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1. Intro duction

Asymptotic erumeration methods provide quartitativ e information about the rate of
growth of functions that count combinatorial objects. Typical questions that these meth-
ods answer are: (1) How doesthe number of partitions of a set of n elemens grow with n?
(2) How doesthis number compareto the number of permutations of that set?

There do exist enumeration results that leave nothing to be desired. For example, if a,
denotesthe number of subsetsof a set with n elemers, then we trivially have a, = 2". This
answer is compact and explicit, and yields information about all aspects of this function. For
example, congruenceproperties of a, reduceto well-studied number theory questions. (This
is not to say that all such questionshave beenanswered, though!) The formula a, = 2" also
provides complete quartitativ e information about a,. It is easyto compute for any value
of n, its behavior is about as simple as possible,and it holds uniformly for all n. Howewer,
such examplesare extremely rare. Usually, even when there is a formula for the function we
are interested in, it is a complicated one, involving summations or recurrences. The purpose
of asymptotic methods is to provide simple explicit formulas that describe the behavior of a
sequencefor large values of indices. There is no satisfactory de nition of what is meart by
\simple" or by \explicit." Howewer, we can illustrate this concept by some examples. The
number of permutations of n letters is given by b, = n!. This is a compact notation, but only
in the sensethat factorials are sowidely usedthat they have a special symbol. The symbol n!
standsforn (n 1) (n 2) ::: 2 1,andit isthe latter formula that hasto be usedto answer
guestionsabout the number of permutations. If oneis after arithmetic information, sud asthe
highest power of 7, say, that divides n!, one can obtain it from the product formula, but even
then somework hasto bedone. For most quartitativ e purposeshowever,n!=n (n 1)::: 21
is inadequate. Sincethis formula is a product of n terms, most of them large, it is clear that
n! grows rapidly, but it is not obvious just how rapidly. Sinceall but the last term are 2, we
have n! 2" 1 and sinceall but the last two terms are 3, we haven! 3" 2, and soon.

On the other hand, eath term is n, son! n". Better boundscan clearly be obtained with



greater care. The question such estimatesraise is just how far can one go? Can one obtain an
estimate for n! that is easyto understand, compute, and manipulate? One answer provided by
asymptotic methods is Stirling's formula: n! is asymptotic to (2 n)?2(n=¢)" asn! 1 , which
meansthat the limit asn! 1 of n!(2 n) ¥(n=e) " exists and equals1. This formula is
conciseand gives a useful represenation of the growth rate of n!. It shows, for example, that
for n large, the number of permutations on n letters is considerablylarger than the number of
subsetsof a set with binlognc elemerts.

Another simple exampleof an asymptotic estimate occursin the \probl emedesrencortres"
[B1]. The number d, of derangementsof n letters, which is the number of ways of handing
badk hats to n peoplesothat no personreceiveshis or her own hat, is given by

dn = X ( 1)"';—: : (1.1)
k=0 '
This is a nice formula, yet to compute d, exactly with it requires substartial e ort, sincethe
summandsare large, and at rst glanceit is not obvious how large d, is. Howewer, we can
obtain from ([L.J) the asymptotic estimate
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1 as n! 1: (1.2)

To prove ([L.2), we factor out n! from the sumin ([L.J). We are then left with a sum of rapidly
decreasingterms that make up the initial segmen of the series
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k=0
and ([L.2) follows easily It can even be shown that d, is the nearestinteger to e Int for all
n 1, see[B]]. The estimate ([[.7) doesnot allow us to compute dn, but conmbined with the
estimate for n! cited above it shavs that d, grows like (2 n)*2n"e " 1. Further, ([.J) shawvs
that the fraction of all ways of handing out hats that resultsin every personreceivingsomelody
else'shat is approximately 1=e Results of this type are often exactly what is desired.
Asymptotic estimates usually provide information only about the behavior of a function
as the argumerts get large. For example, the estimate for n! cited above says only that the
ratio of n! to (2 n)¥™(n=e)" tendsto 1 asn getslarge, and says nothing about the behavior
of this ratio for any specic value of n. There are much sharper and more precise bounds
for n!, and they will be preseried in Section 3. Howewer, it is generally true that the simpler

the estimate, the weaker and less preciseit is. There seemsto be an unavoidable tradeo
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between concisenessand precision. Just about the simplest formula that exactly expresses!
isn (n 1) ::: 2 1. (We have to be careful, sincethere is no generally acceptedde nition
of simplicity, and in many situations it is better to useother exact formulas for n!, such asthe
integral formula n! = Rol t"e dt for the -function. There are also methods for evaluating
n! that are somewhatmore e cien t than the straightforward evaluation of the product.) Any
other formula is likely to involve someloss of accuracy as a penalty for simplicity.
Sometimes,the tradeo s are clear. Let p(n) denote the number of partitions of an integer
n. The Rademader corvergert seriesrepresenation [[3, P3| for p(n) is valid for any n 1:

Rx
Py = 12127 Apm o, PsinnCm L) 13

m=1
where

C= (23)% = (v 1=24)"7; (1.4)
and the A, (n) satisfy

Ai(n)=1; Ay(n)=( 1" foral n 1;

jAm(n)j m; forall m;n 1;

and are easyto compute. Remarkably enough, the series([[.3) doesyield the exact integer
value of p(n) for every n, and it corvergesrapidly. (Although this is not directly relevant, we
note that using this seriesto compute p(n) givesan algorithm for calculating p(n) that is close
to optimal, sincethe number of bit operations is not much larger than the number of bits of
p(n).) By taking more and more terms, we obtain better and better approximations. The rst

term in ([L.3) shows that

py= 12120 Tsinn(c 1)) +O(n texp(Cn’?=2) : (L.5)

and if we don't like working with hyperbolic sines,we can derive from ([[.9) the simpler (but

lessprecise) estimate
1+ O(n 1=2) Ccnl=2 .
4 3%2n '

valid for all n 1. Unfortunately, exact and rapidly corvergert seriessud as ([.9 occur

p(n) = (1.6)

infrequently in enumeration, and in generalwe have to be content with poorer approximations.
The advantage of allowing parametersto grow large is that in surprisingly many casesgven
when there do exist explicit expressionsfor the functions we are interested in, this procedure

doesyield simple asymptotic approximations, whenthe in uence of lessimportant factors falls
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0. The resulting estimatescan then be usedto comparenumbersof di erent kinds of objects,
decide what the most common objects in some category are, and so on. Even in situations
where bounds valid for all parameter values are needed,asymptotic estimatescan be usedto
suggestwhat form those bounds should take. Usually the error terms in asymptotic estimates
can be made explicit (although good bounds often require substartial work), and can be used
together with computations of small valuesto obtain universal estimates. It is common that
already for n not much larger than 10 (where n is the basic parameter) the asymptotic estimate
is accurate to within a few percert, and for n 1001t is accurate to within a fraction of a
percen, even though known proofs do not guarantee results as good as this. Therefore the
value of asymptotic estimatesis much greater than if they just provided a picture of what
happensat in nit y.

Under someconditions, asymptotic results can be usedto prove completely uniform results.
For example,if there wereany planar mapsthat werenot four-colorable,then almost every large
planar map would not be four-colorable, as it would corntain one of those small pathological
maps. Thereforeif it could be provedthat most large planar mapsare four-colorable, we would
obtain a new proof of the four-color theorem that would be more satisfactory to many people
than the original one of Haken and Appel. Unfortunately, while this is an attractiv e idea, no
proof of the required asymptotic estimate for the normal chromatic number of planar maps
has beenfound sofar.

Asymptotic estimatesare often usefulin decidingwhether an identity is true. If the growth
rates of the two functions that are supposedto be equal are di erent, then the coincidenceof
initial valuesmust be an accidert. There are also more ingeniousways, sudc asthat of Exam-
ple for deducing nonexistenceof identities in a wide classfrom asymptotic information.
Sometimesasymptotics is usedin a positive way, to suggestwhat identities might hold.

Simplicity is an important advantage of asymptotic estimates. They are even more useful
when no explicit formulas for the function being studied are available, and one has to deal
with indirect relations. For example, let T, be the number of rooted unlabeled trees with n
vertices,sothat To= 0, T1 = T, = 1, T3 = 2, T4 = 4;::: . No explicit formula for the T, is
known. Howevwer, if

T(2) = Thz" 1.7)



is the ordinary generating function of T,,, then Cayley and Polya showved that
|

“ !
T(z) = zexp T(Z=k (1.8)
k=1

This functional equation can be derived using the generalPolya-Red eld enumeration method,
an approad that is sketched in Section15. Example [[5.] shovs how analytic methods can be
usedto prove, starting with Eq. ([L.9), that

T, Cr "n 32 as n! 1 ; (1.9)

where

C = 0:4399237:: ; r = 0:3383219:: ; (1.10)

are constarts that canbe computed e cien tly to high precision. For n = 20, T, = 12,826 228,
whereasCr 2020 372 = 1:274::: 10, soasymptotic formula ([L.9) is accurateto better than
1%. Thus this approximation is good enoughfor many applications. It can also be improved
easily by adding lower order terms.

Asymptotic enumeration methodsareasub eld of the hugeareaof generalasymptotic anal-
ysis. The functions that occur in enumeration tend to be of restricted form (often nonnegative
and of regular growth, for example) and therefore the repertoire of tools that are commonly
usedis much smaller than in generalasymptotics. This makesit possibleto attempt a concise
survey of the most important techniques in asymptotic enumeration. The task is not easy
though, as there has beentremendous growth in recert yearsin combinatorial enumeration
and the closelyrelated eld of asymptotic analysisof algorithms, and the sophistication of the
tools that are commonly usedhas beenincreasingrapidly.

In spite of its importance and growth, asymptotic enumeration has seldombeenpreseried
in combinatorial literature at a level other than that of a researt paper. There are se\eral
books that treat it [f3, B3, [75 L71, E35 B3§ B3], B71, but usually only briey. The only
comprehensie survey that is available is the excellert and widely quoted paper of Bender [B3.
Unfortunately it is somewhat dated. Furthermore, the last two decadeshave also witnessed
a owering of asymptotic analysis of algorithms, which was pioneered and popularized by
Knuth. Combinatorial enumeration and analysisof algorithms are closelyrelated, in that both
deal with counting of particular structures. The methods usedin the two elds are almost
the same, and there has been extensive cross-fertilization between them. The literature on

theoretical computer science,especially on average caseanalysis of algorithms, can therefore
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be usedfruitfully in asymptotic enumeration. One notable survey paper in that areais that
of Vitter and Flajolet [B7]]. There are also presenations of relevant methods in the books
77 03 P38 P31 P23. Section18is a guide to the literature on thesetopics.

The aim of this chapter is to survey the most important tools of asymptotic enumeration,
point out referencedor the results and methods that are discussed,and to mertion additional
relevant papers that have other techniques that might be useful. It is intended for a reader
who hasalready usedconbinatorial, algebraic,or probabilistic methods to reducea problem to
that of estimating sums, coe cien ts of a generating function, integrals, or terms in a sequence
satisfying some recursion. How sud a reduction is to be accomplishedwill be dealt with
sparingly, since it is a large subject that is already covered extensively in other chapters,
especially [?]. We will usually assumethat this task has beendone, and will discussonly the
derivation of asymptotic estimates.

The emphasisin this chapter is on elemenary and analytic approades to asymptotic
problems, relying extensively on explicit generating functions. There are other ways to solve
some of the problems we will discuss,and probabilistic methods in particular can often be
usedinstead. We will only make somegeneralremarks and give referenceso this approad in
Section 16.

The only methods that will be discussedin detail are fully rigorous ones. There are also
methods, mostly from classicalapplied mathematics (cf. [BT]) that are powerful and often give
estimates when other techniques fail. Howewer, we do not treat them extensiwely (aside from
someremarks in Section 16.4) sincemany of them are not rigorous.

Few proofsare included in this chapter. The stressis on presenation of basicmethods, with
discussionsof their range of applicability, statemerts of generalestimatesderivable from them,
and examplesof their applications. There is some repetitivenessin that seweral functions,
such as n!, are estimated seeral times. The purposeof doing this is to shov how dierent
methods comparein their power and easeof use. No attempt is madeto presen derivations
starting from rst principles. Someof the examplesare given with full details of the asymptotic
analysis, to explain the basic methods. Other examplesare barely more than statemerts of
results with a brief explanation of the method of proof and a referenceto where the proof can
be found. The reader might go through this chapter, possibly in a random order, looking for
methods that might be applicable to a speci ¢ problem, or canlook for a category of methods

that might t the problem and start by looking at the corresponding sections.



There are no prerequisitesfor reading most of this chapter, other than acquainance with
advanced calculus and elemenary asymptotic estimates. Many of the results are presened
so that they can be usedin a cookbook fashion. However, many of the applications require
knowledge of complex variables.

Section2 presents the basichotation usedthroughout the chapter. It is largely the standard
oneusedin the literature, but it seemedworthwhile summarizing it in one place. Section 3 is
dewoted to a brief discussionof identities and related topics. While asymptotic methods are
usefuland powerful, they can often be either augmerted or ertirely replacedby identities, and
this section points out how to usethem.

Section4 summarizesthe most important and most useful estimatesin combinatorial ernu-
meration, namely those related to factorials and binomial coe cien ts. Section 5 is the rst
one to feature an in-depth discussionof methods. It dealswith estimates of sumsin terms
of integrals, summation formulas, and the inclusion-exclusionprinciple. Howewer, it doesnot
preseri the most powerful tool for estimation of sums, namely generating functions. Theseare
introducedin Section 6, which preseris someof the basic properties of, and tools for dealing
with generating functions. While most generating functions that are usedin conbinatorial
enumeration corverge at least in some neighborhood of the origin, there are also many non-
corvergert ones. Section 7 discussessome estimates that apply to all formal series,but are
especially useful for noncorvergern ones.

Section 8 is dewted to estimates for corvergert power seriesthat do not use complex
variables. While not as powerful asthe analytic methods preseried later, thesetechniquesare
easyto useand su ce in many applications.

Section 9 preseris a variety of techniques for determining the asymptotics of recurrence
relations. Many of these methods are based on generating functions, and some use analytic
methods that are discussedater in the chapter. They are preseried at this point becausehey
are basicto combinatorial enumeration, and they also provide an excellen illustration of the
power of generating functions.

Section 10 is an introduction to the analytic methods for estimating generating functions.
Many of the results mentioned here are commonto all introductory complex analysis courses.
Howewer, there are alsomany, especially thosein Sections10.4and 10.5, are not aswell known,
and are of special value in asymptotics.

Sections11 and 12 presen the main methods usedin estimation of coe cien ts of analytic



functions in a single variable. The basic principle is that the singularities of the generating
function that are closestto the origin determine the growth rate of the coe cien ts. If the func-
tion doesnot grow too fast asit approacesthose singularities, the methods of Section11 are
usually applicable, while if the growth rate is high, methods of Section12 are more appropriate.

Sections 13{15 discussextensionsof the basic methods of Sections10{12 to multiv ariate
generatingfunctions, integral transforms, and problemsthat involve a combination of methods.

Section16is a collection of miscellaneousmethods and results that did not easily t into any
other section, yet are important in asymptotic erumeration. Section 17 discusseghe extent
to which computer algebra systemscan be usedto derive asymptotic information. Finally,
Section 18 is a guide to further reading on asymptotics, since this chapter does not provide

complete coverageof the topic.
2. Notation

The symbols O, 0, and  will have the usual meaningthroughout this paper:

f(z) = O(g(z)) as z! w means f(z)=¢g(z) is boundedas z! w;
f(z) = o(g(z)) as z! w means f(z)=¢(z)! 0 as z! w;
f(2) g(z) as z! w means f(z)=g(z)! 1 as z! w:

When an asymptotic relation is stated for an integer variable n instead of z, it will implicitly
be taken to apply only for integer valuesof n ! w, and then we will always havew = 1 or
w = 1 . An introduction to the use of this notation can be found in [[79. Only a slight
acquairtance with it is assumed,enoughto seethat (1 + O(n )" = exp(O(n%?)) and
log(n + n¥) = log(n) + n ¥2 (2n) 1+ O(n 33).

The notation x ! w for real w meansthat x tends to w only through valuesx < w.

Someasymptotic estimates refer to uniform convemgen®. As an example, the statemert
that f(z) (1 z) 2asz! 1uniformly in jArg(1 2z)j < 2 =3 meansthat for every > 0,
thereisa < 0 sud that

f@Q 22 1y

forall zwith 0< j1 zj< ,jArg(l 2z)j < 2 =3. This is an important concept, since lack
of uniform corvergenceis responsible for many failures of asymptotic methods to yield useful

results.



Generating functions will usually be written in the form

b S
f(z) = fnz"; (2.1)
n=0

and we will usethe notation [z"]f (z) for the coe cien t of z" in f (z), sothat if f (z) is de ned
by (B3, [z"]f (z) = f,. For multivariate generating functions, [x™y"If (x;y) will denote the
coecient of xMy", and soon. If a, denotesa sequencewhose asymptotic behavior is to be
studied, then in combinatorial enumeration one usually useseither the ordinary genemting
function f (z) de ned by (P.J) with f, = an, or elsethe expnential geneating function f (z)
de ned by (B.1) with f,, = a,=nl. In this chapter we will not be concernedwith the question
of which type of generating function is bestin a given context, but will assumethat a gener-
ating function is given, and will concerirate on methods of extracting information about the
coe cien ts from the form we have.

Asymptotic series,as de ned by Poincare, are written as

p 3
fn an 2.2)
k=0
and meanthat for every K 0,
X
fo= an “+omn X 1YH as n! 1: (2.3)
k=0

The constart implied by the O-notation may depend on K. It is unfortunate that the same
symbol is used to denote an asymptotic seriesas well as an asymptotic relation, de ned in
the rst paragraph of this section. Confusion should be minimal, though, since asymptotic
relations will always be written with an explicit statemert of the limit of the argumert.

The notation f(z) g(z) will be usedto indicate that f (z) and g(z) are in somevague
senseclosetogether. It is usedin this chapter only in caseswhere a precise statemert would
be cumbersomeand would not help in explaining the essencef the argument.

All logarithms will be natural onesto basee unlessspeci ed otherwise, so that log 8 =
2:0794:::, log, 8 = 3. The symbol bxc denotesthe greatestinteger x. The notation x ! 1
meansthat x tendsto 1, but only from the left, and similarly, x ! 0" meansthat x tends to

0 only from the right, through positive values.
3. lIdentities, inde nite summations, and related approac hes

Asymptotic estimatesare useful, but often they can be avoided by using other methods.

For example,the asymptotic methods presened later yield estimatesfor E 2¢ ask and n vary,

9



which can be usedto estimate accurately the sum of E 2% for n xed and k running over the
full rangefrom Oto n. That is a generaland e ectiv e process,but somewhatcumbersome.On

the other hand, by the binomial theorem,

E K= (1+2)0 =3 3.1)
k=0
This is much more satisfactory and simpler to derive than what could be obtained from applying
asymptotic methods to estimate individual terms in the sum. Howewer, sudh identities are
seldomavailable. There is nothing similar that can be applied to
on (3.2)
k n=5
and we are forced to use asymptotic methods to estimate this sum.

Recognizingwhen some combinatorial identity might apply is not easy The literature on
this subject is huge, and someof the referencesor it are [sq B3d. Many of the
books listed in the referencesare useful for this purpose. Generating functions (seeSection 6)
are one of the most common and powerful tools for proving identities. Here we only mertion
two recert developmerts that are of signi cance for both theoretical and practical reasons.One
is Gosper's algorithm for inde nite hypergeometric summation [[[73, [[79. Given a sequence

ai, ap; :::, Gosper's algorithm determineswhether the sequenceof partial sums
b, = a; n=12::: (3.3)

hasthe property that b,=h, 1 is a rational function of n, and if it is, it givesan explicit form

for b,. We note that if by=h, ; is arational function of n, then sois

an _ bh=hh 1 1 (3.4)

a1 1 by o=y 1

Therefore Gosper's algorithm should be applied only when a,=a, 1 is rational.

The other recert dewvelopmern is the Wilf-Zeilb erger method for proving conbinatorial
identities [B79 B8J]. Given a conjectured identity, it provides an algorithmic procedure for
verifying it. This method succeedsn a surprisingly wide range of cases. Typically, to prove
an identity of the form

Un;k)=S(n); n O0; (3.5)
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where S(n) 6 0, Wilf and Zeilbergerde ne F(n; k) = U(n; k)=S(n) and seard for a rational
function R(n; k) such that if G(n; k) = R(n;k)F(n;k 1), then

F(n+ Lk) F(n;k)=G(n;k+ 1) G(n;k) (3.6)
holds for all integersn; k with n 0, and suc that

1) for ead integer k, the limit
fx = nI!i{n F(n; k) (3.7)

exists and is nite.
2) for eadh integern 0O, limy ;1 G(n; k) = 0.
. Py
3) limyi1 n=o G(n; k) = 0.
If all these conditions are satis ed, and Eq. (B.) holds for n = 0, then it holds for all n 0.

Example 3.1. Dixon's binomial sum identity. This identity statesthat

X n+b b+c n+c _ (n+b+o)
1)k = = 3.8
k( ) n+k b+k c+k n!blc! (3.8)
This can be proved by the Wilf-Zeilb erger method by taking
R(n: k) = (b+1 Kk)(c+1 K) (3.9)

2n+ K)(n+ b+ c+ 1)

and verifying that the conditions above hold.
The Wilf-Zeilb erger method requires nding a rational function R(n; k) that satis es the
properties listed above. This is often hard to do, especially by hand. Gosper's algorithm leads

to a systematic procedurefor constructing such R(n; k).

