to effectively determine
if T = ¢, i.e., how to determine if ¢ is in the limit law theory.

First we use [2] to effectively find the Feferman-Vaught sequences
(P, 1, 1), (PiyPiny -y Gik,) (1 < i < k) in the proof of part
(a). Now we define a constituent of ¢ to be any conjunction ~y
of the ¢; ;’s and their negations such that for each (i, j) precisely

one of ¢; ; and — ¢; ; appears in the conjunction.

Suppose 7 is such a constituent. Then either v has no model in
F or 7 defines one of the classes F;, i.e., F; = {D € F: D E ~}.
Note that, up to ordering of the conjuncts, each F; is determined

by a unique constituent, say by ~;.

Thus we can determine the ¢ in the proof of part (a) by deter-
mining the constitituents which have models in F. And we can
do this by using the decidability of Th(F), namely a constituent
v has a model in F iff =~ ¢ Th(F).

Now that we have (, we want to determine the [¢;] in 2¢. This
is because T |= ¢ iff 2¢ = ®([¢1], ..., [ox])-
To determine [¢;] we will find the set S; of j such that T; |



¢i. [o:] is just the characteristic function of S; (in the set ( =
{0,...,0—=1}).

So we look at the Feferman-Vaught sequence for ¢;, namely

(D, i1,y Gik;). As T; is a countably infinite product of mem-
bers of F;, say T; = II,.,D,, we have

1_[n<<.dDﬂ |: ¢Z iff 2¥ IZ (I)<I[¢i,1]]7 s [¢Z,kz]])

As the D,, = v;, and each ¢;, or its negation appears as a con-

junct of v;, we know that

[oir] = 1 if ¢;, appears in v;
[¢ir] = 0 if = ¢;, appears in ~;.

Thus we can effectively find the [¢;,]’s. Having determined
®;([¢i1]s-- -+ [¢ir]), a sentence in the language of Boolean alge-
bras, we use Skolem’s result that Th(2%) is decidable to determine
if ®;([¢ir],---,[0ir]) € Th(2¥), and thus if T; = ¢;.

Now we have all the information needed to determine the S;’s,
and hence the [¢;]’s, so we can effectively find ®([¢1], ..., [¢x])-
Finally we determine if 2° &= ®([¢1],...,[¢:]); this is clearly
decidable as 2° is a finite algebra. This finishes the proof of (c).

Now let us suppose that K is not front-loaded. Let F be the class of
K-indecomposables. Let F' be an expansion of F* by two constants a, b,
i.e., for each member D of F* we create one structure D’ by interpreting

the constant symbols a, b.

Case 1: Prob K'< ¢ind ) does not exist.

In this case K' does not have a first-order law.

Case 2: Prob Kl(¢ind) =t>0.



In this case we have an infinite number of indecomposables. Choose

positive integers n; < ny < - -- such that
1
TF/(nk) < ETF'(nk“)'
and ()
Trln t
FRe t‘ <<
TKl(nk) 5

We now assume the interpretation of the constants a, b in each member

D of F' is as follows: if the size of D is in (nj_1,n;] with k even, put
a = b; otherwise put a # b. Then

T (N2k | @ =b A ¢ina) . 2

Tk (n2) 3

and
TK’(n2k+1 |a =0 A ¢ina) 1
TK’<n2k—|—1) 3
Thus Prob K'( a = b A ¢ina) does not exist, so K' does not have a first-

order law.

Case 3: Prob K'< Gina ) = 0.

Without loss of generality regarding the fine spectrum being consid-

ered we can assume that

(%) for every relation symbol r of the language there is a corresponding

function symbol f, such that for each nontrivial A € K’ we have

r(ai,...,ay) holds iff f.(ai,...,a,) = a; holds, where a; € A.

Given a member A of K’ one can use the ternary discriminator to
find a first-order sentence ¢ which, for members of K', says “A is a
factor”.

If for some A € K’ the cumulative probability Prob K/(QSA) is not

defined then K' does not have a first-order law, and we are finished. So
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we assume that Prob K/( da ) exists for all A € K.

Case 3a: Prob K/( da ) = 0 for every nontrivial A € K'.

The number of structures, up to isomorphism, in F' must be infinite;
for otherwise we could use Theorem 1.3 to show K is front-loaded.

For k a positive integer let ¢, be a first-order sentence which, for
members of K', says “there is a non-trivial factor of size less than k”.
;From our assumptions follows Prob i (¢<;) = 0. Choose positive inte-
gers ny < ng < --- such that

1kt [ n) < 57cr(mesn).
We again assume the interpretation of the constants a, b in each mem-
ber D of F' is as follows: if the size of D is in (n4_1,n;] with k even,
put @ = b; otherwise put @ # b. Let ¢, be a sentence expressing ‘has

a nontrivial factor in which a =b’. Then

T (2K | Pap) _ 2
> —_
T (n2) 3

and

TKl<n2k+1) 3
Thus Prob K’(¢a,b) does not exist, and again K' does not have a first-

Ty (N2k+1 | Gap 1
K (2r+1 | )<

order law.