To concludethis section, we mertion that a useful resourcewhen investigating sequences
arising in combinatorial settings is the book of Sloane[B4Y, B4q, which lists seweral thousand
sequencesand givesreferencesfor them. Section 17 mentions somesoftware systemsthat are

useful in asymptotics.
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4. Basic estimates: factorials and binomial coe cien ts

No functions in combinatorial enumeration are as ubiquitous and important asthe facto-
rials and the binomial coe cien ts. In this sectionwe state someestimatesfor these quartities,
which will be usedthroughout this chapter and are of widespreadapplicability. Seweral di erent
proofs of someof these estimateswill be sketched later.

The basic estimate, from which many others follow, is that for the factorial. As was

mertioned in the introduction, the basic form of Stirling's formula is
nt 2 n*?n"e" as n! 1 : (4.1)

This is su cien t for many enumeration problems. Howewer, when necessaryone can draw on

much more accurate estimates. For example Eq. 6.1.38in [P9]] gives

n'= (2 n)*¥?n"exp( n+ =(12n)) (4.2)
foralln 1,where = (n) satises0< < 1. More generally there is Stirling's asymptotic
expansion:

logfn!(2 n) ¥2n "e'g T N (4.3)

' 12n 363 '

(This is an asymptotic seriesin the senseof Eq. (£.2), and there is no convergert expansion
for logfn!(2 n) ¥2n Ne'g as a power seriesin n 1) Further terms in the expansion ([-3)
can be obtained, and they involve Bernoulli numbers. In most references,such as Eq. 6.1.37
or 6.1.400f [P97], Stirling's formula is preseried for ( x), where is Euler's gamma function.
Expansionsfor ( x) translate readily into onesfor n! becausen! = ( n+ 1).

Stirling's approximation yields the expansion

2n 4" 1 1 5

= — o+ + +0(n 4 4.4
n ( n)t=2 8n  12;n2 10243 (n (“4-4)
A lessprecisebut still useful estimate is
n 2 1=2 N
— | :
bn=2c - 2" as n! 1 : (4.5)
This estimate is usedfrequertly. The binomial coe cien ts are symmetric, sothat ¢ = ",

and unimodal, sothat for a xed n and k varying, the E increasemonotonically up to a peak

at k = bn=2c (which is unique for n even and hastwo equal high points at k = (n  1)=2 for

n odd) and then decrease.

12



More important than Eq. ([.9) are expansionsfor generalbinomial coe cien ts. Eq. ({9

shovsthat forl k n 1,

n o n! _ n 1=2 n" S S
k  ki(n k! ~ 2k(n k) kk(n k) K P k k
1=2
n k 1
= ) Kn 0 exp nH 0 + 0 R+ pa— ;. (4.6)
where
H(x) = xlogx (1 x)log(1l x) 4.7)

is the entropy function. (We setH(0) = H(1) = 0 to make H(x) continuousfor 0 x 1))
Simplifying further, we obtain

E = exp(nH (k=n) + O(logn)) : (4.8)
an estimate that isvalid for all 0 k n. In many situations it su ces to usethe wealer but

simpler bound
n ne k

K kK

Approximations of this form are usedfrequertly in information theory and other elds.

0 k n: (4.9)

A general estimate that can be derived by totally elemerary methods, without recourse

to Stirling's formula, is

1

non = exp( 2(k n=2)%=n+ O(jk n=23=n?)) : (4.10)

k bn=2c
valid for jk n=2j n=4, sa. It is most usefulfor jk n=2j = o(n?=2), sincethe error term is
small then. Similarly,

n n n k'

' .
K+ K " as n! 1 ; (4.11)

uniformly in k provided r (which may be negative) satises r2 = o(k) and r? = o(n k).
Further, we have

(n+ k! nfexp(k?*=(2n)n! as n! 1 ; (4.12)

again uniformly in k provided k = o(n%3).
5. Estimates of sums and other basic techniques

When encourtering a conmbinatorial sum, the rst reaction should always be to chedk

whether it can be simplied by useof someidentity. If no identity for the sum is found, the
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next step should be to try to transform the problem to eliminate the sum. Usually we are

interested not in single isolated sums, but parametrized families of them, such as

X
by = an(k) ; (5.1

k
and it is the asymptotic behavior of the b, asn ! 1 that is desired. A standard and well-
known technique (named the \snake-oil" method by Wilf [B7]]) for handling such casesis to
form a generating function f (z) for the by, usethe properties of the a, (k) to obtain a simple
form for f (z), and then obtain the asymptotics of the b, from the properties of f (z). This
method will be presened briey in Section 6. In this section we discusswhat to do if those
two approadesfail. Sometimesthe methods to be discussedcan alsobe usedin a preliminary
phaseto obtain a rough estimate for the sum. This estimate canthen be usedto decidewhich
identities might be true, or what generating functions to form.

There are general methods for dealing with sums (cf. [234)), many of which are used in
asymptotic enumeration. A basic technique of this type is summation by parts. Often sums
to be evaluated can be expressedas

X b3
al or aly;
j=1 j=1
where the by, say, are known explicitly or behave smoothly, while the a; by themselves might

not be known well, but the asymptotics of

XK
A(k) = a; (5.2)
j=1

are known. Summation by parts relies on the identity

X0 X 1
aly =  AK)(x b))+ A(n)bn (5.3)

Example 5.1. Sum of primes. Let

X
Sh = p. (5.4)
pn
where p runs over the primes n. The Prime Number Theorem [PJ] states that the function
X
x)= 1 (5.5)
p x
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satis es

(%) as x! 1 : (5.6)

log x
(More preciseestimatesare available, but we will not usethem.) We rewrite

X
Sh = alb (5.7)
j=1
where 8 S
< 1 jisprime,;
q = (5.8)
" 0 otherwise;

andy = j for all j. Then A(k) = (k) and summation by parts yields

X 1
Sh = (k)+ (nn: (5.9)
k=1
Since
g Xk
— as n! 1 ; (5.10)
- co logk 2logn
we have
n’ |1 5.11
Sh 2logn as n! : (5.11)

Summation by parts is used most commonly in situations like those of Example F.7J, to
obtain an estimate for one sum from that of another.

Summation by parts is often easiestto carry out, both conceptually and notationally, by
using integrals. If we let «

A) = ag: (5.12)
k x

then A(x) = A(n) forn x < n+ 1. Supposethat by = b(k) for somecortinuously di eren-

tiable function b(x). Then 7
k+1

be b = bx)dx ; (5.13)
k

and we can rewrite Eq. (5.9 as
z

alh = A(n)b(n) nA(x)bO(x)dx: (5.14)
j=1 !

(One can apply similar formulas even when the by are not smooth, but this usually requires
Riemann-Stieltjes integrals, cf. [[4].) The approximation of sumsby integrals that appearsin

(p-19 is common, and will be treated at length later.
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5.1. Sums of positiv e terms

Sums of positive terms are extremely common. They can usually be handled with only a
few basictools. We dewote substartial spaceto this topic becauset is important and because
the simplicity of the methods helps in illustrating some of the basic principles of asymptotic
estimation, sud as approximation by integrals, neglecting unimportant terms, and uniform
corvergence.For readersnot familiar with asymptotic methods, working through the examples
of this sectionis a good exercisethat will make it easierto learn other technigues later.

Typical sumsare of the form

X
= ank); an(k) O; (5.15)
k

where k runs over some range of summation, often O k norO k < 1, and the
an(k) may be given either explicitly or only through an asymptotic approximation. What
is desired is the asymptotic behavior of b, asn ! 1 . Usually the a,(k) for n xed are
unimodal, sothat either i) ay(k) an(k+ 1) for all k in the range, or ii) an(k) an(k+ 1)
for all k, oriii) a,(k) an(k+ 1) for k ko, and an(k) an(k + 1) for k > ko. The
single most important task in estimating b, is usually to nd the maximal a,(k). This can be
done either by combinatorial means(involving knowledge of where the a,, (k) comefrom), by
asymptotic estimation of the a, (k), or (most commonwhen the a,(k) are expressedn terms
of factorials or binomial coe cien ts) by nding wherethe ratio an(k + 1)=a,(k) is closeto 1.
If a,(k+ 1)=a,(k) < 1 for all k, then we are in caseii) above, and if a,(k + 1)=a,(k) > 1 for
all k, we arein casei). If there is a kg in the range of summation sud that a, (kg + 1) is close
to an(ko), then we are almost certainly in caseiii) and the peak occurs at somek closeto kg.
The dierent casesare illustrated in the examplespreseried later in this section.

Once maxap (k) = an (ko) hasbeenfound, the next task is to show that most of the terms
in the sum are insigni cant. For example, if the sumin Eq. (b-19 isover 0 k n, and if

an(0) = 1is the largest term, then

X
an(k)<n *;
k=0
an(k)<n 2
which is negligible if we are only after a rough approximation to b,, say of the form b, ¢,
asn! 1,orewenhb, = c(1+ O(n ) asn! 1. Oncethe small terms have been

discarded,we are usually left with a short range of summation. It can happenthat this range
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is extremely short, and the maximal term a, (ko) is much larger than any of its neighbors to
the extent that by, an(kg) asn! 1 . More commonly, the number of terms that cortribute
signi cantly to b, doesgrow asn! 1 , but slovly. Their cortribution, relative to that of the
maximal term an (kp), can usually be estimated by somesimple function of k kg, and the sum
of all of them approximated by an explicit integral. This method is sometimesreferred to as
Laplace'smethod for sums(in analogyto Laplace'smethod for estimating integrals, mertioned
in Section5.5, which proceedsin a similar spirit). There is extensive discussionof this method
in [B3
Example 5.2. Sumsof the partition function. We estimate

X

U= pk); (5.16)

k=1
where p(k) is the number of partitions of k. Sinceany partition of m 1, say onewith ¢; parts
of sizej, can be transformed into a partition of m with c; + 1 parts of size 1, and ¢; of size
j forj 2,wehavep(m) p(m 1)forall m 2. Therefore the largestterm in the sum
in (B.19 is the onewith k = n. If the only estimate for p(k) that we have is the one given by

(L9), then
p(n)" = exp(Cn3>? nlog(4 3%2n)+ O(n*?)) : (5.17)

Sincethe constart implied by the O-symbol is not speci ed, this estimate is potenrtially larger
than p(n)" by a factor of exp(cn™), so we can only obtain asymptotics of logp(n)", not
of p(n)" itself. This also meansthat rough estimates of U, follow easily from (E.1]). Since
p(k)X  p(n)" for all k < n, and there are n terms in the sum, we have p(n)" U, np(n)",

and becauseof the large error term in (F.17), we obtain
Un = exp(Cn3?2 nlog(4 3'2n)+ O(n*?)) : (5.18)

Thusthe useof the poor estimate ([[.§) for p(n) meansthat we canobtain only a crude estimate
for U,, and there is no needfor careful analysis.
Instead of ([L.§) we can usethe more re ned estimate ([[.). Let g, denote rst term on the

right side of ([L.g). Then we have
p(n) = gn + O(n *exp(Cn'™?=2)) = (1 + O(exp( Cn'?=2)) ; (5.19)

SO

p()" = (1 + O(nexp( Cn'?=2))) = (1 + O(exp( Cn'?=3))) ;  (5.20)
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sa. Also, for some > 0we nd from Eq. ([[.9) (or Eq. [[.) that for large n

1=2

h 1< G n g

Thus for large n,

qrq % < q;']] 1(1 n 1:2)n 1

< qiexp( n'?=2);

and therefore " 1
p(k)* (n p(n 1" < qexp( n'?=3):
k=1
Thus we obtain

Un = gfi(1+ O(exp( n*?))) (5.21)
for some > 0.

The estimatesof U,, preseried above relied on the obsenation that the last term in the sum
(F-I9 de ning U, is much larger than the sum of all the other terms. This doesnot happen
often. A more typical exampleis presered by

X
Th = p(k) : (5.22)

k=1
As wasnoted before, p(n) is larger than any of the other terms, but not by enoughto dominate

the sum. Wethereforetry the other approadesthat werelisted at the beginning of this section.

We useonly the estimate ([.§). Since(l x)¥ < 1 x=2for0 x 1,we nd that for large

n, X
p(k) np(n  dn®3e)

k<n n2=3

exp(C(n  dh?3e)!2) (5.23)

exp(Cn'? Cn'¥=2)

= O(p(n) exp( Cn¥®=3)):
Thus most of the values of k cortribute a negligible amount to the sum. For k = n |,

0 j n%3 we nd that
p(n j)=p(n) = (L+ O(n ) exp(C(n [)¥? cCn'?):

Since
(n j)1=2 = nl*2 jn 1=29 4 O(j 2n 3=2) :

p(n j)=p(n) exp( Cjn =2+ O(n %)) (5.24)

(L+ O(n ¥%)exp( Cjn ¥2=2):
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Thus the ratios p(n  j)=p(n) decreasegeometrically, and so

X 1=6
p(n) - pn j)= —2*rom 7))

0 J n2=3

= = 2C In¥2@+ o(n ) : 5.25
1 exp( Cn 172=2) @+ ol 7)) (5-25)

Therefore, combining all the estimates,

1+ O(n 1:6) eCnt=? .

xXn
Th = p(k) = 2 C 312 ni=2

k=1

(5.26)

The O(n %) error term above can easily be improved with a litle more careto O(n 172),

even if we cortinue to rely only on ([L.6).

Before presering further examples,we discusssome of the problems that can arise even
in the simple setting of estimating positive sums. We then introduce the basic technique of
approximating sumsby integrals.

The lack of uniform corvergenceis a frequert causeof incorrect estimates. If a,(k) ¢ (k)

foreahh k asn! 1 , it doesnot necessarilyfollow that

X X
= an (k) ch(k) as n! 1 : (5.27)
k k
A simple counterexample is given by an(k) = | and ch(k) = | (1 + k=n). To conclude

that (B.2)) holds, it is usually necessaryto know that an(k) cn(k) asn! 1 uniformly in
k. Such uniform convergencedoes hold if we replace c,(k) in the counterexample above by
(k) = ¢ (L+ k=n?), for example.

There is a general principle that sums of terms that vary smoothly with the index of
summation should be replacedby integrals, sothat for > 0, say,

xn Zn+1
k udu as n! 1 : (5.28)
k=1 1

The advantage of replacing a sum by an integral is that integrals are usually much easierto
handle. Many more closed-formexpressionsare available for de nite and inde nite integrals
than for sums. We will discussextensionsof this principle of replacing sumsby integrals further
in Section5.3, when we presen the Euler-Maclaurin summation formula. Usually, though, we
do not needanything sophisticated, and the application of the principle to situations like that

of (B.29) is easyto justify. If a, = g(n) for somefunction g(x) of a real argumert X, then
z n+1
g(n) gwdu  max jg(u) go(n);; (5.29)

n
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and so Z

X X

g(n)  g(u)du _max jg(u) - g(n)j ; (5.30)

n
wherethe integral is over [a; b+ 1] if the sumisovera n b, a;b2 Z. If g(u) is cortinuously
di erentiable, then jg(u) g(n)j max, v n+1jo%V)j forn  u  n+ 1. This gives the
estimate
X0 Z i X0 o

g(n) g(u)du max jg{v); : (5.31)
n v n+l

n=a a n=a

Often onecan nd a simple explicit function h(w) suc that jgYv)j h(w) for any v and w

with jv  wj 1, in which caseEq. (£.3]) can be replaced by

Xp Z b1 Z pi1

ag(n) g(uw)du h(v)dv : (5.32)
n=a a a
For good estimatesto be obtained from integral approximations to sums, it is usually necessary

for individual terms to be small comparedto the sum.

Example 5.3. Sum of exp( k 2). In the nal stagesof an asymptotic approximation one
often encourters sumsof the form

*
h( )= exp( k ?); >0 (5.33)
k=1

There is no closedform for the inde nite integral of exp( u ?) (it is expressiblein terms of

the Gaussianerror function only), but there is the famous evaluation of the de nite integral
Z,

exp( u?du=( =)¥: (5.34)
1

Thus it is natural to approximate h( ) by ( = )¥2. If g(u) = exp( u ?), then gqu) =

2ug (u), and soforn O,

max jg{v)i 2 (n+ 1)g(n) : (5.35)

n

For the integral in Eq. (-30) to yield a good approximation to the sum we must shav that
the error term is smaller than the integral. The largestterm in the sum occursat n = 0 and
equals1. The error bound (p-3%) that comesfrom approximating g(0) = 1 by the integral of
g(lu)yover0 u 1lis2 . Thereforewe cannotexpectto obtain a good estimateunless ! O.
We nd that

2 (n+ 1lgn) 4ug(u=2) for n 1, n u n+1;
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so (integral approximation again!)
Z,
2 (n+ 1)g(n) 4 ug(u=2)du
1

n=1

Z. (5.36)

4 ug(u=2)du = (8 )¥*?:
0

Therefore, taking into accourt the error for n = 0 which was not included in the bound (F-39),

we have
hs Z,
h() = exp( n?) = exp( u?du+ O( 2+ )
n=1 1
(5.37)
= (=)P+0( ") a ! 0":

For this sum much more preciseestimatesare available, aswill be shovn in Example .9 For
many purposesthough, (3] is su cien t.

Example .3 shoved how to use the basic tool of approximating a sum by an integral.
Moreover, the estimate (F.37) that it provides is ubiquitous in asymptotic enumeration, since

many approximations reduceto it. This is illustrated by the following example.

Example 5.4. Bell numbers (cf. [63]). The Bell number, B(n), courts the partitions of an
n-elemer set. It is given by [B]]

1>4 k"
B(n)=-e — (5.38)
k=1

In this sum no single term dominates. The ratio of the (k + 1)-st to the k-th term is

(k+1)" kI _ 1 1+1”.
(k+ 1) k" k+1 k

(5.39)

As k increasesithis ratio strictly decreases.We seard for the point whereit is about 1. For
k 2,
1" 1 5
1+ K = exp nlog 1+ K = exp(n=k + O(n=k")) ; (5.40)
sothe ratio is closeto 1 for n=k closeto log(k + 1). We choosekg to be the closestinteger to
w, the solution to

n=wlog(w+ 1): (5.41)
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Fork=ko+j,1 | ko=2,we nd, sincelog(l+ i=ko) = i=kg i?=(2k3) + O(i3=k3),
k" kg 1+ j=ko)"
k! Ko'kL 1_. (1 + i=ko)

(5.42)

kd . . . . .
= &P in=ko jlogko j*(n+ ko)=(2ks) + O(nj *=k3 + j=ko)
The same estimate applies for ko=2 j 0. The term jn=kg | logkp is small, since
jko wj 1=2 and w satis es (5.4]). We nd

n=kg logkg = n=w log(w+ 1)+ O(n=w?+ 1=w)
(5.43)
= O(n=w? + 1=w) :

By (4], w n=logn asn! 1. We now further restrict j to jjj n2logn. Then (E4)

and (B.4) vyield

kk—r; = :—iexp( j 2(n + ko)=(2k§) + O((log n)®n *2)) : (5.44)

Approximating the sum by an integral, asin Example p.3, shows that
X KN KD

T- % -ko(2 )72(n + ko) (1 + O((log n)n 2)) : (5.45)
H 0:

jii n1=2log n
(An easyway to obtain this is to apply the estimate of Example f.3 to the sumfrom 1 to
1 , and show that the rangejjj > n'*2logn cortributes little.) To estimate the cortribution of
the remaining summands, with jjj > n'2logn, we obsene that the ratio of successie terms
is 1,sotherangel k ko bn'™2lognc cortributes at most kg (the number of terms)

times the largest term, which arisesfor k = ko bn**?lognc. By (B-49, this largest term is
O(kg (ko!) *exp( (logn)?)) :

Fork ki ko+ bn*™lognc, we nd that the ratio of the (k + 1)-st to the k-th term is, for

large n,

1+ 1 = expin=ky log(ki+ 1) n=(2k?) + O(n=k3))

exp( (ki ko)n=k? + O(n=k3)) (5.46)

exp( 2n 72) 1 n 72,
and sothe sum of theseterms, for k; k < 1 , is bounded above by n'* times the term for

k = ky. Therefore the estimate on the right-hand side of (F.49) applies even when we sum on

alk,1 k<1.

22



To obtain an estimate for B (n), it remains only to estimate k{j=ko!. To do this, we apply

Stirling's formula and usethe property that jkg wj 1=2to deducethat
B(n) (logw)™w" Ye¥ as n! 1 ; (5.47)

wherew is given by (p-4)).
There is no explicit formula for w in terms of n, and substituting various asymptotic

approximations to w, suc as

W= % +0 m (5.48)
(see Example yields large error terms in (p.47]), so for accuracy it is usually better to
use (E.4]) asis. There are other approximations to B (n) in the literature (see,for example,
B3 BJ). They dier slightly from (F-4]) becausethey estimate B(n) in terms of roots of
equations other than (B-47).

Other methods of estimating B (n) are preserted in Examples [2.5 and

5.2. Alternating sums and the principle of inclusion-exclusion

At the beginning of Section5, the readerwasadvisedin generalto seart for identities and
transformations when dealing with general sums. This advice is even more important when
dealing with sumsof terms that have alternating or irregularly changing coe cien ts. Finding
the largest term is of little help when there is substartial cancellation among terms. Seweral
generalapproactesfor dealing with this di cult y will be presenied later. Generating function
methods for dealing with complicated sums are discussedin Section 6. Contour integration
methods for alternating sumsare mentioned in Section 10.3. The summation formulas of the
next section can sometimesbe usedto estimate sums with regularly varying coe cien ts as
well. In this section we presert somebasic elemenary techniquesthat are often su cien t.

Sometimesit is possibleto obtain estimatesof sumswith positive and negative summands
by approximating separatelythe sumsof the positive and of the negative summands. Methods
of the preceding section or of the next section are useful in sud situations. Howewer, this
approad is to be avoided as much as possible, becauseit often requires extremely precise
estimatesof the two sumsto obtain even rough boundson the desiredsums. One method that
often works and is much simpler consistsof a simple pairing of adjacert positive and negative

terms.
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Example 5.5. Alternating sum of squae roots. Let

X }
Sh= (KK (5.49)
k=1
We have
( =
1=2 1=2 _ 1=2 -
(2m) 2m 1) = (2m) 1 1 o
- 1
- 1=2 . 2
(2m) 1 1 i + O(m 9) (5.50)
= (8m) =+ 0O(m *?);
o)
2%22(: bXZZC
( Dk = (8m) 2+ 0(1)
k=1 m=1
(5.51)
= n'?=2+0(1) :
Hence 8 _ -
< n¥=2+ 0(1) ifnisewen;
Sy = (5.52)

n12=2+ O(1) if n is odd :

In Example B.5, the sums of the positive terms and of the negative terms can easily be
estimated accurately (for example, by using the Euler-Maclaurin formula of the next section)
to obtain (B.53). In other cases;though, the cancellationis too extensive for such an approach
to work. This is especially true for sumsarising from the principle of inclusion-exclusion.

Supposethat X is someset of objects and P is a set of properties. For R P, let N= (R)
be the number of objectsin X that have exactly the propertiesin R and none of the properties
in PnR. Welet N (R) denotethe number of objects in X that have all the propertiesin R
and possibly someof thosein P nR. The principle of inclusion-exclusionsays that

X o
N=(R) = ( °IN (Q): (5.53)
R QP

(This is a basic version of the principle. For more generalresults, proofs, and references see

3. i73 B511)
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Example 5.6. Derangementsof n letters. Let X be the set of permutations of n letters, and

supposethat P;, 1 i n, is the property that the i-th letter is xed by a permutation, and

is the empty set, and soby (F.59

X .
dn = ( D'ON (Q): (5.54)
Q P
Howewer, N (Q) is just the number of permutations that leave all letters speci ed by Q xed,

and thus o
dn = ( %N jQj)
Q P
0 0 | (5.55)
= Tk ok =Tk
k=0 k k=0 k!

which is Eq. ([.J).

The formula ([L.J) for derangemets is easy to use becausethe terms decreaserapidly.
Moreover, this formula is exceptionally simple, largely becauseN (Q) dependsonly on jQj. In
general,the inclusion-exclusionprinciple producescomplicated sumsthat are hard to estimate.
A frequertly helpful tool is provided by the Bonferroni inequalities [B1, B5]]. One form of these

inequalities is that for any integerm 0,

X ) )
N- (R) ( DORIN (Q) (5.56)
R 8 P
jQnNRj 2m
and X
N- (R) ( 1YO™IN (Q): (5.57)

R Q P
jQNRj 2m+1

Thusin general

X ) ) X
N- (R) ( 1ORIN (Q) N (Q): (5.58)
Q Q
R Q P R Q P
jOnRj k jQnNRj k+1

These inequalities are frequertly applied for n = jX| increasing. Typically one choosesk
that increasesmuch more slowly than n, sothat the individual terms N (Q) in (E.5§ can
be estimated asymptotically, asthe interactions of the di erent properties courted by N (Q)
is not too complicated to estimate. Bender [BJ] preserts someuseful general principles to be
usedin sud estimates (especially the asymptotically Poissondistribution that tendsto occur

when the method is successful).We presert an adaptation of an example from [BJ].
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Example 5.7. Balls and cells. Given n labeled cells and m labeled balls, let a,(m; n) be
the number of ways to place the balls into cells sothat exactly h of the cells are empty. We

considerh xed. Let X be the ways of placing the balls into the cells (n™ in total), and

then an(m;n) = | N=(R). Now

N (Q=(n jop™; (5.59)
SO
X n h
N@Q = ""( h pm
R 8 P
jQnRj=t

= nMe M (pne MMt 11+ O((t2+ Lmn 2+ (t2+ 1)n 1)) ;
(5.60)

provided t> nandmt?n 2 1,sa. Intherange0 t logn, nlogn m n?(logn) 3,
we nd that the right-hand side of (5.60) is

nme ™" (ne ™M)'(t)) Y1+ O(mn %(logn)?)) :

We now apply (E.59) with k = blognc, and obtain

an(mn) = P N=(R) [ n"exp( mh=n ne ™)
(5.61)
n™(h!) i(ne ™M) exp( ne ™M)

asm;n! 1 ,providednlogn m n2(logn) 3. Sincea,(m;n)n M is the probability that
there are exactly h empty cells, the relation (E.6]) (which we have establishedonly for xed h)
shows that this probability is asymptotically distributed like a Poissonrandom variable with
parameter n exp( m=n).

Many additional results on random distributions of balls into cells, and referencesto the

extensie literature on this subject can be found in [P4]].

Bonferroni inequalities include other methods for estimating N = (R) by linear combinations
ofthe N (Q). Recert approadesand referencegphrasedin probabilistic terms) can be found
in [[[53. For bivariate Bonferroni inequalities (where one asksfor the probability that at least
one of two setsof events occurs) see[[53, P4.

The Chen-Stein method [[/g] is a powerful technique that is often used in place of the

principle of inclusion-exclusion, especially in probabilistic literature. Recen referencesare

3. B
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5.3. Euler-Maclaurin and Poisson summation form ulas

Section 5.0 showed that sums can be successfullyapproximated by integrals if the sum-
mandsare all small comparedto the total sumand vary smoothly asfunctions of the summation
index. The approximation (5.29), though crude, is usefulin a wide variety of cases.Sometimes,
though, more accurate approximations are needed. An obvious way is to improve the bound

(B:29. If g(x) is really smooth, we can expect that the di erence
Z n+1
an g(u)du

n

will vary in a regular way with n. This is indeedthe case,and it is exploited by the Euler-
Maclaurin summation formula. It can be found in many books, suc as [53, P97 pog.

There are many formulations, but they do not di er much.

Euler-Maclaurin ~ summation form ula. Supposethat g(x) has 2m continuous derivatives

in [a;b], a;b2 Z. Then

X Zp X g, N 0
o) = g0gdx+ = o D) ¢ Y
k=a a r=1 (@r)!
(5.62)
1
+ 5fg(@ + g(0)g + Ren ;
where 7
b Bom(x  bxc)
= (2m) —cm\tr .
Rm ) g (x) 2m)! dx ; (5.63)
and so 7
° jBom(x  bxc)j
D (2M) (Vi :
Rj Jg#m 0= s = dx (5.64)
In the above formulas, the B, (x) denote the Bernoulli polynomials, de ned by
zex? R z"
g 1 Bn(x)m. (5.65)
n=0
The B, are the Bernoulli numbers, de ned by
» n
z z
g 1 B”H’ (5.66)
n=0
sothat B, = BL(0), and
Bo = 1; B; = 1=2; B, = 1=6;
Bs = Bs = By = = 0; (5.67)
B, = 1=30; Bg = 1=42; Bg = 1=30;



It is known that
jBam(x bxc)j  [Bamj; (5.68)
sowe can simplify (5.69 to

Zy
jRmj  iBamj(@m)) '  jg®™ (x)jdx : (5.69)

a
There are many applications of the Euler-Maclaurin formula. One of the most frequertly

cited onesis to estimate factorials.

Example 5.8. Stirling's formula. We transform the product in the de nition of n!into a sum

by taking logarithms, and nd that for g(x) = logx and m = 1 we have

X Zn 1 1. 1
logn! = logk = (logx)dx+ =logn+ =B, = 1 + Ry; (5.70)
K1 1 2 2 n
where 7
"By(x bxc)
Ri= 2 —2dx=C+0(n Y (5.71)
1 2X
for
YA 1
Bo(x  bxo)
C= 227 T gx (5.72)
1 2x2
Therefore
logn!= nlogn n+ %Iogn+ C+ 13212+ O(n 1) ; (5.73)
which gives
nt Ch¥®@n"e " asn! 1 : (5.74)

To obtain Stirling's formula (F-J), we needto shav that C°= (2 )¥*2. This can be done in

seweral ways (cf. [B3]). In Examples[i2.], [L2.4 and [L2.5we will seeother methods of deriving

(E-D.

There is no requiremert that the function g(x) in the Euler-Maclaurin formula be positive.
That was not even neededfor the crude approximation of a sum by an integral given in
Section 5.0. The function g(x) can even take complex values. (After all, Eq. (£.69 is an
identity!) Howewer, in most applications this formula is usedto derive an asymptotic estimate
with a small error term. For that, somehigh order derivatives have to be small, which means
that g(x) cannot change sign too rapidly. In particular, the Euler-Maclaurin formula usually

is not very useful when the g(k) alternate in sign. In those casesone can sometimesuse
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the dierencing trick (cf. Example F-§) and apply the Euler-Maclaurin formula to h(k) =
g(2k) + g(2k + 1). There is also Boole's summation formula for alternating sumsthat can be
applied. (SeeChapter 2, x3 and Chapter 6, x6 of [P9], for example.) Generalizationsto other
periodic patterns in the coe cien ts have beenderived by Berndt and Scoenfeld [[7].

The boundsfor the error term Ry, in the Euler-Maclaurin formula that were stated above
can often be improved by using special properties of the function g(x). For example, when
g(x) is analytic in x, there are contour integrals for R, that sometimesgive good estimates
(cf. B1).

The Poissonsummation formula states that

Z,

3
f(n+a)= exp(2 ima) f(y)exp( 2 imy)dy (5.75)
n=1 m=1 1

for \nice" functions f (x). The functions for which (.79 holds include all cortinuousf (x) for
which ij (x)jdx < 1, which are of bounded variation, and for which P , f(n+ a) converges
for all a. For wealer conditions that ensure validity of (p.79), we refer to [3, B69. The
Poissonsummation formula often corverts a slowly corvergert sum into a rapidly corvergen
one. Generally it is not as widely applicable as the Euler-Maclaurin formula as it requires
extreme regularity for the Fourier coe cien ts to decreaserapidly. On the other hand, it can
be applied in somesituations that are not covered by the Euler-Maclaurin formula, including

somewhere the coe cien ts vary in sign.

Example 5.9. Sumof exp( k 2). We consideragain the function h( ) of Example f.3 We
let f (x) = exp( x 2), a= 0. Eq. (E.19 then gives

X

p3
h( )= exp( n?)=(=)¥ exp( °m?=): (5.76)

n=1 m=1
This is an identity, and the sum on the right-hand side above corvergesrapidly for small
Many applications require the evaluation of the sum on the left in which  tends to 0.
Eq. (F-79 o ers a method of corverting a slovly corvergert sum into a tractable one, whose

asymptotic behavior is explicit.
5.4. Bootstrapping and other basic metho ds

Bootstrapping is a useful technique that usesasymptotic information to obtain improved
estimates. Usually we start with somerough bounds,and by combining them with the relations

de ning the function or sequencehat we are studying, we obtain better bounds.
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Example 5.10. Approximation of Bell numbers. Example f-4 obtained the asymptotics of
the Bell numbers By, but only in terms of w, the solution to Eq. (5.4]). We now shov how
to obtain asymptotic expansionsfor w. As n increases,so doesw. Therefore log(w + 1) also

increases,and sow < n for largen. Thus

n=wlog(w+ 1)< wlog(n+ 1) ;

and so
n(logn+ 1)) t<w<n: (5.77)
Therefore
log(w + 1) = lognh + O(loglogn) ; (5.78)
and so
n n nloglogn
= = 22 5.79
W log(w+ 1) logn ¥ (logn)2 (.79)

To go further, note that by (B.79,

n loglogn
loglw+ 1) = log ——
logn logn (5.80)
= logn loglogn+ O((loglogn)(logn) 1) :
and so by applying this estimate in Eq. (£.47), we obtain
_n nloglogn n(loglogn)? nloglogn
W= logn ~ (logn)?2 (logn)3 (logn)3 (5.81)

This procedure can be iterated inde nitely to obtain expansionsfor w with error terms

O(n(logn) ) for aslarge a value of asdesired.

In the above example, w can also be estimated by other methods, such as the Lagrange-
Burmann inversion formula (cf. Example f.7). Howewer, the bootstrapping method is much

more widely applicable and easyto apply. It will be usedse\eral times later in this chapter.
5.5. Estimation of integrals

In some of the examplesin the preceding sectionsintegrals were used to approximate
sums. The integrals themselheswere always easyto evaluate. That is true in most asymptotic
enumeration problems, but there do occur situations wherethe integrals are more complicated.

Often the hard integrals are of the form
z

f(x)= g(t) exp(xh(t))dt ; (5.82)
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and it is necessaryto estimate the behavior of f (x) asx ! 1 , with the functions g(t), h(t) and
the limits of integration and held xed. There is a substartial theory of suc integrals, and
good referencesare [E4, B3, [[00, BI. The basic technique is usually referred to as Laplace's
method, and consistsof approximating the integrand by simpler functions near its maxima.
This approad is similar to the one that is discussedat length in Section 5.1 for estimating
sums. The contributions of the approximations are then evaluated, and it is showvn that the
remaining rangesof integration, away from the maxima, coriribute a negligible amourt. By
breaking up the interval of integration we can write the integral (5.8 as a sum of seweral
integrals of the sametype, with the property that there is a unique maximum of the integrand
and that it occursat oneof the endpoints. When > 0, the maximum of the integrand occurs

for large x at the maximum of h(t) (exceptin rare caseswhere g(t) = 0 for that t for which

h(t) is maximized). Supposethat the maximum occursatt = > 0. It often happensthat
h(t)=h( ) ot )H*+0Gt [ (5.83)
for t andc= h% )=2> 0, and then one obtains the approximation
fx) o Yexpxh( )l =(@xh® )N as x! 1 (5.84)

provided g( ) 6 0. For precisestatemerts of even more general and rigorous results, seefor
example Chapter 3, x7 of [B19. Those results cover functions h(t) that behave neart =  like
h( ) c(t ) forany > 0.

When the integral is highly oscillatory, as happenswhen h(t) = iu(t) for a real-valued
function u(t), still other techniques (such as the stationary phase method), are used. We
will not present them here, and refer to [F4, 3, [[OG, for descriptions and applications.
In Section 12.1 we will discussthe saddle point method, which is related to both Laplace's
method and the stationary phasemethod.

Laplace integrals z,
F(x)= . f (t) exp( xt)dt (5.85)

can often be approximated by integration by parts. We have (under suitable conditions on

f (1))
z 1
x ) +x 1t fY)exp( xt)dt
0 Z 1
x ) +x fq0)+x 2 £%)exp( xt)dt; (5.86)
0

F(x)
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and soon. There are generalresults, usually assaiated with the name of Watson's Lemma,

for deriving such expansions. For references see[fL0(, B13.

6. Generating functions

6.1. A brief overview

Generating functions are a wonderfully powerful and versatile tool, and most asymptotic
estimates are derived from them. The most common onesin combinatorial enumeration are
the ordinary and exponertial generating functions. If ag;as;:::, is any sequenceof real or

complex numbers, the ordinary geneating function is

R
f(z) = anz" ; (6.1)
n=0

while the exmpnential geneating function is

anz"
n!

R
f(2) =

n=0

(6.2)

Doubly-indexed arrays, for exampleanx, 0 n< 1,0 Kk n, areencaled astwo-variable
generating functions. Depending on the array, sometimesone uses
XX
f(xy) = kX y" ; (6.3)
n=0 k=0
and sometimesother forms that might even mix ordinary and exponertial types,asin
)é' yn xXn K
f(xy) = ank X" (6.4)

nt
n=0 n: k=0

For example, the Stirling numbers of the rst kind, s(n;k) (( 1)"*Ks(n; k) is the number of
permutations on n letters with k cycles) have the generating function (seepp. 50, 212{213,
and 234{235in [B1))
X yn X0
1+ - s(nk)xk= @+ y): (6.5)

|
n=1 n: k=1

In general,a generatingfunction is just a formal power series,and questionsof convergence
do not arisein the de nition. Howewer, someof the main applications of generating functions
in asymptotic enumeration do rely on analyticity or other corvergenceproperties of those
functions, and there the domain of corvergenceis important.

A generatingfunction is just another form for the sequencehat de nesit. There are many

reasonsfor using it. One is that even for complicated sequencesgenerating functions are
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frequertly simple. This might not be obvious for the partition function p(n), which has the
ordinary generatingfunction

b S Y

f(zy= pn)z"= (@ Z4 ': (6.6)

n=0 k=1
The sequencegy(n), which is complicated, is encaded hereasan in nite product. The terms in
the product are simple and vary in a regular way with the index, but it is not clearat rst what
is gained by this represettation. In other casesthough, the advantagesof generatingfunctions

are clearer. For example, the exponertial generating function for derangemets (Eq. ([.J) and

Example (.6) is

X d XX n!
f(z) = nr:Zn = o ( 1)kw
n=0 n=0 n=0 ’
XX e
= K =13 (6.7)
k=0 n=

which is extremely compact.

Reasonsfor using generating functions go far beyond simplicity. The one that matters
most for this chapter in that generatingfunctions can be usedto obtain information about the
asymptotic behavior of sequenceshey encale, information that often cannot be obtained in
any other way, or not as easily Methods sud asthose of Section 10.2 can be usedto obtain
immediately from Eq. (F.7) the asymptotic estimated, e nl'asn! 1 . This estimate can
alsobe derived easily by elemenary methods from Eq. ([L.1), soherethe generatingfunction is
not essetial. In other casesthough, such asthat of the partition function p(n), all the sharp
estimates, such asthat of Hardy and Ramanujan given in ([[.5), are derived by exploiting the
properties of the generating function. If there is any main theme to this chapter, it is that
generating functions are usually the easiest,most versatile, and most powerful way to study
asymptotic behavior of sequences. Especially when the generating function is analytic, its
behavior at the dominant singularities (a term that will be de ned in Section 10) determines
the asymptotics of the sequence When the generating function is simple, and often even when
it is not simple, the cortribution of the dominant singularity can often be determined easily,
although the sequencatself is complicated.

There are many applications of generatingfunctions, somerelated to asymptotic questions.
Averagescan often be studied using generating functions. Suppose, for example, that an,

0 k n,0 n<1,isthe number of objectsin someclassof sizen, which have weight k
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(for somede nition of sizeand weight), and that we know, either explicitly or implicitly , the

generating function f (x;y) of ank given by (E.4). Then
)4 yn xXn
ay)=fLy)= = ank (6.8)
is the exponertial generating function of the number of objects of sizen, while
@ X X
=Gt 6y = 7 kam (6.9)
¥ h=o ' k=0
is the exponertial generatingfunction of the sum of the weights of objects of sizen. Therefore
the averageweight of an object of sizen is

[y"Ih(y) .
[y"a(y)

(6.10)

The wide applicability and power of generating functions come primarily from the struc-
tured way in which most enumeration problemsarise. Usually the classof objectsto be counted
is derived from simpler objects through basic composition rules. When the generating func-
tions are chosento re ect appropriately the classesof objects and composition rules, the nal
generating function is derivable in a simple way from those of the basic objects. Suppose,
for example, that ead object of sizen in classC can be decomposeduniquely into a pair of
objects of sizesk and n  k (for somek) from classesA and B, and ead pair corresponds to
an object in C. Then c,, the number of objects of sizen in C, is given by the cornvolution

X
Ch = akby «; (6.11)
k=0

P
(where ay is the number of objects of sizek in A, etc.). Henceif A(z) = anz", B(2) =

P P
bhz", C(z) = c,z" arethe ordinary generating functions, then
C(z) = A(2)B(2) : (6.12)

Thus ordered pairing of objects correspondsto multiplication of ordinary generatingfunctions.

P
If A(z) = ayz" and

X
bh= &
b k=0
then B(z) = b,z" is given by
_ A@@) .
B(z) = T 7 (6.13)
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so that the ordinary generating function of cumulative sums of coe cien ts is obtained by
dividing by 1 z. There are many more such general correspondenceshbetween operations
on conmbinatorial objects and on the corresponding generating functions. They are presen,
implicitly or explicitly, in most books that cover combinatorial enumeration, suc as [B]]
B71]. The most systematic approac to developing and using generalrules of this type has
beencarried out by Flajolet and his collaborators [[[39. They develop ways to seeimmediately
(cf. [[L34)) that if we consider mappings of a set of n labeled elemerts to itself, sothat all n"
distinct mappings are consideredequally likely, then the generating function for the longest

path length is given by

f(z) = io 1 1t B (@ - (6.14)
where
V(@) =t a@)+ St o7+ o) (6.15)
with
to(z) = z; th+1(2) = z exp(th(2)) ; (6.16)

andt(z) = hI!ilm th(2) (in the senseof formal power series,socorvergenceis that of coe cien ts).
Furthermore, asis mertioned in Section17, many of theserules for composition of objects and
generating functions can be implemented algorithmically, automating some of the chores of
applying them.

We illustrate someof the basic generating function techniques by deriving the generating
function for rooted labeledtrees, which will occur later in Examplesf.§and (The rooted

unlabeledtrees, with generating function given by ([[.9), are harder.)