Case 3b: Prob K/( da ) > 0 for some nontrivial A € K'.

Now Prob K'( da ) < 1 for every nontrivial A € K' by Lemma 1.4 as
K’ is not front-loaded. But then K’ does not have a 0-1 law. ]

Thus we see that, among the admissible classes K, those for which
knowledge of the fine spectrum alone is sufficient to conclude a first-

order 0-1 law are precisely those which are front-loaded. An example of
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an admissible K where more information is needed is the class of finite
sets. We already mentioned that it is loaded, and thus has a first-order
law; however it is well-known that it has a first-order 0-1 law. This K
is clearly not front-loaded, so more information than that given by the

fine spectrum is required to deduce the 0-1 law.

PROPOSITION 2.2. Suppose K; s admassible and front-loaded, for 1 <
1t < m. LetF; be the K;-indecomposables. Suppose the F; are pairwise
disjoint. Let K =K ---K,,. If K has unique factorization then K has a
first-order 01 law.

PrROOF. The hypotheses ensure that K is admissible, and that the
Dirichlet convolution product of the fine spectra TK, s+ 0K is the

fine spectrum oK. Now apply Theorems 1.3 and 2.1. ]

REMARK 2.3. We can apply the above to show

K= U IIK

SC{1,...,m} i€S

has a 0-1 law +f it has unique factorization by observing that

e adding/deleting one-element structures that act as multiplicative
units with respect to direct products from a class K does not affect
either the admissibility of K or the fact that K s front-loaded.

COROLLARY 2.4. Suppose K 1s admussible, and that the set F of K-
indecomposables 1s the disjoint union of F,...,F,,, where each F; 1is
closed under isomorphism. Let K; = I Py (F;). If each K; is front-
loaded then K has a first-order 0-1 law.

ProOOF. Each K; is admissible, and K = K* where K* is as in Remark
2.3. Thus by Proposition 2.2 and Remark 2.3 we arrive at the desired

conclusion. m
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3 Asymptotics

Let K be admissible, and let F be the class of K-indecomposables. To
estimate 7(n | P) and 7(n) we shall consider Dirichlet generating func-
tions. Chapter XVII of [3] contains an excellent introduction for our
purposes to Dirichlet generating functions. Perhaps noting that K and
F correspond to the integers and primes respectively and that

oo

n~* =T[(1 = p~*)~", p a prime,
1 P

will motivate what follows. If m runs through the integers which are
not divisible by the prime ¢ then

io: m~* = J[(1l— p_s)_l, p a prime.
m=1 P4
Now suppose we are given a fixed positive integer M. Let b, =
ok (n). Let Dy, Dy, ... be a listing, up to isomorphism, of the members
of F, and let 3, be the size of D,,. Let a,, denote the number of structures
of size n in K which have no copies of D, in their F-factorization. Then
it 1s not difficult to see that

S b~ = I1 (1 877",

m=1
and -
Sam~= I (-8
m=1
m # M
Furthermore

: : ay+ag 4+ -+ ay
Prob ik (is not divisible by D, ) = 1 ,
rob y D) = lim 5=

provided this limit exists.
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THEOREM 3.1. Let (B), 0 < 31 < (B2 < ---, be a sequence of real

numbers and

(16"
1

Sam~ =87 I Q-8
m=1

m # M

where M 1s a positive integer. If

Y byn Tt =

il

log B, ~ cm, c>0 a constant,

then
ay+azy+---+ap
b1+ by + -+ by
PrROOF. We will use Theorem 2.2 of [4] to derive our result. We begin
with some notation and definitions used in [4]. Let A = (A,;), 0 < A; <

A9 < ---, be an infinite sequence of real numbers without a finite limit

point. Let N(u) be defined by

= O((logn) ).

and suppose that for each € > 0 there exists a constant C' = C'(¢) such
that

N(u) < C(€) exp(eu).
Then the infinite product

(1= exp(=A,3))”

==l

g(s) =

converges for all complex s with Re s > 0. Let ¢, run through the
monotone increasing sequence of linear combinations of the A,, with

non-negative integral coefficients; then

9(s) = X p(lm)e™",



14

where p({,,) is the number of partitions of /,, into summands from
{Am}. Let
P(u) =3 p(0).

f<u

REMARK 3.2. If A, = log 3,, then

Y b= >, p(l)=P(logn).
m<n I<logn
Now let @ = a(u) be determined (uniquely for large u as demon-
strated in [4]) from
=3 Ap(e™ —1)7" — 207!

and define By = By(u) by

A;Znea/\m 5
By =) (exdn —1)? — 4o

m

Of course u is defined by a very complicated equation; however Roth
and Szekeres [5] show that if \,;, ~ em then