Example 6.1. Rooted lakeled trees. Let t,, bethe number of rooted labeledtreeson n vertices,
sothat t; = 1,t, = 2,t3= 9. (It will be shavn in Example E.§that t, = n" 1)) Let
RXoogn
t(z) = th— (6.17)
n
n=1
be the exponertial generating function. If we remove the root of a rooted labeled tree with n
vertices, we are left with k O rooted labeled treesthat cortain atotal of n 1 vertices. The
total number of ways of arranging an ordered selectionof k rooted treeswith a total of n 1

verticesis

" ‘It2)" :
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Sincethe order of the trees doesnot matter, we have

l n
o2 @"

di erent treesof sizen that have exactly k subtrees,and so

D
o= " @)

k!
k=0
pS
= 2" Y t@M=k = [2"]zexp(t(2)) ; (6.18)
k=0
which gives
t(z) = zexp(t(2)) : (6.19)

As an aside, the function t,(z) of Eq (E.16) is the exponertial generating function of rooted
labeled trees of height  h.

The key to the successfuluseof generating functions is to usea generatingfunction that is
of the appropriate form for the problem at hand. There is no simple rule that describeswhat
generating function to use, and sometimestwo are used simultaneously. In combinatorics
and analysis of algorithms, the most useful forms are the ordinary and exponertial generating
functions, which re ects how the classe®f objects that are studied are constructed. Sometimes

other forms are used, such as the double exponertial form

e n
f(2) = a”'zz (6.20)
n=0 (nh)
that occursin Section7, or the Newton series
3
f(z) = anz(z 1) (z n+1): (6.21)

n=0

Also frequertly encourtered are various g-analog generating functions, such asthe Eulerian

f(2) = X 22" : (6.22)
L@ o @ @O 9 '
In multiplicativ e number theory, the most common are Dirichlet series
b S
f(z) = ann *; (6.23)
n=1

which re ect the multiplicativ e structure of the integers. If a, is a multiplicativ e function (so

that amn = ama, for all relatively prime positive integersm and n) then the function (F-23
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has an Euler product represenation
Y

f(z)y= (1+app 2+ aep *+ ); (6.24)
p

where p runs over the primes. This allows new tools to be usedto study f (z) and through it

an. Additiv e problemsin combinatories and number theory often are handled using functions

sud as functions suc as

3
f(z) = 7% ; (6.25)
n=1
where0 a; < ap < is a sequenceof integers. Addition of two such sequenceghen

corresponds to a multiplication of the generating functions of the form (£.29).

We next mertion the \snake oil method.” This is the name given by Wilf [B7] to the
use of generating functions for proving identities, and comesfrom the surprising power of this
technique. The typical application is to evaluation of sequencegiven by sumsof the type

X
an = bk : (6.26)

k
The standard procedureis to form a generating function of the a, and manipulate it through
interchangesof summation and other tricks to obtain the nal answer. The generatingfunction
canbe ordinary, exponertial, or (lesscommonly) of another type, depending on what givesthe

best results. We show a simple application of this principle that exhibits the main features of

the method.

Example 6.2. A binomial coe cient sum [B7]]. Let

X n+k

o kK. n o 0: (6.27)

an =
k=0

We de ne A(z) to bethe ordinary generating function of a,. We nd that

X‘ )4 X0 + k
A(z) = az" = z" n2k on kK

n=0 n=0 k=0

X‘ + k )4 X‘ + k
= T2k MDE = Tk K N0 @
k=0 n=k k=0 n=0
<=0 (1 2z)%+ 12z _ 1 2
1 2z _ 2 1

1 41 2z 301 4z)+ 31 2 (6.28)
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Therefore we immediately nd the explicit form

an= (2> +1)=3 for n O: (6.29)

We next present someadditional examplesof how generating functions are derived. We
start by consideringlinear recurrenceswith constart coe cien ts.
The rst stepin solving a linear recurrenceis to obtain its generating function. Suppose

that a sequenceag; a;; ay;::: satis es the recurrence

xd
an = Gay i; nh d: (6.30)
i=1
Then
b3 X1 b3 xd
f(z) = anz" = anz" + z" Gan i (6.31)
n=0 n=0 n=d i=1
X1 xd X
= anz"+ gz ay iz" !
n=0 i=1 n=d |
K 1 _ dyi 1 '
= anz" + ¢z f(2) anz"
n=0 i=1 n=0
and so
f(z) = —lg—(dz ) - ; (6.32)
1 i=1 GZ
where _
¥ 1 xd dyi 1
9(z) = anz" ¢z anz" (6.33)
n=0 i=1 n=0

is a polynomial of degree d 1. Eq. (.39 is the fundamertal relation in the study of linear

P .. - : .
recurrences,and 1 Gz' is called the characteristic polynomial of the recursion.

Example 6.3. Fibonaci numkers. Welet Fo=0,F; =1, F,=F, 1+ F, 2forn 2,and

b3
F(z) = Fnz" :
n=0
Then by (6.3) and (B33,
z
F(z) = T 32 (6.34)
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Often there is no obvious recurrencefor the sequencea, being studied, but there is one
involving someother auxiliary function. Usually if onecan obtain at leastasmany recurrences
asthere are sequencespne can obtain their generating functions by methods similar to those
usedfor a single sequence.The main additional complexity comesfrom the needto solvwe a
system of linear equations with polynomial coe cien ts. We illustrate this with the following

example.

Example 6.4. Sequenes with forbidden subwods. Let A = a;a, ax be a binary string of
length k. De ne fa(n) to be the number of binary strings of length n that do not contain A
as a subword of k adjacert characters. (Subsequenceslo not court, sothat if A = 1110,then
A is contained in 1101110010put not in 101101.) We introduce the correlation polynomial
Ca(2) of A:

K1 .
Ca(z) = ca(i)Z ; (6.35)
j=0
whereca(0) = 1andforl | k 1,
. 1 if aiao aK i= aj+1aj+2 A
)= o otherwise: (6.36)

As examples,we note that if A = 1000,then Ca(z) = 1, whereasCa(z) = 1+ z+ z%+ 23 if

A = 1111. The generating function

pS
Fa(z) = fa(n)z" (6.37)
n=0

then satis es
Ca(2) .
Zk+ (1 22)Ca(2) °

To prove this, de ne ga(n) to be the number of binary sequencednb, b, of length n suct

that bibp, by = A, but sudh that b+, b+k 16 Aforanyj with 2 j n k+ 1jie,

Fa(2) = (6.38)

sequencegshat start with A but do not contain it any place else. We then have ga(n) = 0O for

n < k, and ga (k) = 1. We alsode ne

R
Ga(z) = ga(nz": (6.39)
n=0

We next obtain a relation betweenGa(z) and Fa(z) that will enableus to determine both.
If byb, by, is counted by f A (n), then for x either 0 or 1, the string xb,b» by, either does

not contain A at all, or if it doescontain it, then A = xb;b, b 1. Thereforeforn 0,
2fa(n) = fa(n+ 1)+ ga(n+ 1) (6.40)
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and multiplying both sidesof Eq. (F-40) by z" and summingonn 0 yields
2FA(z) =z Y(FA(z) 1)+ z Ga(2): (6.41)

We need one more relation, and to obtain it we consider any string B = bib, b, that
doesnot cortain A any place inside. If we let C be the concatenation of A and B, so that
C=aa ahb Iy, then C starts with A, and may corntain other occurrencesof A, but

only at positions that overlap with the initial A. Therefore we obtain,

X
fa(n) = ga(n+j) for n O; (6.42)
CA(Lzli )=1

and this givesthe relation
Fa(z) = z KCa(2)Ga(2) : (6.43)

Solving the two equations (F.43) and (.49, we nd that Fa(z) satis es (F.39), while

zK

Ga(2) = 7+ @ 2)Ca .

(6.44)

The proof above follows that in [[[8]], exceptthat [[[8]] usesgeneratingfunctionsin z 1, so
the formulas look di erent. Applications of the formulas (E.39 and (f.49) will be found later
in this chapter, aswell asin [[[87, [[3(]. Other approacesto string enumeration problems are
referencedthere aswell. Other approacesand applications of string enumerations are given

in the referencesto and in papers sud as [[L{].

The above example can be generalizedto provide generating functions that enumerate
sequencesn which any of a given set of patterns are forbidden [[L87].

Whenewer one hasa nite system of linear recurrenceswith constart coe cien ts that in-
volve seeral sequencessay aﬂ), 1 i Kk,n 0, onecantranslate theserecurrencesinto
linear equationswith polynomial coe cien ts in the generating functions A()(z) = P alzn for
these sequencesTo obtain the A()(z), onethen needsto solve the resulting system. Such so-
lutions will exist if the matrix of polynomial coe cien ts is nonsingular over the eld of rational
functions in z. In particular, one needsat least as many equations (i.e., recurrencerelations)
ask, the number of sequencesand if there are exactly as many equations as sequencesthen
the determinant of the matrix of the coe cien ts hasto be a nonzeropolynomial.

Oneinteresting obsenation is that whena systemof recurrencesinvolving seeral sequences

is solved by the above method, eat of the generating functions A()(z) is a rational function
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in z. What this meansis that ead of the sequenceaﬂ), 1 i Kk, satisesalinear recurrence
with constart coe cien ts that doesnot involve any of the other ag) sequenceslin principle,
therefore, that recurrence could have been found right at the beginning by combinatorial
methods. Howewer, usually the degreeof the recurrencefor an isolated aﬂ) sequences high,
typically about k times as large as the average degreeof the k recurrencesinvolving all the
aﬁ”. Thus the use of seweral sequencesag) leadsto much simpler and combinatorially more
appealing relations.

That generating functions can signi cantly simplify combinatorial problems is showvn by
the following example. It is taken from [B49], and is a modi cation of a result of Klarner [p29
and Polya [BZ]]. This examplealsoshawvs a more complicated derivation of explicit generating

functions than the simple onespreseried sofar.

Example 6.5. Polyomino enumeation [B49. Let a, be the number of n-square polyominoes
P that areinequivalent under translation, but not necessarilyunder rotation or re ection, and
such that ead row of P is an unbroken line of squares. Then a; = 1, a, = 2, a3 = 6. We

de ne ap = 0. It is easily seenthat
X

an= (Me+myz L)(mz+mz 1) (Ms1+mg 1); (6.45)
where the sum is over all ordered partitions mq + + mg = n of n into positive integersm;.
Let a;,n be the sum of terms in (F.49 with mq = r, where we seta,n = 1, and a;,n = O if

r>norn< 0. Then

s
an, = arn (6.46)
r=1
&n = (r+i Dan r; r<n (6.47)
i=1
De ne
3
A(xy) = arnx'y"; (6.48)
n=1r=1
so that
b3
ALy)=  apy" (6.49)
n=1

is the generating function of the a,, which are what we needto estimate.

By (B-4]), we nd that

X X X X%
A(xy) = x"y" + (r+i Daj(n r)x"y"
n=1 n=1r=1 i=1
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(6.50)

Xy x2y? . Xy Con
T xy + @ xy)ZA(l'y) + T xy G(x;y) ; (6.51)
where
x X @
G(y) = iainy" = —A(xy) : (6.52)
n=1 i=1 @ x=1

We now setx = 1in (E.50) and obtain an equation involving A(1;y) and G(y), namely

y y? y

+ @ y)ZA(l;y)+ 1 yG(y) : (6.53)

A(L;y) = 1

We next di eren tiate (p.50) with respectto x, and setx = 1. This givesus a secondequation,

y 2y? y
G = + A(ly)+ ——=G : 6.54
We now eliminate G(y) from (p.53 and (p.59) to obtain
oy = ya y)® .
A(Ly) = 1T By+7y2 &7 (6.55)
This formula shows that
an+3 = Qn+2  fapn+ +4a, for n 2: (6.56)

Using the results of Section 10 we can easily obtain from (.59 an asymptotic estimate
a, c¢" as n! 1 ; (6.57)

where ¢ is a certain constart and = 3:205569:: is the inverse of the smallest zero of

1 5y+ 7y?  4yS.
For other methods and results related to polyomino enumeration, see[B2§ B27].

6.2. Comp osition and inversion of power series

Sofar we have only discussedsimple operations on generating functions, suc as multipli-
cation. What happenswhen we do something more complicated? There are seeral frequertly
occurring operations on generating functions whoseresults can be described explicitly .

Faa di Bruno's form ula [B]]. Supposethat

p3 m p n
A@Z) = am % L B(@) = b (6.58)
m=0 ’ n=0
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are two exponertial generating functions with by = 0. Then the formal composition C(z) =

A(B(2)) is well-de ned, and

3 2N
C(z2) = Ch— (6.59)
n!
n=0
with
X
=0 cn=  aBnk(bibiiiby k) (6.60)
k=1
wherethe Bk are the exponertial Bell polynomials de ned by
!
)4‘ tl’luk )4‘ tm
Bk (X1;::5Xn k#1)—=— = €xp u Xm— (6.61)
n! m!
n;k=0 m=1

with the x; independert variables.

Faa di Bruno's formula makesit possibleto compute successie derivatives of functions
sudh aslogA(z) in terms of the derivatives of A(z). For further examples,see[B], B319.
Faa di Bruno's formula is derivable in a straightforward way from the multinomial theorem.

Composition of generating functions occurs frequertly in conbinatorics and analysis of
algorithms. When it yields the desired generating function as a composition of seweral known
generating functions, the basic problem is solved, and one can work on the asymptotics of the
coe cien ts using Faa di Bruno's formula or other methods. A more frequert event is that
the composition yields a functional equation for the generating function, asin Example f.]
where the exponertial generating function t(z) for labeled rooted trees was shavn to satisfy
t(z) = zexp(t(z)). General functional equations are hard to deal with. (Many examples
will be preseried later.) Howewer, there is a classof them for which an old technique, the

Lagrange-Burmann inversion formula, works well. We start by noting that if

p 3
f(z)=  fn2" (6.62)
n=0

is a formal power serieswith fo = 0, f1 6 0, then there is an inverse formal power series
fh 1(2) such that
fE" V@) =f"Y(f(2)=2: (6.63)
The coe cien ts of f " 1(z) canbe expressedexplicitly in terms of the coe cien ts of f (z). More
generally we have the following result.
Lagrange-B mrmann inversion form ula. Supposethat f (z) is a formal power series

with [z°f (z) = 0, [2]f (z) 6 0O, and that g(z) is any formal power series.Then forn 1,
[2"Ifg(f" ") (2)g=n ‘2" TA2)(f (2)=2 "g: (6.64)
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In particular, for g(z) = z, we have

Z"1f" Y(z2)=n 2" Y(f(2)=2) " : (6.65)

Example 6.6. Rooted lakeled trees. As was shown in Example .1, the exponertial gener-
ating function of rooted labeled trees satis es t(z) = zexp(t(z)). If we rewrite it asz =
t(z) exp( t(z)), we seethat t(z) = f" Y (z), wheref(z) = zexp( z). Therefore Eq. (B-69
yields

n z" Yexp( nz)

[z"]t(2)
(6.66)

n " :=n 1) = n" l=n;
which shows that t,, the number of rooted labeled trees on n nodes,is n" 1.

Proof of a form of the Lagrange-Buarmann theorem is given in Chapter ?. Extensive dis-
cussion, proofs, and referencesare cortained in [B]] P03 B79. Someadditional recert
referencesare [[[59 POJ. There exist generalizations of the Lagrange-Barmann formula to
seweral variables [[[73 [69 POg.

The Lagrange-Barmann formula, asstated above, is valid for generalformal power series. If
f (z) is analytic in a neighborhood of the origin, then soaref " 1 (z) and g(f " 1)(z), provided
g(z) is alsoanalytic near0 and f 0) 6 0, f (0) = 0. Most of the presenations of this inversion
formula in the literature assumeanalyticity. Howewer, that is not a real restriction. To prove

(B.69), say, in full generality, it suces to proveit for any n. Givenn, if we let

xo xo
F(2)= f2; G@)=  oZ*;
k=0 k=0
then we seethat
[z"fg(f " Y)(z)g = [z"IG(F" Y)(2) ; (6.67)

and F (z) and G(z) are analytic, so the formula (f.69) can be applied. Thus combinatorial

proofs of the Lagrange-Burmann formula do not o er greater generality than analytic ones.
While the analytic vs. combinatorial distinction in the proofs of the Lagrange-Barmann

formula does not matter, it is possibleto use analyticity of the functions f (z) and g(z) to

obtain useful information. Example .4 above was atypical in that a simple explicit formula
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was derived. Often the quartity on the right-hand side of (F.69) is not explicit enoughto make
clear its asymptotic behavior. When that happens, and g(z) and f (z) are analytic, one can

usethe cortour integral represenation
Z

2" fg(2)(f (2)=2) "g= 2_l| g{2)f (2) "dz; (6.68)
where is a positively oriented simple closedcontour enclosingthe origin that lies inside the
region of analyticity of both g(z) and f (z). This represeration, which is discussedin Sec-
tion 10, can often be usedto obtain asymptotic information about coe cien ts [z"]g(f " 1)(z)
(cf. [B7).

The Lagrange-Barmann formula can provide numerical approximations to roots of equa-

tions and even cornvergert in nite seriesrepresettations for suc roots. An important caseis

the trinomial equationy = z(1+ y"), and there are many others.

Example 6.7. Dominant zer for forbidden subwod generting functions. The generating

functions Fa(z) and Ga(z) of Example f.4 both have denominators
h(z) = z+ 1 22)C(2) ; (6.69)

where C(z) is a polynomial of degree k, with coe cien ts 0 and 1, and with C(0) = 1. It will
be shown later that h(z) hasonly one zero of small absolute value, and that this zerois the
dominant in uence on the asymptotic behavior of the coe cien ts of Fa(z) and Ga(z). Right

now we obtain accurate estimatesfor

For simplicity, we will consideronly large k. Since C(z) has nonnegative coe cien ts and
C(0) = 1,h(3=4) (3=4) 1=2< Ofor k 3. On the other hand, h(1=2) = 2 . Therefore

h(z) hasareal zero with 1=2< < 3=4. Ask! 1, ! 1=2, since
k=2 1C(); (6.70)

and K1 Oask! 1 for1=2< < 3=4,while2 1and C( ) are bounded. We can deduce

from (B.69 that
2 1 2kc@a=2) ' as k! 1 ; (6.71)

uniformly for all polynomials C(z) of the prescribed type. By applying the bootstrapping
technique (seeSection5.4) we can nd ewven better approximations. By (F.73),

c() C(1=2)+ O(j 1=2j) = C(1=2)+ 02 ¥); (6.72)

k

2 K@+ 0@ Kk = 2 K@+ ok2 4 ; (6.73)
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so (B-70) now yields
=1=2+2 K 1c(1=2) 1+ O(k2 %*): (6.74)

Even better approximations can be obtained by repeating the processusing (p.79. At the

next stagewe would apply the expansion

C() C(1=2)+ ( 1=2)cY1=2)+ O((  1=2)%)

(6.75)

C(1=2)+ 2 ¥ 1cq1=2) + O(k2 %)
and a similar onefor K.

A more systematic way to obtain a rapidly corvergen seriesfor is to usethe inversion

formula. If we setu = 1=2, then (.70 can be rewritten asw(u) = 1, where
S .
w(u) = 2uC(1=2+ u)(1=2+u) K=  au ; (6.76)
i=1
with
a;= 2*'C(1=2)6 0: (6.77)

Henceu = w" 1 (1), and the Lagrange-Barmann inversionformula (E.69) yields the coe cien ts

of w" 1i(z). In particular, we nd that
= 1=2+u 1=2+2 X 'c(1=2) *+k2 * c@a=2) 2 2 * 2cq1=2)c(1=2) 3+ (6.78)

as a Poincare asymptotic series. With additional work one can shaw that the series((.79)
corverges,and that
=1=2+ 2 kK 1c(1=2) 1+ k2 % 1Cc(1=2) 2
(6.79)
2 % 2cQ1=2)Cc(1=2) 3+ O(k?2 ¥ ;

for example. The sameestimate can be obtained by the bootstrapping technique.

6.3. Dieren tiably nite power series

Homogeneousecurrenceswith constart coe cien ts are the nicest large set of sequences
onecanimagine, with rational generatingfunctions, and well-understood asymptotic behavior.
The next classin complexity consistsof the polynomially-recursive or, P-recursive sequen@s

aog; a1, . :, which satisfy recurrencesof the form

pa(Nan+d+ Pd 1(N)an+g 1+ + po(N)an, =0, n O; (6.80)
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conmbinatorics, with a, = n! a simple example. Normally P -recursive sequencesio not have
explicit forms for their generating functions. In this section we briey summarize some of
their main properties. Asymptotic properties of P-recursive sequenceswill be discussedin
Section9.2. The main referencesfor the results quoted here are [P54, B50.

A formal power series

s
f(z)=  azX (6.81)
k=0
is called di erentiably nite, or D-nite , if the derivativesf (M(z) = £L& n 0, spana

nite-dimensional vector spaceover the eld of rational functions with complex coe cien ts.

The following three conditions are equivalert for a formal power seriesf (z):

i) f(2) is D- nite.

x@f @)+ + w@f (@)= q?): (6.82)

pm(@f M@+ + po(2)f (2) = O (6.83)

The most important result for combinatorial enumeration is that a sequenceag; as;:::, is
P-recursive if and only if its ordinary generating function f (z), de ned by (F.83), is D- nite.
This makesit possibleto apply results that are more easily proved for D - nite power series.

If f (z) is D-nite, then sois the power seriesobtained by changing a nite number of the

0, such that qq(2)f (2)9 + + q(2)f (2) + qp(z) = 0), then f(z2) is D-nite. The product
of two D- nite power seriesis also D- nite, asis any linear combination with polynomial
coe cien ts. Finally, the Hadamard product of two D- nite seriesis D- nite. The proofs rely
on elemerary linear algebraconstructions. An important feature of the theory is that identity
betweenD - nite seriesis decidable.

The conceptof a D- nite power seriescan be extendedto seweral variables [P54 09, and
there are generalizationsof P-recursiveness[P54 fi0j. (Seealso [[6]].) Zeilberger [f0] has

usedthe word holonomic to describe corresponding sequencesand generating functions.
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When we investigate a sequencef a,g, sometimesthe combinatorial corntext yields only
relations for more complicated object with seweral indices. While we might like to obtain the

P
generatingfunction f (z) = a,z", we might instead nd a formula for a generating function

F(z1;,20,:00,2¢) = bhyiiiinkzy ;:::;zEk; (6.84)

(There are more generalde nitions of diagonalsin [Pd, P54, P59, which are recert refer-
encesfor this topic.) Diagonalsof D- nite power seriesin any number of variablesare D - nite.
Diagonals of two-variable rational functions are algebraic, but there are three-variable rational

functions whosediagonalsare not algebraic [[[5]].

6.4. Unimo dalit y and log-concavit y

g a1 ax and ag ak+1 an. A sequenceap;:::;a, of nonnegative
elemerts is called log-aconcave (short for logarithmically concave) if aj2 & 18 +1 holds for
1 n 1. Unimodal and log-concare sequencesccur frequertly in conbinatorics and
are objects of intensive study. We presert a brief review of someof their properties because
asymptotic methods are often used to prove unimodality and log-concaity. Furthermore,
knowledgethat a sequencds log-concae or unimodal is often helpful in obtaining asymptotic
information. For example, some methods provide only asymptotic estimates for summatory
functions of sequencesand unimodality helps in obtaining from those estimates bounds on
individual coe cients. This approac will be preseried in Section 13, in the discussion of
certral and local limit theorems.

The basic referencesfor unimodality and log-concaity are [P27 B57. For recert results,
seealso and the referencesgiven there. All the results listed below can be found in those
sourcesand the referenceshey list.

In the rest of this subsectionwe will consider only sequencesof nonnegative elemerts.

0 i <j <Kk n such that a = 0, ajax 6 0. It is easyto seethat a log-concae
sequencewith no internal zerosis unimodal, but there are sequence®f positive elemers that
are unimodal but not concave. The corvolution of two unimodal sequencesloesnot have to

be unimodal. Howewer, it is unimodal if ead of the two unimodal sequencess also symmetric.
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Convolution of two log-concare sequencess log-concae. The cornvolution of a log-concare and
a unimodal sequences unimodal. A log-concae sequences even characterizedby the property
that its cornvolution with any unimodal sequenceis unimodal. This last property is related
to the variation-diminishing character of log-concae sequencegsee[P27)), which we will not
discussat greater length here except to note that there are more restrictiv e sets of sequences
(the Polya frequency classessee[F§, P27) which have stronger corvolution properties.

The binomial coecients ; ,0 k n, are log-concae, and therefore unimodal. The

g-binomial coe cien ts E q &€ log-concae for any q 1. On the other hand, if we write a

single coe cien t E q for xed n and k as a polynomial in g, the sequenceof coe cien ts is

unimodal, but doesnot have to be log-concae.

to shaw that all the zerosof the polynomial
X
A(z) = az (6.85)
k=0

1
arerealand 0. In that casenot only are the ax log-concae, but so are ax E . Absolute

valuesof the Stirling numbersof both kinds were rst shawvn to be log-concae by this method
[L93. There are many unsolved conjectures about log-concaity of combinatorial sequences,
sud asthe Read-Hoggarconjecture that coe cien ts of chromatic polynomials are log-concae
(ct. [BE1D).

A variety of combinatorial, algebraic, and geometric methods have been used to prove
unimodality of sequencesand we refer the readerto [B57 for a comprehensie and insightful
survey. In Section 12.3 we will discussbriey someproofs of unimodality and log-concaity
that use asymptotic methods. The basic philosophy is that sincethe Gaussiandistribution is
log-concae and unimodal (when we extend the de nition of these conceptsto continuous dis-
tributions), theseproperties should alsohold for sequenceshat by the certral limit theorem or
its variants are asymptotic to the Gaussian. Therefore one can expect high-order convolutions
of sequencedo be log-concae at least in their certral region, and there are theorems that

prove this under certain conditions.

6.5. Momen ts and distributions

The secondmomert method is a frequertly usedtechnique in probabilistic argumerts, as

is shawvn in Chapter ? and [E5, [L0§ B4§. It is basedon Chebyshev'sinequality, which says
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that if X is a real-valued random variable with nite secondmomert E (X ?), then

E(X2) E(X)?.

Prob(jX E(X)j JE(X))) 2E(X)? (6.86)
An easycorollary of inequality (E.89) that is often usedis
2 2
prob(x = 0) —X) _EX)T, (6.87)

E(X)2
(There is aslightly stronger versionof the inequality (E-87), in which E (X )? in the denominator
is replaced by E (X ?).) The inequalities (.89 and (F.87) are usually applied for X = Y; +

+ Yn, where the Y are other random variables. The helpful feature of the inequalities is
that they require only knowledge of the pairwise dependenciesamong the Y;, which is easier
to study than the full joint distribution of the Y;. For other bounds on distributions that can
be obtained from partial information about momerts, see[@.

The reasonmomert boundsare merntioned at all in this chapter is that asymptotic methods
are often usedto derive them. Generating functions are a commonand conveniert method for

doing this.

Example 6.8. Waiting times for subwods. In a continuation and application of Example f-4
let A be a binary string of length k. How many tossesof a fair coin (with sideslabeled 0 and
1) are neededon averagebefore A appearsasa block of k consecutive outcomes?By a general
obsenation of probability theory, this is just the sumovern 0 of the probability that A does

not appearin the rst n coin tosses,and thus equals

fa(n)2 " = Fa(1=2) = 2¥Ca(1=2) ; (6.88)
n=0

where the last equality follows from Eq. (.3J). Another, more general,way to derive this is
to useGa(z). Note that ga(n)2 " is the probability that A appearsin the rst n coin tosses,
but not in the rst n 1. Hencethe r-th momert of the time until A appearsis

b3 d '

nN‘ga(n)2 "= z— Ga(2) : (6.89)

n=0 dz z=1=2
If we take r = 1, we again obtain the expected waiting time given by (F-89. When we take
r = 2,we nd that the secondmomert of the time until the appearanceof A is

b3
nga(n)2 "= 221 Ca(1=2)2 (2k 1)2XCa(1=2) + 2¢CR(1=2) ; (6.90)
n=0
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and therefore the varianceis

2XCa(1=2)> (2k  1)2XCa(1=2) + 2¢C2(1=2)
(6.91)
= 2%KCa(1=2)2 + O(k2¥) ;

sincel Ca(1=2) 2. Higher momerts can be usedto obtain more detailed information.
A better approac is to usethe method of Example P.Z, which gives preciseestimatesfor the

tails aswell asthe mean of the distribution.

Information about momerts of distribution functions can often be usedto obtain the lim-
iting distribution. If F,(x) is a sequenceof distribution functions sudc that for every integer
k 0, the k-th momert 7
n(k) = x®dFn(x) (6.92)
corvergesto (k) asn! 1 ,then thereis alimiting measurewith distribution function F (x)
whosek-th momert is (k). If the moments (k) do not grow too rapidly, then they determine
the distribution function F (x) uniguely, and the F,(x) convergeto F (x) (in the weak star sense

[BEQD). A sucient condition for the (k) to determine F(x) uniquely is that the generating

function M )
U(x) = % (6.93)
k=0
should convergefor somex > 0. In particular, the standard normal distribution with
Z X
F(x)= (2 ) 2 exp( u?=2)du (6.94)
1

has (2k)=1 3 5 7 ::: (2k 1) (and (2k+ 1) = 0), soit is determined uniquely by its
momerts. On the other hand, there are somefrequertly encourtered distributions, sud asthe

log-normal one, which do not have this property.
7. Formal power series

This section discusseggenerating functions f (z) that might not corvergein any interval
around the origin. Sequenceghat grow rapidly are commonin conbinatorics, with a, = n!

the most obvious example for which

p S
f(z) = anz" (7.1)
n=0

doesnot corvergefor any z 6 0. The usual way to deal with the problem of a rapidly growing

sequencea, is to study the generating function of a,=h,, where b, is some sequencewith
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known asymptotic behavior. When b, = nl!, the ordinary generatingfunction of a,=h, is then
the exponertial generating function of a,. For derangemets (Egs. ([L.1) and (B.7)) this works
well, as the exponertial generating function of d, convergesin jzj < 1 and has a nice form.
Unfortunately, while we can always nd a sequenceb, that will make the ordinary generating
function f (z) of a,=h, converge (even for all z), usually we cannot do it in a way that will
yield any useful information about f (z). The combinatorial structure of a problem almost
always se\erely restricts what forms of generating function can be usedto take advantage of
the special properties of the problem. This dicult y is common, for example, in enumeration
of labeled graphs. In suc casesone often resortsto formal power seriesthat do not converge
in any neighborhood of the origin. For example, if ¢(n; k) is the number of connectedlabeled

graphson n verticeswith k edges,then it is well known (cf. [B4]) that
|
xR kyn (3)ym’
c(n;k)X LA log @+ ) ey?

| |
n=0 k=0 n: m=0 m:

(7.2)

While the seriesinside the log in ([.2) doescorvergefor 2 x 0, and any y, it diverges
for any x > O aslong asy 6 0, and sothis is a relation of formal power series.

There are few methods for dealing with asymptotics of formal power series,at least when
compared to the wealth of techniques available for studying analytic generating functions.
Fortunately, conmbinatorial enumeration problemsthat do require the useof formal power series
often involve rapidly growing sequenceof positive terms, for which some simple techniques
apply. We start with an easygeneralresult that is applicable both to corvergen and purely

formal power series.

P P
Theorem 7.1. ([B3)) Supmsethat a(z) = a,z" and b(z) = b,z" are power series with
radii of convegene > 0, respctively. Supmse that b, 1=k, ! asn! 1. If

a( )6 0, and P cnz" = a(z)b(z), then
¢ch a( )b as n! 1 : (7.3)

The proof of Theorem [/-], which can be found in [B3], is simple. The condition > is
important, and cannot be replacedby = . Wecanhave = 0, and that is indeedthe only

possibility if the seriesfor b(z) doesnot corvergein a neighborhood of z = 0.

Example 7.1. Double set coverings [B3, BQl. Let v, be the number of choices of subsets
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no restriction on r, the number of subsets,and someof the S; can be repeated. Let c, be
P
the corresponding number when the S; are required to be distinct. Welet C(z) = ¢,z"=n!,

P
V(z) = wvhz"=n! be the exponertial generating functions. Then it can be shown that

C(z) = exp( 1 (¢ 1)=2)A(2); (7.4)
V(z) = exp( 1+ (e 1)=2)A(2); (7.5)
where
R
A(z) = expk(k 1)z=2)=k!: (7.6)
k=0
We seeimmediately that A(z) doesnot corvergein any neighborhood of the origin. We have
L

an=[z2"1A(z)=2" (7.7)

ko k!

By consideringthe ratio of consecutive terms in the sumin (.7, we nd that the largestterm
occursfor k = kg with kglogkg 2n, and by the methods of Section5.1we nd that

=20 (ko 1)"
N2 (ko 1)!

Thereforea, 1=a,! Oasn! 1 ,andTheorem[/]tells us that

as n! 1 : (7.8)

an

Ch V, enla, as n! 1 : (7.9)

Usually formal power seriesoccur in more complicated relations than those covered by
Theorem [7.] For example, if f, is the number of connected graphs on n labeled vertices
which have someproperty, and F,, is the number of graphs on n labeled vertices eat of whose

connectedcomponerts hasthat property, then (cf. [B94)
|

3 n s n
1+ Fn% = exp fn% (7.10)
n=1 n=1
Theorem 7.2. ([B4]) Supmwsethat
Pl X
a(x) = anx";  F(xy) = Fricx"y*
n=1 hik 0
" (7.11)
b(x) = bhx" = F(x;a(x)) ; D(x) = Fy(xax)) ;

n=0

wheee Fy(x; y) is the partial derivative of F(x;y) with resgct to y. Assumethat a, 6 0 and

53



(i)
an, 1=0(a,) as n! 1 ; (7.12)
(i)
X r
jakan kj = O(an () forsome r > 0; (7.13)
k=r

(i) for every > Othereare M( ) and K ( ) suchthatforn M()andh+ k>r+ 1,

jfrcan n kel K() "¥jan o (7.14)
Then
)4 1
b = dkan k+ O(an 1) : (7.15)
k=0

Condition (iii) of Theorem [7.3 is often hard to verify. Theorem 2 of [B4] shows that this
condition holds under certain simpler hypotheses. It follows from that result that (iii) is
valid if F(x;y) is analytic in x and y in a neighborhood of (0; 0). Hence,if F(x;y) = exp(y) or
F(x;y) = 1+y, then Theorem[7.3 becomeseasyto apply. One canalsodeducefrom Theorem 2

of [B4] that Theorem [7.3 applieswhen (i) and (ii) hold, bp = 0,, 0, and
|

2 !
1+ a(z) = exp bZ%)=k ; (7.16)
k=1

another relation that is common in graph enumeration (cf. Example [[5.]). There are also

someresults weaker than Theorem[7.] that are easierto apply [B93.

For example, = (134)(2)(56) correspondsto 11 = f1;2;3;4g, |, = f5;6g, and the identity
permutation has n componeris. A permutation is said to be indecomposableif it has one

componert. For example,if hasthe 2-cycle(1n), it isindecomposable. Let ¢, be the number

R
cz"=1 —P—lli : (7.17)

=1 1+ _;nlz"

We apply Theorem[Z.3 with a, = n!forn landF(x;y)=1 (1+y) ! We easilyobtain
cp nl as n! 1 ; (7.18)

sothat almost all permutations are indecomposable.
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Somefurther useful expansionsfor functional inversesand computations of formal power

serieshave beenobtained by Bender and Richmond [[0].
8. Elementary estimates for convergent generating functions

The word \elementary" in the title of this sectionis a technical term that meansthe proofs
do not usecomplex variables. It doesnot necessarilyimply that the proofs are simple. While
some,such asthose of SectionB.], are easy others are more complicated. The main advantage
of elementiary methodsis that they are much easierto use,and sincethey imposemuch weaker
requiremerts on the generating functions, they are more widely applicable. Usually they only
imposeconditions on the generating function f (z) forz2 *

The main disadvantage of elemenary methods is that the estimatesthey give tend to be
much wealer than those derived using analytic function approaces. It is easyto explain why

that is so by consideringthe two generating functions

R
fi(z)= z2"=@1 2! (8.1)
n=0
and 2
fo(z) = 322+  2z°" = 3=2+27°(1 7% ': (8.2)
n=1

Both seriesconvergefor jzj < 1 and divergefor jzj > 1, and both blow up asz! 1. Howeer,

1 z ! 0 as z! 1: (8.3)

fi(z2) f2(2) = 20+ 2

Thus thesetwo functions behave almost identically nearz = 1. Sincef 1(z) and f»(z) are both

+

(1 2z) 'asz! 1 ,z2 *,andtheir dierence is O(jz 1j) forz 2 , It would require
exceptionally delicate methods to detect the di erences in the coe cien ts of the f (z) just from
their behavior for z2 *. There is a substartial di erence in the behavior of f 1(z) and f »(z)
for real z if welet z ! 1, so our argumert does not completely exclude the possibility of
obtaining detailed information about the coe cien ts of these functions using methods of real
variables only. Howeer, if we considerthe function

b

fa(z) = 2+ 328" =2+3231 2% !; (8.4)
n=1

then f1(z) and f3(z) areboth (1 z) tasz! 1 ,z2 *,yetnow
if1(z) fa(2)j= Oz 1) forall z2
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This di erence is comparableto what would be obtained by maodifying a singlecoe cien t of one
generating function. To determine how suc slight changesin the behavior of the generating
functions a ect the behavior of the coe cien ts we would need to know much more about
the functions if we were to usereal variable methods. On the other hand, analytic methods,
discussedin Section 10 and later, are good at dealing with suc problems. They require less
precise knowledge of the behavior of a function on the real line. Instead, they imposeweak
conditions on the function in a wider domain, namely that of the complex numbers.

For reasonsdiscussedabove, elemenary methods cannot be expected to produce precise
estimates of individual coe cients. They often do produce good estimates of summatory

functions of the coe cien ts, though. In the examplesabove, we note that

X
[z"Ifj(z7 N as N! 1 (8.5)
n=1
for1 j 3. This holds becausethe f;(z) have the samebehavior asz! 1 , andis part of

a more general phenomenon. Good knowledge of the behavior of the generating function on
the real axis combined with weak restrictions on the coe cien ts often leadsto estimates for
the summatory function of the coe cien ts.

There are caseswhere elemenary methods give precisebounds for individual coe cien ts.
Typically when we wish to estimate f ,, with ordinary generatingfunction f (z) = P fnz" that

corvergesfor jzj < 1 but not for jzj > 1, we apply the methods of this sectionto

Oh=Ffn fna1 for n 1 go="fo (8.6)
with generating function M
9z2)= ;mz"=(@1 2)f(2): (8.7)
n=0
Then
X
O =fn; (8.8)
k=0

and soestimatesof the summatory function of the gy yield estimatesfor f,. The di cult y with
this approad is that now g(z) and not f (z) hasto satisfy the hypothesesof the theorems,
which requires more knowledge of the f,,. For example, most of the Tauberian theorems
apply only to power serieswith nonnegative coe cien ts. Henceto usethe di erencing trick
above to obtain estimatesfor f,, we needto know that f, 1 f, for all n. In somecases

(such asthat of f, = pn, the number of ordinary partitions of n) this is easily seento hold
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through combinatorial argumerts. In other situations whereonemight like to apply elemenary
methods, though, f,, 1 f, is either falseor elseis hard to prove. When that happens,other

methods are required to estimate f ,.

8.1. Simple upper and lower bounds

A trivial upperbound method turns out to bewidely applicablein asymptotic enumeration,
and is surprisingly powerful. It relieson nothing more than the nonnegativity of the coe cien ts

of a generating function.

Lemma 8.1. Supmsethat f (z) is analytic in jzj < R, and that [z"]f(z) Ofor alln O.

Then for any x, 0< x < R, andanyn 0,

[Z"f(z) x "f(x): (8.9)

Example 8.1. Lower bound for factorials. Let f (z) = exp(z). Then Lemma B.] yields
1 — n n
i [z"le" x "€ (8.10)

for every x > 0. The logarithm of x "e* isx nlogx, and di erentiating and setting it equal
to 0 shows that the minimum value is attained at x = n. Therefore

l — n ngn .

i [z"le n "€"; (8.11)
andson! n"e ". This lower bound holds uniformly for all n, andiso only by an asymptotic

factor of (2 n)¥*2 from Stirling's formula (E.J).

P
Supposethat f (z) =  fnz". LemmaB.] is proved by noting that for 0< x < R, the n-th
term, f,x", in the power seriesexpansionof f (x), is f (x). As we will seein Section 10, it
is often possibleto derive a similar bound on the coe cien ts f,, even without assumingthat

they are nonnegative. However, the proof of Lemma B.7 shows something more, namely that
fox "+fix "+ o+, x Y+fh x "f(X) (8.12)

for 0 < x < R. When x 1, this yields an upper bound for the summatory function of the
coe cien ts. Because(B.13) holds, we seethat the bound of Lemma B.] cannot be sharp in
general. What is remarkable is that the estimates obtainable from that lemma are often not

far from best possible.
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Example 8.2. Upper bound for the partition function. Let p(n) denotethe partition function.

It hasthe ordinary generating function

b S Y
f(zy= pn)z"= (@ Z4 ': (8.13)
n=0 k=1
Let g(s) = logf (e ®), and considers > 0, s! 0. There are extremely accurate estimates of

g(s). It is known [[L3, B3], for example, that
g(s) = 2=(6s) + (logs)=2 (log2 )=2 s=24+ O(exp( 4 %=9)) : (8.14)
If we use(B.19, we nd that x "f (x) is minimized at x = exp( s) with
s= =(6n)¥? 1=(4n)+ O(n *?); (8.15)
which yields
p(l) + p2)+ +pn) 2 e ¥n 1+ o) exp2 6 2nt?) (8.16)

Comparing this to the asymptotic formula for the sum that is obtainable from ([.§) (see
Example B-2), we seethat the bound of (B9 is too high by a factor of n*™. If we use (B19)

to bound p(n) alone, we obtain a bound that is too large by a factor of n3,

The application of Lemma B.] outlined above dependedon the expansion(f.14), which is
complicated to derive, involving modular transformation properties of p(n) that are beyond
the scope of this survey. (See[[l3, R3] for derivations.) Wealer estimatesthat are still useful
are much easierto derive. We obtain one such bound here, sincethe argumerts illustrate some

of the methods from the precedingsections.