™

vV bcu

Bg(oz)rv%oz ~ U

If A, ~ cm then A has properties I and II of Theorem 2.2 of [4] (see
conditions (ii) on page 375 of [4]). Finally, for any positive constants
Ci, Cyand § (0 < %) there is a Ay such that

o

ol

C’loz_ S /\N S CQOZ_%_(S

for all sufficiently small a (or large u) since this is equivalent to there

being a Ay such that

| L
Cyut < Ay < Cyus™,
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and this is true since Ay ~ ¢N. Finally
a5 B] = 0(a57570) = O(ai %) = o(1)

and 1

a5 BE = O(as~%) = o(1)
Hence all the hypotheses of Theorem 2.2, part 6, of [4] are satisfied
(note that as 5B2 = 0(1) should read as 5B2 = 0(1); see Lemma 2.4),

and

P(u) ~ (QWBQ)_%OZ_I exp{au — i::l log(1 — =)}, (1)

REMARK 3.3. We cannot express the asymptotic behaviour of the exp
term in (1) in terms of elementary functions, but as Roth and Szekeres

[5] showed, this is not necessary for the proof of Theorem 3.1.

Roth and Szekeres were interested in proving that certain partition
functions are monotonic. They did this by working out the asymptotic
behaviour of a partition function analogous to our P(u + 1) — P(u),
noting that this corresponded to multiplying their generating function
by 1 —e~**. They showed that this alteration in the generating function
alters o by so little that the asymptotic behaviour of their function can
be obtained by adding the term log(l — ™) to the exp term in (1).
Their arguments can be see to apply here. Note that deleting the term
corresponding to Ay in the sum defining o changes the sum by O(a);
and since the sum is asymptotically a constant times o2 the solution
is changed by O(a™?). One can check (see [4] or [5]) that such a small
change in a allows one to deduce the asymptotic behaviour of 3 a, by
simply deleting the Ay term in the sums in (1), and not changing «.

Remembering Remark 3.2 we therefore have

5 ar ~ TR logn)E b = O((logn) 3 ),

I<n I<n I<n
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so we have Theorem 3.1. =

Note that we do not have to estimate the difference of functions
asymptotically equal, so we have a simpler problem than Roth and
Szekeres did. Next we summarize the cases for which our methods are

known to apply and give a 0-1 law.

DEFINITION 3.4. A class F of finite structures has approximately

exponential growth if one can, up to isomorphism, enumerate the struc-

tures D,, of F by strictly increasing size, and there 1s a constant ¢ such
that
log(d,) ~ cn,

where d,, 1s the size of D,,.

THEOREM 3.5. Suppose K s admaissible, and F 1s the set of K-indecomposables.
If F s the disjoint union of finitely many F;, where each F; 1s closed un-

der 1somorphism and s either finite or has approximately exponential
growth, then K has a first-order 0-1 law.

PrROOF. Let K; be the closure of F; under finite direct products and

isomorphism.

1. If F; has, up to isomorphism, only one member then clearly K; is
front-loaded.

2. If the members of F; show approximately exponential growth then
one can apply Theorem 3.1 and Lemma 1.4 to show that K; is
front-loaded.

Now, in the general case of the theorem we have subclasses K; of K that

belong to these two cases, so Corollary 2.4 gives the conclusion. n
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EXAMPLE 3.6. Let V be the variety of monadic algebras (as studied
in algebraic logic). This is a congruence distributive variety, so unique
factorization holds. Let K be the finite members of V. The directly
indecomposables of V are precisely the Boolean algebras which satisfy
x>0 — ¢(x) = 1. Thus the sizes of the finite directly indecomposables
of V form the sequence (2"). By Theorem 3.5, K has a first-order 0-1
law.

From Skolem’s work we know that the theory of finite Boolean alge-
bras is decidable; and using this one can give a straightforward proof
that the theory of the finite directly indecomposables of V is decidable.
Thus, by Theorem 2.1(c), the limit law theory of K is decidable.

ExaMPLE 3.7. Let V be the variety of Heyting algebras generated
by the three element chain. Again we have a congruence distributive
variety, and thus unique factorization. Let K be the finite members of V.
The directly indecomposables of V are precisely Boolean algebras with
a new 0 adjoined. Thus the sizes of the finite directly indecomposables
of V form the sequence (2" 4+ 1). By Theorem 3.5, K has a first-order
0-1 law.

Again Skolem’s work leads to a straightforward proof that the theory
of the finite directly indecomposables of V is decidable. By Theorem
2.1(c) the limit law theory of K is decidable.

ExXaMPLE 3.8. Let p1,...,pr be a set of prime numbers. Let K be
the set of finite abelian groups whose exponent divides some power of
p1 - - - pe. Then the directly indecomposables fall into ¢ classes with the
growth of the i'" class being the exponential sequence (p?). Conse-
quently K has a first-order 0-1 law by Theorem 3.5.

By Theorem 2.1(b) one has Prob k(¢) = 1 iff ¢ is true of the abelian

group

¢ oo

G=1I1I (Zp?)w-

1=1n=1
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Referring to the work of Szmielew [6] we see that (i) the exponent of G
is 0o, (ii) all elementary invariants of G which involve pq,...,p,; are oo,
and (iii) all elementary invariants of G which involve other primes are
0. Thus the set of basic sentences which are true of G is recursive, and
consequently the first-order theory of G is decidable. Consequently the
limit law theory of K is decidable.
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