Consider M
g(s) = log(1 e *5): (8.17)
k=1
If we replacethe sum by the integral
z 1
I (s) = log(1 e “)du; (8.18)
1

we nd on expanding the logarithm that

Z, n ps
I(s) = m
1

e ™ (8.19)

m=1 m=1
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since the interchange of summation and integration is easy to justify, as all the terms are

positive. Thereforeass! 0",

sl(s) ! m?2= ?=6; (8.20)

m=1
sothat I (s) 2=(6s) ass! O'. It remainsto shaw that | is indeed a good approximation

to g(s). This follows easily from the bound (F-3)), sinceit shows that

Zl se Vs

g(s)=1(s)+ 0O . 1 evs

dv (8.21)

We could estimate the integral in (B.2]) carefully, but we only needrough upper bounds for

it, sowe write it as

1 se Vs q Z 1 eu q
L 1 ewn VT 1T gu™
Z 1 u 1 u
= ©  _du+ - du (8.22)
s 1 ev 1 ev ’
= T _du +cC 1O|u+c—c logs
T NI g
for someconstart c. Thuswe nd that
g(s) = I(s) + O(log(s 1)) as s! 0" : (8.23)
Combining (B2} with (B.2Q) we seethat
gs) ?=(6s) as s! O : (8.24)
Therefore, choosings =  =(6n)1=2, x = exp( s) in Lemmaf.], we obtain a bound of the form
p(n) exp((1+ o(1)) (2=3)*?n¥™?) as n! 1 : (8.25)

Lemma B.] yields a lower bound for n! that is only a factor of about n'™? away from
optimal. That is common. Usually, when the function f (z) is reasonably smooth, the best
bound obtainable from Lemma B.1 will only be o from the correct value by a polynomial
factor of n, and often only by a factor of n12,

The estimate of Lemma B.]] can often be improved with someadditional knowledge about

the f,,. For example,if fn+1 f, forall n 0, then we have
X "M (X) fn+ foaaX+ frox?+ fa(l x) 1: (8.26)
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For f,, = p(n), the partition function, then yields an upper bound for p(n) that is too large by
a factor of nt™4,

To optimize the bound of Lemmaf-], oneshould choosex 2 (0; R) carefully. Usually there
is a single best choice. In some pathological casesthe optimal choice is obtained by letting
x! 0" orx! R . Howewr, usually we havelim,, g f(x)= 1, and [z"]f (z) > O for some
m with 0 m < n aswell asfor somem > n. Under theseconditions it is easyto seethat

lim x "f(x)= lim x "f(x)=1 : (8.27)
x! O* x! R

Thus it doesnot pay to make x too small or too large. Let us now consider

g(x) = log(x "f(x)) = logf (x) nlogx : (8.28)
Then
fO n
g =+ o (8.29)

and the optimal choice must be at a point where gqx) = 0. For most commonly encourtered
functions f (x), there exists a constart xg > 0 suc that

fo 0

T x)>0 (8.30)
for xo < x < R, and sog’x) > 0 for all x 2 (0;R) if n is large enough. For suc n there
is then a unique choice of x that minimizes the bound of Lemma B.]. Howewer, one major
advantage of Lemma .1 is that its bound holds for all x. To apply this lemma, one can use
any x that is conveniert to work with. Usually if this choiceis not too far from the optimal
one, the resulting bound is fairly good.

We have already remarked above that the bound of Lemma B.] is usually closeto best
possible. It is possibleto prove generallower boundsthat show this for a wide classof functions.
The method, originated in and deweloped in [B0Y, relieson simple elemerary argumerts.
Howewer, the lower bounds it producesare substartially wealker than the upper bounds of
Lemmap.]. Furthermore, to apply them it is necessaryto estimate accurately the minimum of

x "f (x), instead of selectingany corveniert valuesof x. A more generalversion of the bound
below is given in [B07).

P
Theorem 8.1. Supmwsethat f (x) = f,x" convemgesfor jxj< 1, f, Oforalln, fy, >0

P
for somemg, and f, = 1. Thenfor n mg, thereis a unique Xg = Xg(n) 2 (0;1) that
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minimizes x "f (x). Letsp = logxg, and

_ @ s .
A= @Iogf (e ®) s (8.31)
If A 10° and for all t with
s; t sp+ 20A (8.32)
we have
@ 3pA3=2 .
@Iogf (e 9) L, 10°AT (8.33)
then
fr  Xo"f (Xo0) exp( 30s0A¥2  100): (8.34)

k=0

As is usual for Tauberian theorems, Theorem B.] only provides bounds on the sum of
coe cients of f (z). As we mertioned before, this is unavoidable when one relies only on
information about the behavior of f (z) for z a positive real number. The conditions that
Theorem B.] imposeson the derivatives are usually satis ed in combinatorial enumeration

applications and are easyto verify.

Example 8.3. Lowerbound for the partition function. Let f (z) and g(s) beasin Example B.3

We shawed there that g(s) satis es (B:29 and similar rough estimates show that g4s)
2=(6s?), g°¥s) 2=(3s%), and g°%) 2=¢* ass ! 0'. Therefore the hypothesesof

Theorem B.] are satis ed, and we obtain a lower bound for p(0) + p(1) +  + p(n). If we only

usethe estimate (.29 for g(s), then we can only concludethat for x = e S,
log(x "f(x)) = ns+g(s) ns+ 2=6s) as s! O; (8.35)

and sothe minimum value occursat s =6n)¥2 asn! 1 . This only allows usto conclude

that for every > 0 and n large enough,
log(p() +  +p(n)) (1 ) (2=3)Pn*?: (8.36)

Howewer, we can also conclude even without further computations that this lower bound will

be within a multiplicativ e factor of exp(cn'™) of the best upper bound that can be obtained
from Lemmal[g-] for somec > 0 (and therefore within a multiplicativ e factor of exp(cn™) of
the correct value). In particular, if we usethe estimate (B.14 for g(s), we nd that for some
> 0,

p(0)+ + p(n) exp( 2=3)1?n'? ch¥): (8.37)
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Sincep(k) p(k + 1), the quartity on the right-hand side of (B.37) is also a lower bound for

p(n) if we increasec®, since(n + 1)p(n)  p(0) + + p(n).

The dierencing trick described at the introduction to Section 8 could also be used to
estimate p(n), since Theorem 8.1 can be applied to the generatingfunction of p(n+ 1) p(n).
Howewer, sincethe error term is a multiplicativ e factor of exp(cn™), it is simpler to usethe
approac above, which boundsp(n) below by (p(0) + + p(n))=(n + 1).

Brigham [Ed] has proved a generaltheorem about asymptotics of partition functions that

can be derived from Theorem B.J. (For other results and referencesfor partition asymptotics,

see[ld, 3, [50).)

Theorem 8.2. Suppmsethat

Y R
fz)= @ Z "W= amn)z"; (8.38)
k=1 n=0

where the (k) 2 Z, b(k) 0 for all k, and that for someC > 0, u > 0, we have

X
b(k) CxY(logx)" as x! 1 : (8.39)
k x
Then P
log  , ,an) u MfCu(u+2) (u+ 1)gtu+d
(8.40)
(U + 1)(u v)=(u+1) mu=(u+1) (Iog m)v=(u+1)
asm! 1.

If b(k) = 1for all k, a(n) is pn, the ordinary partition function. If b(k) = k for all k, a(n) is
the number of plane partitions of n. Thus Brigham's theorem covers a wide classof interesting
partition functions. The cost of this generality is that we obtain only the asymptotics of the
logarithm of the summatory function of the partitions being enumerated. (For better estimates
of the number of plane partitions, for example, see[f, B&81]. For ordinary partitions, we
have the expansion([L.3).)

Brigham's proof of Theorem[B.3 rst shows that

fev) Cw Y(C logw)'(u+1) (u+1) as w! 0 (8.41)

and then invokes the Hardy-Ramanujan Tauberian theorem [B2§. Instead, one can obtain a
proof from Theorem B-]. The advantage of using Theorem B is that it is much easierto

generalize. Hardy and Ramanujan proved their Tauberian theorem only for functions whose
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growth ratesare of the form givenby (B-47). Their approac canbeextendedto other functions,
but this is complicated to do. In cortrast, Theorem B.] is easyto apply. The conditions of
Theorem B.] on the derivatives are not restrictive. For a function f (z) de ned by (B39 we
haveB ! 1 if P b(k) = 1, and the condition (B-39 can be shavn to hold whene\er there
are constarts ¢; and ¢, such that for all w> 1, and all su cien tly large m,

X X
(k) cw® b(k) ; (8.42)

k mw k m
sa. The main dicult y in applying Theorem B.]] to generalizationsof Brigham's theorem is
in accurately estimating the minimal value in Lemma B.1

There are many other applications of Lemmaf.] and Theorem B.1. For example,they can
be usedto prove the results of [[[5§ on volumesof spheresin the Lee metric.

LemmapB.] canbegeneralizedin a straightforward way to multiv ariate generatingfunctions.

X
f(x;y) = amn x™y" (8.43)

m;n 0O
and an,n O for all m and n, then for any x;y > 0 for which the sumin (B.43 corvergeswe
have
amn X "y "T(xy): (8.44)

Generalizationsof the lower bound of TheoremB-] to multiv ariate functions canalsobe derived,

but are again harder than the upper bound [P89.

8.2. Tauberian theorems

The Brigham Tauberian theorem for partitions [Fg], based on the Hardy-Ramanujan
Tauberian theorem [B29], was quoted already in Section 8.1. It applies to certain generat-
ing functions that have (in notation to be introduced in Section 10) a large singularity and
gives estimatesonly for the logarithm of the summatory function of the coe cien ts. Another
theorem that is often more precise, but is again designedto deal with rapidly growing par-
tition functions, is that of Ingham [R13], and will be discussedat the end of this section.
Most of the Tauberian theoremsin the literature apply to functions with small singularities
(i.e., onesthat do not grow rapidly asthe argumert approacesthe circle of convergence)and

give asymptotic relations for the sum of coe cien ts. Referencesfor Tauberian theorems are

[L17, B29. Their main advantage is generality and easeof use, as is shavn
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by the applications made to 0-1 laws in [[], [/8 9. They can often be applied when the
information about generating functions is insu cien t to use the methods of Sections11 and
12. This is especially true when the circle inside which the generating function corvergesis a
natural boundary beyond which the function cannot be continued.

One Tauberian theorem that is often usedin combinatorial enumeration is that of Hardy,
Littlew ood, and Karamata. We sa a function L(t) variesslowly at in nit vy if, for every u > 0,

L(ut) L(t)ast! 1.

Theorem 8.3. Supmsethat ax 0 for all k, and that

f(x)=  axX
k=0
convergesfor 0 x < r. If thereis a 0 and a function L (t) that varies slowly at in nity

such that

f(x) (r x) L as x! r (8.45)

r
then
X0
ar (n=r) L(n)=( +1) as n! 1 : (8.46)
k=0

Example 8.4. Cycles of permutations ([B3]). If S is a set of positive integers, and f,, the
probability that a random permutation on n letters will have all cycle lengths in S (i.e.,

fn = ap=n!, where a, is the number of permutations with cycle length in S), then

N Y Y
f(z)= foz"=  exp@=k=@Q 2z) ' exp( Z"=K): (8.47)
n=0 k2S k63

If j *nSj< 1, then the methods of Sections10.2and 11 apply easily and one nds that
0 1

X
fn exp@ 1=kA as n! 1 : (8.48)
k63

grow too rapidly whenm! 1 . If jSj< 1 (or whenjfl;:::;mg\ Sj doesnot grow rapidly),
the methods of Section 12 apply. When S = f1;2g, one obtains, for example, the result of

Moser and Wyman that the number of permutations of order 2 is
(n=e)""22 Fexp(n'? 14) as n! 1 : (8.49)
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(For sharper and more general results, see[P93 B7d.) The methods usedin these casesare
di erent from the oneswe are consideringin this section.

We now consideran intermediate case,with
fl:ii;mgy S m o oas m! 1 (8.50)

for some xed , 0 1. This casecan be handled by Tauberian techniques. To apply
Theorem B.3, we needto shaw that L(t) = f(1 t 1)t variesslowly at innit y. This is

equivalent to showing that for any u 2 (0;1),
fa tbH f@ tlwu as t! 1 : (8.51)
Becauseof (B.4]), it su ces to prove that

k @ tH @ t 'ufg= logu+o(l) as t! 1 ; (8.52)
k2S

but this is easyto deducefrom (B.5() using summation by parts (Section 5). Therefore we

nd from Theorem B.3 that

Xn
fo f(1 1=n)( +1) ! as n! 1 : (8.53)
n=0

(For additional results and referenceson this problem see[B1].)

As the above exampleshaws, Tauberian theoremsyield estimatesunder weak assumptions.
These theorems do have some disadvantages. Not only do they usually estimate only the
summatory function of the coe cien ts, but they normally give no bounds for the error term.
(See[[[54] for some Tauberian theorems with remainder terms.) Furthermore, they usually
apply only to functions with nonnegative coe cien ts. Sometimes,asin the following theorem

of Hardy and Littlew ood, one can relax the nonnegativity condition slightly.

Theorem 8.4. Suppsethat ay c=k for somec> 0,

R
f(z)=  ax*; (8.54)
k=1

and that f (x) convemgesfor 0 < x < 1, and that
lim f(x)=A": (8.55)
x! 1

Then
lim a=A": (8.56)



Somecondition such as ak c=k on the ay is necessaryor otherwise the theorem would

not hold. For example,the function

1 x
1+ x

f(x) = =1 2x+ 2¢? (8.57)

satis es (B.59) with A = 0, but (B.59) fails.
We next presert an examplethat shows an application of the above results in combination

with other asymptotic methods that were presened before.

Example 8.5. Permutations with distinct cycle lengths. The probability that a random per-

mutation on n letters will have cyclesof distinct lengths is [z"]f (z), where

Y ZK
f(z) = 1+ < : (8.58)
k=1
Greeneand Knuth note that this is also the limit asp! 1 of the probability that a
polynomial of degreen factors into irreducible polynomials of distinct degreesmodulo a prime

p. It is shown in that
["f(z)=e @+n Y+ O %logn) as n! 1 ; (8.59)

where = 0:577::: is Euler's constart. A simplied version of the argumert of [[[7] will be
preseried that shows that

[Z"If (z) e as n! 1 : (8.60)

Methods for obtaining better expansions,even more precisethan that of (B.59, are discussed

in Section 11.2. For related results obtained by probabilistic methods, see[Rq].

We have, for jzj < 1,
!
2 !
(1+ z)exp log(1 + z*=K)
k=2

f(2)

pS ‘ ! (8.61)
1+ 2)exp z°=k+ g(2)

k=2

1+2)(1 2) *exp((2) ;

where 2 M
m 1 mk
o= z+ L zZ_ . (8.62)

m
m=2 m k=2 k
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Sincethe coe cien ts of g(z) are small, the double sumin (B-69 corvergesfor z = 1, and we

have % % —_— .

m

km

9(1) lim g(z) = 1+

k=2 m=2

R
1+  flogl+k 1) k 1g (8.63)

k=2

log2+ r]I'i{n (log(n+ 1) Hp)= log2 ;
whereH, = 1+ 1=2+ 1=3+  + 1=n s the n-th harmonic numker. Therefore, by (B.6J), we
nd from TheoremB4that if f, = [z"]f (z), then

fo+t f1+ +f, ne as n! 1 : (8.64)
To obtain asymptotics of f,, we note that if h, = [z"]exp(g(z)), then by (B.6)),
fn=2hg+ 2h; + + 2hy 1+ hy: (8.65)

We next obtain an upper bound for jh,j. There are several ways to proceed. The method used
below givesthe best possibleresult jhp,j = O(n 2).

Since g(z) hasthe power seriesexpansion (B.62), and h, = [z"]exp(g(z)), comparison of
terms in the full expansionof exp(g(z)) and exp(v(z)) showsthat jh,j [z"]exp(v(z)), where
v(z) is any power seriessudh that j[z"]g(z)] [z"]v(z). Forn 2,

("t mm

[2"Jg(2) = - o

(8.66)
mjn

m 2

m< n

The term (m=n)" is monotone decreasingfor 1 m  n=e, sinceits derivative with respect

to mis O0in that range. Therefore

1 2 2 X 1 33 2 _
ir5N ; - < - “9 n=2 2.
ilz"19(2)j > o F - v 22 1n <, (8.67)
3 m n=3
say. Hencewe can take 2
v(z) =10 n 22"; (8.68)
n=1
and then we needto estimate
Wy = [2"]exp(v(2)) : (8.69)
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We let w(z) = exp(v(z)), and note that

wYz) = V{Z)w(z2) ; (8.70)
soforn 1,
K 1
nwh, =10 wg(n k) ': (8.71)
k=0

Further, sincev(l) < 1, andw, O for all n, we havew, A = w(1) = exp(v(1)) for all
n. Let B = 10°A and notethat w, Bn 2for1 n 10%. Supposenow that wn, Bm 2
for 1 m< nfor somen 10°. We will provethat w, Bn 2, and then by induction this
inequality will hold for all n 1. We apply Eq. (B.7)). For 0 k 100, we usewy A,
(n k) ' 2n 1 For100< k n=2,

we(n k) ' Bk 2?n k)! 2Bk %n?t; (8.72)
and so
X
wig(n k) ' B(4on) t: (8.73)
100 k n=2
Finally, X
wie(n k) ¥ 4Bn ? (n k) ' 4Bn %H,: (8.74)
n=2<k n 1 n=2<k n 1
Therefore, by (B-71),
nw, 2000An '+ B(4n) '+ 4BH,n 2 Bn !; (8.75)

which completesthe induction step and provesthat w, Bn 2foralln 1.

There are Tauberian theorems that apply to generating functions with rapidly growing
coe cien ts but are more precisethan Brigham's theorem or the estimatesobtainable with the
methods of Section 8.1. One of the most useful is Ingham's Tauberian theorem for partitions

[217]. The following result is a corollary of the more general Theorem 2 of [P17.

Theorem 8.5. Let1l uji< up< ::: he positive integerssuchthat
jfup tup  xgj= Bx + R(x) ; (8.76)

whee B >0, > 0, and
Zy

x 'R(x)dx = blogy+ c+o(l) as y! 1 : (8.77)
1
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Let

R Y
a(z) = anz" = a zu) t; (8.78)
n=1 j=1
a(z) = a,z" = 1+ z4) (8.79)
n=1 j=1
Then,asm! 1,
an (2 ) 122(1 )lZZeCV (b+1=2)m(b+l:2)(l ) 1=2 eXp( l(Vm) ) : (880)
n=1
a, 2) 2@ Y222V m) T2exp( YV m)); (8.81)
n=1
whete
= (+1) % v=fB ( +1)( +g¥ ; V=010 2 YWv: (8.82)
If uy=1, thenasn! 1
an (2 ) 1:2(1 )1:260V (b 1=2)n(b 1=2)1 ) 1=2 eXp( 1(Vn) ) : (883)
and if 1;2;4;8;::: all belongto fu;g, then
a, () ¥?a H¥22%v)2n=2 texp( Y(v n)): (8.84)

Theorem B.j provides more preciseinformation than Brigham's Theorem B.Z, but under
more restrictive conditions. It is derived from Ingham's main result, Theorem 1 of [P1],
which can be applied to wider classesof functions. Howewer, that theorem cannot be usedto
derive Theorem B.2. The disadvantage of Ingham's main theoremis that it requiresknowledge
of the behavior of the generating function in the complex plane, not just on the real axis.
On the other hand, the region where this behavior has to be known is much smaller than
it is for the analytic methods that give more accurate answers, and which are presered in
Sections10{12. Only behavior of the generating functions (1 zi)lor (1 +zi)inan
anglejArgj(1 2)j =2 for some > 0 needsto be cortrolled.

Ingham's paper contains an extended discussionof the relations between di erent

Tauberian theoremsand of the necessiy for various conditions.
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9. Recurrences

This section preserts some basic methods for handling recurrences. The title is slightly
misleading, sincealmost all of this chapter is dewted to methods that are usefulin this area.
Almost all asymptotic estimation problemsconcernquartities that are de ned through implicit
or explicit recurrences. Furthermore, the most common and most e ective method of solving
recurrencesis often to determineits generatingfunction and then apply the methods preserted
in the other sections. Howeer, there are many recurrences,and those discussedn Sections9.4
and 9.5 require special methods that do not t into other sections. These methods desene to
be included, so it seemspreferableto explain them after treating some of the more common
typesof recurrences,even though those could have beencovered elsewherein this chapter.

Since generating functions are the most powerful tool for handling combinatorial recur-
rences,all the bookslisted in Section18that help in dealing with combinatorial identities and
generating functions are also useful in handling recurrences.Methods for recurrencesthat are
not amenableto generating function methods are preserted in [[75 [[7]]. Lueker [P64 is an
introductory survey to somerecurrencemethods.

Wimp's book [B87] is concernedprimarily with numerical stability problemsin computing
with recurrences.Sud problemsare important in computing valuesof orthogonal polynomials,
for example, but seldom arise in combinatorial erumeration. However, there are sections of
that are relevant to our topic, for exampleto the discussionof di erential equationsin

Section 9.2.

9.1. Linear recurrences with constant coe cien ts

The most famous sequencehat satis es a linear recurrencewith constart coe cien ts is
that of the Fibonaccinumbers,dened by Fo= F1 = 1,F, = F, 1+ F, »2forn 2. Thereare
many others that are only slightly lesswell known. Fortunately, the theory of such sequences
is well developed, and from the standpoint of asymptotic enumeration their behavior is well
understood. (For a survey of number theoretic results, together with a list of many unsolved
problemsabout such sequenceshat arisein that area,see[[/J].) There areevenseeral di erent
approadiesto solving linear recurrenceswith constart coe cien ts. The onewe emphasizehere
is that of generating functions, sinceit ts in best with the rest of this chapter. For other
approades, see[P87, 98, for example.

Supposethat we have a linear recurrenceor a system of recurrencesand have found that
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the generatingfunction f (z) we are interested in hasthe form

f(2) = % ; ©.1)

where G(z) and h(z) are polynomials. The basic tool for obtaining asymptotic information
about [z"]f (2) is the partial fraction expansionof a rational function [R0J]. Dividing G(z) by
h(z) we obtain

9(z) .

f(2) = p(2) + ha) (9.2)

where p(z), g(z), and h(z) are all polynomials in z and degg(z) < degh(z). We can assume
that h(0) 6 0, sinceif that were not the case,we would have g(0) = 0 (as in the opposite case
f (z) would not be a power seriesin z, but would have terms such asz * or z 2) and we could

cancela common factor of z from g(z) and h(z). Therefore, if d = degh(z), we can write

0 )
mj

hz)=h0 1 = (9.3)
j=1 4
wherez;, 1 ] d® are the distinct roots of h(z) = 0, z; has multiplicit y m; 1, and

m; = d. Hencewe nd [[[7], POY that for certain constarts cjx ,

xR

- Giik
f(z) = p(2)+ Yz E———
j=1 k=1 (1 z=3)"
X R X h+k 1
= p(z)+ Cik -I: L 2"z (9.4)
j=1 k=1 h=0
Thus <
J' h+k 1
an = [2"]p(z) + Gk 4 & (9.5)
j=1 k=1
Whenm; = 1,
__93) .
. : 9.6
Gi1 z ho(zj) (9-6)

and explicit formulas for the cjx whenm; > 1 can alsobe derived [[L7]], but are unwieldy and

seldomused.

Example 9.1. Fibonaci numbers. As was noted in Example .3,

R
F(z) = Fnz" =

rE—
=0 1 z z

Now

hz) =1 z 22=(@1+ Y20 2z); (9.7)
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where = (1+ 52)=2is the goldenratio. Therefore

1 1 1
F(Z)_p_é 1 z 1+ 1z

(9.8)

and forn 0,

Fa=[2"F(@)=5"2(" ( )" (9.9)

The partial fraction expansion(P.4) shaws that the rst-order asymptotics of sequencea,
satisfying a linear recurrenceof the form (f.30) are determined by the smallest zerosof the
characteristic polynomial h(z). The full asymptotic expansionis given by (P.9), and involves
all the zeros. In practice, using (P.9) presens somedi culties, in that multiplicities of zeros
are not always easyto determine, and the coe cien ts cjx are often even harder to deal with.
Eventually, for large n, their in uence becomesnegligible, but when uniform estimates are

required they preser a problem. In sudc casesthe following theorem is often useful.

Theorem 9.1. Suppsethat f (z) = g(z)=h(z), where g(z) and h(z) are polynomials, h(0) 6
0, degg(z) < degh(z), and that the only zemws of h(z) in jzj < R are 3;:::; k, each of
multiplicity 1. Suppsefurther that

maxjf (z)j W ; (9.10)
jzj=R
andthat R j jj forsome >0andl1l | k. Then
[2"]f (2) + 0 WR "+ R jg()=hY )i (9.11)

o !

j=1

Theorem P is derived using methods of complex variables, and a proof is sketched in

h(z) in adisk jzj < R. In general,the zerolocation problem is not a seriousonein enumeration
problems. Usually there is a single positive real zerothat is closerto the origin than any other,
it can be located accurately by simple methods, and R is chosensothat jzj < R enclosesonly

that zero.

Example 9.2. Sejuenes with forbidden subbl@ks. We cortinue with the problem preseried

in Examplesf.4 and f.§. Both Fa(z) and Ga(z) have as denominators
h(z) = z+ (1 22)Ca(2) ; (9.12)
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which is a polynomial of degreeexactly k. Later, in Example we will shaw that for k 9,
h(z) hasexactly onezero injzj 0.6, and that for jzj = 0:55, jh(z)j 1=100. Furthermore,
by Example f.], ! 1=2ask! 1. Onjzj = 0:55,

iFa(z)] 100 (0:55) : (9.13)

TheoremP.] then shows, for example,that for n > k ko,

[Z"Fa(z) + % 100(055)¢ " + 40(0:55) "jhq )j *
(9.14)
50(0:55) " :
sinceby Example .1, ask! 1,
h{)=k*1t 2CA()+ (@ 2)CR() 2Ca( ) t (9.15)

The estimate (P-19), when combined with the expansionsof Example .7 gives accurate
approximations for p,, the probability that A doesnot appear as a block among the rst n

coin tosses.We have

2 "[2"|F2(2)
= 2"Ca() " Hh%)) *+ O(exp( 0:0)) :

Pn
(9.16)

We now estimate hq ) as before,in (P.13), but more carefully, putting in the approximation

for from Example[p.]. We nd that

hq )= 1+ ok2 X ; (9.17)
and
N = 2"exp( N(2XCa(1=2)) 1+ O(nk2 %)) : (9.18)
Therefore
Pn = exp( n(2XCa(1=2)) 1+ O(nk2 %)) + O(exp( n=12)): (9.19)

This shows that p, has a sharp transition. It is closeto 1 for n = 0o(2K), and then, as
n increasesthrough 2%, drops rapidly to 0. (The behavior on the two sidesof 2K is not
symmetric, as the drop towards 0 beyond 2% is much faster than the increasestowards 1
on the other side.) For further results and applications of such estimates, see[[80, [[8]).
Estimates such as (P.19) yield results sharper than those of Example f.§. They also prove (see
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Example that the expected lengths of the longest run of 0's in a random sequenceof
length nislog, n + u(log,n) + o(1) asn! 1 , whereu(x) is a cortinuous function that is not
constart and satis es u(x + 1) = u(x). (Seealsothe discussionof carry propagation in [P3d.)
For other methods and results in this area, see[[Lq].

Inhomogeneousrecurrenceswith constart coe cien ts, say,

xd
ah = Gap i+hby n d; (9.20)
i=1

are not covered by the techniques discussedabove. One can still use the basic generating
function approach to derive the ordinary generatingfunction of a,,, but this time it is in terms
of the ordinary generatingfunction of b,. If b, doesnot grow too rapidly, the \subtraction of
singularities” method of Section 10.2 can be usedto derive the asymptotics of a,, in a form

similar to that given by (P.29).

9.2. Linear recurrences with varying coe cien ts

Linear recurrenceswith constart coe cien ts have a nice and completetheory. That is no
longer the casewhen one allows coe cien ts that vary with the index. This is not a fault of
mathematicians in not working hard enoughto derive elegan results, but re ects the much
more complicated behavior that can occur. The simplest caseis when the recurrence has a

nite number of terms, and the coe cien ts are polynomials in n.

Example 9.3. Two-sidad geneanlized Fibonaai sejuenes. Let t,, be the number of integer

one or more contiguous terms immediately to its right, and ead a; is likewisethe sum of one

or more cortiguous terms immediately to its left. It wasshawvn in [[2{] that t; = t, = 1 and

that
ther = 2nt, (N 1)%t, 1 for n 2: (9.21)
If we let
* otz ! 9.22
t = .
(2) G (9.22)

be a modi ed exponertial generating function, then the recurrence(P.2]) shaws that

Y21 2% t@@2 z)=1: (9.23)
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Standard methods for solving ordinary di erential equations, together with the initial condi-

tions t; = t, = 1, then yield the explicit solution
Z,
t(z)=1 2) 'exp( 2H C+ @ w texp( @ w) Hdw ; (9.24)

z

where z,

C=e'!l 1 w) lexp( 1 w) YHdw= 0:148495:: : (9.25)
0

Oncethe explicit formula (P.29) for t(z) is obtained, the methods of Section12 give the estimate
t, C(n Dlie=)Pexp@n¥?)@2n¥™) ' as n! 1 : (9.26)

It is easyto show that the absolute value of
z 1
QA 2)texp(@ 220YH @ w) ltexp( @ w) Hdw (9.27)
z

is small for jzj < 1. Therefore the asymptotics of the t, are determined by the behavior of
coe cien ts of

Cl z) exp(@ 2) Y (9.28)
and that can be obtained easily The estimate (P.26) then follows.

To seejust how di erent the behavior of linear recurrenceswith polynomial coe cien ts can
be from thosewith constart coe cien ts, comparethe behavior of the sequencesn Example P.3
above and Example P-4 (given belon). The existenceof sudh di erences should not be too
surprising, sinceafter all eventhe rst order recurrencea, = na, 1 forn 2,a; = 1, hasthe
obvious solution a, = n!, which is not at all like the solutionsto constart coe cien t recurrences.
Howewer, when a, = na, i1, a simple change of variables, namely a, = b,n!, transforms this
recurrenceinto the trivial oneof by, = b, 1 = = Iy = 1for all n. Sud rescalingis among
the most fruitful methods for dealing with nonlinear recurrences,even though it is seldomas
simple asfor a, = n!.
Example P.3 is typical in that a sequencesatisfying a linear recurrenceof the form
X
an = g(May j; n r; (9.29)
j=1
wherer is xed and the ¢ (n) are rational functions (a P-recursive sequencen the notation
of Section 6.3) can always be transformed into a di erential equation for a generating func-

tion. Whether anything can be done with that generating function depends strongly on the
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recurrenceand the form of the generating function. Example P-3is atypical in that there is an
explicit solution to the di erential equation. Further, this explicit solution is a nice analytic
function. This is due to the special choice of the form of the generating function. An expo-
nertial generating function seemsnatural to usein that example, sincethe recurrence(P.2J)
shovs immediately that t, (2n 2)(2n 4):::2= 2" Y(n 1)!, and a slightly more involved
induction provesthat t, grows at least as fast as a factorial. If we tried to use an ordinary
generating function 2

u(z) = thz" ; (9.30)
n=1

then the recurrence(P.2]) would yield the di erential equation
Z2u0%2) + 22u2)+ @ 2Du(z) =z Z?; (9.31)

which is not astractable. (This wasto be expected, sinceu(z) is only a formal power series.)
Evenwhen a good choice of generatingfunction doesyield an analytic function, the di erential
equation that results may be hard to solve. (One can always nd a generating function that
is analytic, but the structure of the problem may not be re ected in the resulting di erential
equation, and there may not be anything nice about it.)

There is an extensiwe literature on analytic solutions of dierential equations
(cf. [RO% po% B73)), but it is not easyto apply in general. Singularities of
analytic functions that satisfy linear di erential equations with analytic coe cien ts are usu-
ally of only a few basic forms, and so the methods of Sections11 and 12 su ce to determine
the asymptotic behavior of the coe cien ts. The dicult y is in locating the singularities and
determining their nature. We refer to [P0§, P07, B6% for methods for dealing with
this di cult vy, sincethey are involved and so far have beenseldomusedin combinatorial enu-
meration. There will be somefurther discussionof di erential equationsin Section 15.3.

Someaspects of the theory of linear recurrenceswith constart coe cien ts do carry over
to the caseof varying coe cien ts, even when the coe cien ts are not rational functions. For
example, there will in general be r linearly independert solutions to the recurrence (P.29
(corresponding to the dierent starting conditions). Also, if a solution a, has the property

that an+1 =a, tendsto alimit asn! 1 ,then 1= isalimit of zerosof
X .
1 G (n)Z ; (9.32)
j=1
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and therefore is often a root of
X .
1 Ili{n G(n) Z: (9.33)
j=1 n:
Whether there are exactly r linearly independert solutions is a di cult problem. Extensive
researtr was done on this topic 1920'sand 1930's [}, P9], culminating in the work of Birkho
and Trjitzinsky [E1, B2, B3, B61. This work appliesto recurrencesof the form (B.29 where

the ¢ (n) have Poincare asymptotic expansions

g(n) nk*fgo+ gan K+ gon K+ g oas n! 1 (9.34)

wherethe k; and k areintegersand ¢;;o 6 0if ¢ (n) is not identically O for all n. It follows from
this work that solutionsto the recurrenceare expressibleaslinear combinations of elemeris of
the form

(n)Pexp(P (n*™)n (logn)" ; (9.35)

where h; m; p, and g are integers,P (z) a polynomial, and a complex number. An exposition
of this theory and how it appliesto enumeration hasbeengiven by Wimp and Zeilberger [B&4.
(There is a slight complication in that most of the literature cited above is concernedwith
recurrencesfor functions of a real argumert, not sequencesbut this is not a major di cult y.)
There is still a problem in identifying which linear combination provides the derived solution.
Wimp and Zeilberger point out that it is usually easyto shaw that the largest of the terms
of the form (P-39) doesshow up with a nonzerocoe cien t, and so determinesthe asymptotics
of a5 up to a multiplicativ e constart. However, the Birkho -T rjitzinsky method doesnot in
generalprovide any technigues for determining that constart.

The major objection to the useof the Birkho -T rjitzinsky results is that they may not be
rigorous, since gaps are allegedto exist in the complicated proofs [P17, B83. Furthermore, in
almost all combinatorial erumeration applications the coe cien ts are rational, and soone can
usethe theory of analytic di erential equations.

When there is no way to avoid linear recurrenceswith coe cien ts that vary but are not
rational, one can sometimesusethe work of Kooman [P43 P44, which developsthe theory of

secondorder linear recurrenceswith almost-constart coe cien ts.

Example 9.4. An oscillating sequene. Let

Xon (k.
k ki’

an =
k=0

n=0;1:::: (9.36)
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Then a, satis es the linear recurrence
2 1
an+2 2 ﬁ an+1 + l ﬁ an = 0, n 0 . (937)
The methods of can be usedto show that for someconstarts ¢ and
a, = cn ¥sin@n'™?+ )+on ¥ as n! 1 ; (9.38)

which is a much more preciseestimate than the crude one mentioned in Example
Another, in someways preferable method for obtaining asymptotic expansionsfor a, is

mertioned in Example [Z.§ It is basedon an explicit form for the generating function of

an, f(2) = P anz". An interchange of orders of summation (easily justied for jzj small, say

jzj < 1=2) shows that

f(z) = (k') K z"
k=0 " n=k
Xy & ! z
o K@ z)k+1 1 2% 13 (9.39)

The saddle point method can then be applied to obtain asymptotic expansionsfor ap.

9.3. Linear recurrences in several variables

Linear recurrencesin seeral variables that have constart coe cien ts can be attacked by

methods similar to those usedin a single variable. If we have

xd xd
i=0 i=0

i+j>0

for m;n d, say, then the generating function

X X
f(x;y) = amn XMy" (9.41)

m=0 n=0
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satis es the r&lation

1
f(X;Y)%l @ Gi;j Xiyjé = % R amn XMy"
i=0 =0 m=0 n=0
i+j>0 m>d or n>d
(9.42)
X
x X cj X'yl amn XMy" :
=0 i=0 md i
|+J>O orn d i

If ann = 0for0 m<dandn daswellasfor0 n<dandm d(sothat all the am
are fully determinedby ann for0 m<d, 0 n < d), thenf(x;y) is arational function. If
this condition doesnot hold, f (x;y) can be complicated.

The paragraph above showsthat under commonconditions, constart coe cien t recurrences
lead to generating functions that are rational even in seweral variables. Howewer, even when
the rational function is determined, there is no equivalert of partial fraction decomposition to
yield elegart asymptotics of the coe cien ts. Coe cien ts of multiv ariate generating functions
are much harder to handle than those of univariate functions. There are tools (discussedin
Section 13), that are usually adequateto handle rational generating functions, but they are
not simple.

When the coe cien ts of the multiv ariate recurrencesvary, available knowledgeis extremely
limited. Even if the coe cien ts are polynomials, we obtain a partial di erential equation for
the generating function. Sometimesthere are tricks that lead to a simple solution (cf. Exam-

ple [L5.9), but this is not common.
9.4. Nonlinear recurrences

Nonlinear recurrencescomein a great variety of shapes, and the methods that are used
to solve them are diverse, depending on the nature of the problem. This section presens a
sample of the most useful techniquesthat have beendeweloped.

Sometimesa nonlinear recurrencehas a simple solution becauseof a nice algebraic factor-

ization. For example, supposethat zg is any given complex number, and
Zns1 =22 2 for n O: (9.43)
If we set

W= (20+ (25 4)7)=2; (9.44)
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we have zo = w+ w 1, and more generally

zZn=w>+w? for n O: (9.45)

Eq. (P-49) is easily establishedthrough induction. However, this is an exceptionalinstance, and
already recurrencesof the type zn+1 = z2 + ¢ for ¢ a complex constart lead to deepquestions
about the Mandelbrot set and chaotic behavior [P]].

Sincelinear recurrencesare well understood, the bestthat onecanhopefor when confronted
with a nonlinear recurrenceis that it might be reducible to a linear one. This works in many

situations.

Example 9.5. Planted plane trees. Let a,, be the number of planted plane trees with n

nodesand height  h [B4, [L77, and let

ps
An(2) = anhz" : (9.46)
n=0

Sinceatree of height h+ 1 hasaroot and any number of subtrees,ead of height h,

2(L+ An(2) + An(2)%+ )

An+1(2)

z(1 An(2) t: (9.47)
Iterating this recurrence,we obtain a nite cortinued fraction that looks like

z
Anh+1(2) = I : (9.48)
1 ==

The generaltheory of continued functions represerits a corvergen asa quotient of two sequences
satisfying recurrencesinvolving the partial quotients. (For references,see[P1d BI9.) After
playing with this idea, one nds that the substitution

zPn(2)

An(2) = P (2)

(9.49)

gives
Phe1(2) = Pn(z) zPh 1(2); h 2;

where Pyo(z) = 0, P1(z) = 1. This is a linear recurrencewhen we regard z as xed, and sothe

theory presered beforeleadsto tge explicit represenation °
! I

" h " h=

1+ (1 42)*2 1 (1 4 -

2 2 ;

<

Pn(z) = (1 4z2) ¥ (9.50)

De Bruijn, Knuth, and Rice [54] use this represenation to determine the average height of

plane trees.
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Greeneand Knuth (p. 30 of [[L7]]) note that the cortinued fraction method of replacing a
corvergert by a quotient of elemerts of two sequencesn generalleadsnot to a single sequence
of polynomials like the P (z) of Example P-3, but to two sequencesThis is only slightly harder
to handle, and allows oneto linearize more complicated recurrences.

There are many additional ways to linearize a recurrence. (A small list is given on p. 31 of
[L77.) For example,a purely multiplicativ e relation a, = a2 ,=a, » is transformed into the
linear loga, = 2loga, 1 loga, » by taking logarithms. One of the most fruitful tricks of
this type is taking inverses.Thusa, = a5, 1=(1+ a, 1) is equivalert to

1 1
an an 1

+1; (9.51)

which has the obvious solution a, ! = ao1 + n. (This assumesap 8 1=k forany k2 ™))
Linearization works well, but is limited in applicability. More widely applicable, but pro-

ducing answers that are not as clear, is approximate linearization, where a given nonlinear

recurrenceis closeto a linear one. The following example combines approximate linearization

with bootstrapping.

Example 9.6. A quadatic recurrene. The study of the average height of binary trees in

[137] involvesthe recurrence
ahn=a, 1(1 a, 1) for n 1; (9.52)

with ag = 1=2. The a, are monotone decreasing,sowe try the inversetrick. We nd

1 = l+1+£.
an 11 an 1) an 1 1 ay 1

1
— 9.53
. (9.53)

Iterating this recurrence (but applying it only to the rst term on the right-hand side of

Eqg. (B-53) we obtain

i _ 1 + 0+ an 2 + an 1
aﬂ an2 1 a.nz l a.nl
X 1 .
- Lins 1aJ (9.54)
j=0 &
9(1
= n+2+ &
Cl



Equation (P.5) shansthat a, > n, soa, < 1=n. Applying this bound to agfor2 j n 1
in the sum on the right-hand side of Eq. (B.54), we nd that

n a,! n+ O(logn): (9.55)

When we substitute this into (P.54), we nd that a,' = n+ logn + o(logn), and further

iterations produce even more accurate estimates.

Approximate linearization alsoworks well for somerapidly growing sequences.
Example 9.7. Doubly expnential seqguen@s. Many recurrencesare of the form
ans1 = @5 + by ; (9.56)

where by, is much smaller than aﬁ (and may even dependonthe a, fork n, asin b, = a, or
bh = an 1). Aho and Sloane[f] found that surprisingly simple solutionsto suc recurrencescan
often be found. The basicideais to reduceto approximate linearization by taking logarithms.

We nd that if ag is the given initial value, and a, > 0 for all n, then the transformation

u, = logay ; (9.57)
n = log(l+ bya,?) ; (9.58)
reduces(P.59 to
Up+1 = 2up+ n; n O: (9.59)
Therefore
Uph = n1t2Up 1= pn1t+t2p2+4u,

X 1
j=1
= 2%(Ug+ o=2+ =4+ + o 1=2"): (9.60)

If we assumethat the  are small, then

p3
= up+ 2 k1 (9.61)
k=0
exists, and
s
fm=Uu, 2" =2 2 KL (9.62)
k=n
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If the y are sucien tly small, the dierence ry, in (P:6) will be small, and
an = exp(up) = exp(2” ) : (9.63)

The expression(P-63) might not seemsatisfactory, sinceboth a, and r,, are expressedn terms
of all the ay, for k < n and for k n. The point of (B.63 is that for many recurrences,r
is negligibly small, while is given by the rapidly corvergert series(P.63), sothat only the
rst few a, are neededto obtain a good estimate for the asymptotic behavior of a,. We next

discussa particularly elegan case.

Supposethat a, landjb,j< az=4foralln 0. Thenan+1 @, andj n+1j | nj for
n 0,andsojrnj | nj. Hence
anexp(j nj) exp(2’ ) anexp( nj) (9.64)
and since
exp( nj) 1+ jmja,® < 1+ (4an) b
(9.65)

exp(j nj) 1+ (4an) H 1t 1 (3an) *;
we nd that
jan  exp(@ )j< (2a,) ' 1=2: (9.66)

If a, is an integer, then we can assertthat it is the closestinteger to exp(2" ).

The restriction jbhj < a,=4 is sewere. The basic method applies even without it, and the
expansion(P.63 is valid, for example,if weonly requirethat j n+1j j njforn ng. However,
we will not in generalobtain results as nice as (P-6§) if we only imposetheseweak conditions.

The method outlined above can be applied to recurrencesthat appear to be of a slightly
dierent form. Sometimesonly a trivial transformation is required. For example, Golomb's
nonlinear recurrence,

an+1 = @ar  ap+b; ag=1; (9.67)

for b a constant, is easily seento be equivalent to

an+1 = (@n bay+b; ag=1, a;= b+ 1: (9.68)
The substitution
Xn=an b2 (9.69)
transforms (P.69 into
Xn+1 = X2+ (2 bb=; (9.70)
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which is of the form treated above. (If the x, are integers, the inequality (P-6§) with x,
replacing a, might not apply to the x, becausethe condition j(2 b)b=j < jxxj=4 might fail
for somek. The trick to usehereis to start the recurrencewith somexy, sa xy,, sothat the
condition j(2 b)b=j < jx«j=4 appliesfor k ko. The new for which (P-6§) holds will then
be de ned in terms of Xy ; Xk,+1;::: .)

In some situations the results preseried above cannot be applied, but the basic method

can still be extended. That is the casefor the recurrence
an+1 = apnap 1+ 1 ag a1 1 (9.71)
of [l]. The result is that a, is the nearestinteger to
Fn Fnoa- (9.72)

where and are positive constarts, and the Fy are the Fibonacci numbers. What matters
is that the recurrenceleadsto doubly exponertial (and regular) growth of a,. Example [[5.3
shaws how this principle can be applied even when the a,, are not numbers, but polynomials

whosecoe cien ts needto be estimated.
9.5. Quasi-linear recurrences

This section mertions somemethods and results for studying recurrencesthat have lin-
earity properties, but are not linear. The most important of them are recurrencesinvolving
minimization or maximization. They arise frequertly in problemsthat use dynamic program-
ming approachesand in divide and conquermethods. An important example, treated in [[[47,

is that of a sequencd ,, givenby fg = 1 and
fn+l = On+r + 0rr?(in (f g+ fh k) forn O; (9.73)
n

where ; > 0, and g, is somegiven sequence.Fredman and Knuth showved that if g, = 0 for

n land + < 1,then

1+1=

fn cn forsome c=c(; )>0; (9.74)

where is the solution to

+ =1 (9.75)
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They proved that r]I!i{n fan 1 ¥ existsif and only if (log )=(log ) is irrational. They also
preseried analysesof this recurrencefor + 1, aswell as of sewral recurrencesthat have
dierent g,.

The value of the Fredman-Knuth paper is lessin the preciseresults they obtain for seweral
recurrencesof the type (P.73 than in the methods they dewelop, which allow one to analyze
related problems. A crucial role in their approad is played by the obsenation that for the g,
they consider, the minimum in (B.73 can be located rather precisely The conditions for such
localization are applicable to many other sequencess well.

Further work on the recurrence (P.73 was done by Kapoor and Reingold [P2{], who ob-
tained a complete solution under certain conditions. Their solution is complicated, expressed
in terms of the weighted external path length of a binary tree. It is su cien tly explicit, though,
to give a complete picture of the cortinuity, cornvexity, and oscillation propertiesof f ,. In some
casestheir solution simpli es dramatically.

Another classof quasi-linear recurrencesinvolves the greatestinteger function. Following

[104], considerrecurrencesof the form

x3
a0)=1; a(n) = ria(lbn=mic); n 1; (9.76)
i=1
wherer; > 0 for all i, and the m; are integers,m; 2 for all i. Let > 0 be the (unique)
solution to
X
rim, =1: (9.77)
i=1
If there is an integer d and integersu; such that m; = d“ for1 i s, thenlim a(n)n as
n! 1 doesnot exist, but the limit of a(dX)d ¥ ask! 1 doesexist. If there is no suc d,
then the limit of a(n)n asn! 1 doesexist, and can readily be computed. For example,
when

a(n) = a(bn=2c) + a(bn=3c) + a(bn=6¢c) for n 1;

this limit is 12(log432) 1. Convergenceto the limit is extremely slow, asis shown in [L04. The
method of proof usedin [[L04] is basedon renewal theory. Seweral other methods for dealing
with recurrencesof the type (B.78 are mentioned in [[[04] and the referenceslisted in that

paper. There are connectionsto other recurrencesthat are linear in two variables, suc as

b(m;n)=bm;n 1)+ bm Ln)+bm 21n 1) mn 1: (9.78)
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Consideran in nite sequenceof integers2 a; < a; < ::: suc that

pS
a 'loga < 1 ;
j=1
and de ne c(0) = 0,
pS
c(n) = c(n=gc)+1, n 1: (9.79)
j=1
If is the (unique) positive solution to

then Erdes [[L0J shawved that
c¢n) cn as n! 1 (9.80)

for a positive constart c. Although the recurrence(P-79 is similar to that of Eq. (P.79), the
results are dierent (no oscillations can occur for a recurrencegiven by Eq. (P:79) and the
methods are dissimilar.

Karp [E2]] considersrecurrencesof the type T (x) = a(x)+ T (h(x)), wherex is anonnegative
real variable, a(x) 0, and h(x) is a random variable, 0 h(x) x, with m(x) being the
expectation of h(x). Sud recurrencesarise frequertly in the analysis of algorithms, and Karp
provesse\eral theoremsthat bound the probability that T (x) is large. For example, he obtains
the following result.

Theorem 9.2. Suppsethat a(x) is a nondecreasing continuous function that is strictly in-

+

creasingon fx : a(x) > 0g, and m(x) is a continuous function. Then for all x 2 and

k2 *,
Prob (T(x) u(x)+ ka(x)) (m(x)=x)¥ ;
where u(x) is the unique least nonnegative solution to the equation u(x) = a(x) + u(m(x)).

Another result, proved in [[L74], is the following estimate.

Theorem 9.3. Supmsethatr;a;;:::;ay 2 * andthatb 0. For n> N, de ne

b+ay, 1+a, 2+ +an k

=1+ . .
8 =1+ max, k+r (9-81)
Then
a, (n=r)*? as n! 1 : (9.82)

TheoremP_3 is proved by an involved induction on the behavior of the a,.
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10. Analytic generating functions

Combinatorialists use recurrence, geneating functions, and such transformations as the
Vandermonde convolution; others, to my horror, use contour integrals, di er ential equations,

and other resources of mathematial analysis.

J. Riordan [B3{]

The use of analytic methods in conbinatorics did horrify Riordan. They are widespread,
though, becauseof their utilit y, which even Riordan could not deny. About half of this chapter

is dewoted to such methods, asthey are extremely exible and give very preciseestimates.

10.1. Intro duction and general estimates

This section serwes as an introduction to most of the remaining sections of the paper,
which are concernedlargely with the use of methods of complex variables in asymptotics.
Many of the results to be preseried later can be usedwith little or no knowledge of analytic
functions. Howewer, even someslight knowledge of complex analysis is helpful in getting an
understanding of the scope and limitations of the methods to be discussed. There are many
textb ooks on analytic functions, such as [P03, B64]. This chapter assumesthat the reader
has someknowledge of this eld, but not a deepone. It reviewsthe conceptsthat are most
relevant in asymptotic enumeration, and how they a ect the estimatesthat canbe obtained. It
is not a generalintro duction to the subject of complex analysis, and the choicesof topics, their
ordering, and the decisionof whento include proofs were all made with the goal of illustrating
how to usecomplex analysisin asymptotics.

There are seweral de nitions of analytic functions, all equivalent. For our purposes,it will

be most conveniert to call a function f (z) of onecomplexvariable analytic in a connectedopen

setS if in a small neighborhood of every point w 2 S, f (z) has an expansionas a power
series
R
f(z)= an(z wW)"; an = an(w); (10.1)
n=0

that corverges. Practically all the functions encourtered in asymptotic enumeration that are
analytic are analytic in a disk about the origin. A necessaryand su cien t condition for f (2),
de ned by a power series(E.J), to be analytic in a neighborhood of the origin is that ja,j C"
for someconstart C > 0. Therefore there is an e ectiv e dichotomy, with common generating

functions either not corverging near 0 and being only formal power series,or elsecorverging
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and being analytic.

A function f (2) is called meromorphic in S if it is analytic in S except at a (countable
isolated) subsetS® S, and in a small neighborhood of every w 2 S2 f (z) has an expansion
of the form

3
f(z) = an(z wW"; ay=an(w): (10.2)
n= N(w)

Thus meromorphic functions can have poles, but nothing more. Alternativ ely, a function is
meromorphicin S if and only if it is the quotient of two functions analytic in S. In particular,
z ° is meromorphic throughout the complex plane, but sin(1=2) is not. In general, functions
given by nice expressionsare analytic away from obvious pathological points, since addition,
multiplication, division, and composition of analytic functions usually yield analytic or mero-
morphic functions in the proper domains. Thus sin(1=2) is analytic throughout nf0Og, and
sois z °, while exp(1=(1 z)) is analytic throughout nf1g, but is not meromorphic because
of the essetial singularity at z = 1. Not all functions that might seemsmooth are analytic,
though, as neither f (z) = z (z denoting the complex conjugate of z) nor f (z) = jzj is analytic
anywhere. The smoothnesscondition imposedby ([L0.J) is very stringent.

Analytic cortinuation is animportant concept. A function f (z) may bede ned and analytic
in S, but there may be another function g(z) that is analytic in S° S and sud that g(z) =
f(z) for z 2 S. In that casewe sa that g(z) provides an analytic cortinuation of f (z) to S°

and it is a theorem that this extensionis unigue. A simple exampleis provided by

"= —— (10.3)

The power serieson the left side corvergesonly for jzj < 1, and de nes an analytic function
there. On the other hand, (1 z) ! is analytic throughout nf1g, and soprovides an analytic
corntinuation for the power series. This is a common phenomenonin asymptotic enumeration.
Typically a generatingfunction will corvergein a disk jzj < r, will have a singularity at r, but

will be continuable to a region of the form
fz:jzj<r+ ;jArg(z r)j> =2 ¢ (10.4)

for ; > 0. When this happens,it canbe exploited to provide better or easierestimatesof the
coe cien ts, asis shown in Section11.1. That section explains the reasonswhy cortin uation

to a region of the form ([L0.9) is so useful.

88



If f () isanalytic in S, z is onthe boundary of S, but f (z) cannot be analytically continued
to a neighborhood of z, we say that z is a singularity of f (z). Isolated singularities that are
not polesare called essetial, sothat z = 1 is an essetial singularity of exp(1=(1 z)), but
not of 1=(1 z). (Note that z = 1 is an essetial singularity of f (z) = (1 z)'™ even though
f (1) = 0.) Throughout the rest of this chapter we will often refer to large singularities and
small singularities. These are not precise concepts,and are meart only to indicate how fast
the function f (z) growsasz ! zg, wherezg is a singularity. If zo = 1, we say that (1 z)'72,
log(1 2), (1 2z) 19havesmall singularities, sincejf (z)j either decrease®r grows at most like
anegative powerof j1 zjasz! 1. Onthe other hand, exp(1=(1 z)) orexp((1 z) *®) will
be said to have large singularities. Note that forz= 1+iy,y 2 , exp(1=1 2)) is bounded,
so the choice of path along which the singularity is approaded is important. In determining
the size of a singularity zg, we will usually be concernedwith real zg and generating functions
f (z) with nonnegative coe cien ts, and then usually will needto look only at z real, z! z,.
When the function f (z) is entire (that is, analytic throughout ), we will say that 1 is a
singularity of f (z) (unlessf (z) is a constart), and will use the large vs. small singularity
classi cation depending on how fast f (z) grows asjzj ! 1 . The distinction betweensmall
and large singularities is important in asymptotics becausedi erent methods are usedin the
two cases.

A simple closed cortour  in the complex plane is given by a cortinuous mapping
[0;1]! with the propertiesthat (0) = (1), andthat (s) 6 (t) whenewer0 s<t 1
and either s 6 0 ort 6 1. Intuitively, is a closedpath in the complex plane that doesnot
intersectitself. For most applications that will be madein this chapter, simple closedcontours

will consistof line segmeits and sectionsof circles. For sud cortours it is easyto prove that
the complex plane is divided by the contour into two connectedcomponerts, the inside and
the outside of the curve. This result is true for all simple closedcurves by the Jordan curve
theorem, but this result is surprisingly hard to prove.

In asymptotic enumeration, the basicresult about analytic functions is the Caudhy integral

formula for their coe cien ts.

Theorem 10.1. If f (2) is analytic in an open set S containing 0, and

R
f(z)=  anz" (10.5)
n=0
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in a neightorhood of O, then for any n 0,
Z
an=[2"f@=2i) ' f@z" dz; (10.6)

where is any simple closal contour in S that contains the origin inside it and is positively

oriented (i.e., traversal in counterclockwise direction).

An obvious question is why should one use the integral formula ([L0-9) to determine the
coe cien t a, of f (z). After all, the series([l0.}) shaws that

dl’l
n'a, = Hf (2) o : (20.7)

Unfortunately the dierentiation involved in ([L0.]) is hard to cortrol. Derivatives involve
taking limits, and soeven small changesin a function can produce huge changesin derivatives,
especially high order ones. The special properties of analytic functions are not re ected in the
formula (L0-]), and for nonanalytic functions there is little that can be done. On the other
hand, Caudhy's integral formula ([L0.9) doesuse special properties of analytic functions, which
allow the determination of the coe cien ts of f (z) from the values of f (z) along any closed
path. This determination involvesintegration, sothat even coarseinformation about the size
of f (z) can be usedwith it. The analytic methods that will be outlined exploit the freedom of
choice of the contour of integration to relate the behavior of the coe cien ts to the behavior of
the function near just one or sometimesa few points.

If the power series([L0.%) corvergesfor jzj < R, and for the cortour  we choosea circle
z=rexp( ), 0 2 ,0< r < R, then the validity of ([[0.6) is easily cheded by direct
computation, sincethe power seriescorvergesabsolutely and uniformly soonecan interchange
integration and summation. The strength of Cauchy's formula is in the freedomto choosethe
contour in dierent ways. This freedom yields most of the powerful results to be discussed
in the following sections,and later in this section we will outline how this is achieved. First
we discusssome simple applications of Theorem obtained by choosing to be a circle

certered at the origin.

Theorem 10.2. If f(z) is analytic in jzj < R, thenfor anyr with0<r < Randanyn?2 Z,
n 0,
ilZ"1f (2 r "maxjf (2)j : (10.8)
izj=r
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The choiceof in Theorem [[0.] to be the circle of radius r gives Theorem If f(2),
de ned by (L0.}), hasa, O for all n, then

- - X‘ - .n - -
if (2)j anjzj" = f(jzj)
n=0

and therefore we obtain Lemma B.]] as an easycorollary to Theorem [[0.7 The advantage of
Theorem over Lemma B.] is that there is no requiremert that a, 0. The bound of
Theorem[L0.2 is usually weaker than the correct value by a small multiplicativ e factor suc as
n=,

If f(z) is analytic in jzj < R, then for any > 0, f(z) is boundedin jzj < R , and
so Theorem [L0.2 shaws that a, = [z"]f (z) satises japj = O(R ) "). On the other hand,
if janj = O(S "), then the power series([L0.J) corvergesfor jzj < S and de nes an analytic
function in that disk. Thus we obtain the easyresult that if f (z) is analytic in adisk jzj < R
but in no larger disk, then

limsupja,j*" =R !: (10.9)

Example 10.1. Oscillating sequen®. Consider the sequence,discussedalready in Exam-
ple P-4, given by

n (1.
k ki’

an =
k=0

n==01:::: (10.10)

The maximal term in the sum ([L0.10) is of order roughly exp(cn'*?), so a, cannot be much
larger. Howewer, the sum ([L0.1() doesnot show that a, cannot be extremely small. Could
we have ja,j exp( n) for all n, say? That this is impossibleis obvious from (P:39, though,
by the argumert above. The generating function f (z), given by Eq. (P-39, is analytic in
jzj < 1, but has an essetial singularity at z = 1, so we immediately seethat for any > 0,
janj < (1 + )" for all suciently large n, and that ja,j > (1 )" for innitely many n.
(More powerful methods for dealing with analytic generating functions, such as the saddle
point method to be discussedin Section 12, can be usedto obtain the asymptotic relation for

an givenin Example P-4)

There is substartial literature dealing with the growth rate of coe cien ts of analytic func-
tions. The book of Evgrafov [[L1{] is a good referencefor theseresults. Howewer, the estimates

preseried there are not too useful for us, sincethey apply to wide classesf often pathological
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functions. In combinatorial enumeration we usually encourter much tamer generating func-
tions for which the crude bounds of are obvious or easyto derive. Instead, we needto
usethe tractable nature of the functions we encourter to obtain much more delicate estimates.
The basic result, derived earlier, is that the power seriescoe cien ts a, of a generating
function f (z), de ned by ([0.5), grow in absolute value roughly like R ", if f (z) is analytic
in jzj < R. A basicresult about analytic functions says that if the Taylor series([[0.5) of f (z)
corvergesfor jzj < R but for every > 0 thereis az with jzj = R+ sud that the series
(L0 divergesat z, then f (z) has a singularity z with jzj = R. Thusthe exponertial growth
rate of the a, is determined by the distance from the origin of the nearestsingularity of f (z),
with closesingularities giving large coe cien ts. Sometimesit is not obvious what R is. When
the coe cien ts of f (z) are positive, asis common in conmbinatorial enumeration and analysis

of algorithms, there is a useful theorem of Pringsheim [B64:

Theorem 10.3. Supmsethat f (z) is de ned by Eq. (L0.5) with a, Ofor alln ng, and
that the series ([L0.9) for f (z) convemgesfor jzj < R but not for any jzj > R. Thenz= R is a
singularity of f (z).

As we remarked above, the exponertial growth rate of the a,, is determined by the distance
from the origin of the nearestsingularity. Theorem [[0.3says that if the coe cien ts a, are non-
negative, it su ces to look along the positive real axis to determine the radius of convergence
R, which is alsothe desireddistanceto the singularity. There can be other singularities at the
samedistance from the origin (for example,f (z) = (1 z%) ! hassingularites at z = 1),
but Theorem [L0.3 guararteesthat none are closerto 0 than the positive real one.

Sincethe singularities of smallestabsolutevalue of a generatingfunction exert the dominant
in uence on the asymptotics of the corresponding sequence,they are called the dominant
singularities. In the most common casethere is just onedominant singularity, and it is almost
always real. Howewver, we will sometimesspeak of a large set of singularities (such as the k
rst order polesin Theorem P.], which are at di erent distancesfrom the origin) asdominant
ones. This allows somedominant singularities to be more in uen tial than others.

Many techniques, including the elemertary methods of Section 8, obtain bounds for sum-
matory functions of coe cien ts even when they cannot estimate the individual coe cien ts.
These methods succeedargely becausethey create a dominant singularity. If f (z) = P fnz"

corvergesfor jzj < 1, divergesfor jzj > 1, and hasf,, 0, then the singularity at z = 1 is at
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least as large as any other. However, there could be other singularities on jzj = 1 that are just
as large. (This holds for the functions f 5(z) and f3(z) de ned by (B-2) and (B.4).) When we

P
considerthe generating function of |, fi, though, we nd that
I

X x
h(z) = fr 2"=@1 2 f(2); (10.11)
n=0 k=0

so that h(z) has a singularity at z = 1 that is much larger than any other one. That often
provides enough of an extra boost to push through the necessarytechnical details of the
estimates.

Most generatingfunctions f (z) have their coe cien ts a, = [z"]f (2) real. If f (z) is analytic

at 0, and hasreal coe cien ts, then f (z) satis es the re ection principle,
f(z)=f(2): (10.12)

This implies that zerosand singularities of f (z) comein complex conjugate pairs.

The successof analytic methods in asymptotics comeslargely from the use of Caucy's
formula ([L0.§) to estimate accurately the coe cien ts a,. At a more basic level, this success
comesbecausethe behavior of an analytic function f (z) re ects preciselythe behavior of the
coe cien ts a,. In the discussionof elemerary methods in Section 8, we pointed out that the
behavior of a generating function for real argumenrts does not distinguish between functions
with di erent coe cien ts. For example,the functions f 1(z) and f 3(z) de ned by (B-1) and (B9
are almost indistinguishable for z 2 . Howewer, they di er substartially in their behavior for
complex z. The function f1(z) hasonly a rst order pole at z = 1 and no other singularities,
while f 3(z) haspolesat z = 1, exp(2 i=3), and exp(4 i=3). The three polesat the three cubic
roots of unity re ect the modulo 3 periodicity of the coe cien ts of f 3(z). This is a general
phenomenon,and in the next section we sketch the general principle that underliesit. (The
degreeto which coe cien ts of an analytic function determine the behavior at the singularities
is the subject of Abelian theorems. We will not needto delve into this subject to its full depth.
For referencessee[[L90, B64].)

Analytic methods are extremely powerful, and when they apply, they often yield estimates
of unparalleled precision. Howewer, there are tricky situations where analytic methods seem

asif they ought to apply, but don't (at least not easily), whereassimpler approaceswork.
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Example 10.2. Setpartitions with distinct block sizes. Let a, be the number of partitions of

a set of n elemerts into blocks of distinct sizes.Then a, = b, n!, whereh, = [z"]f (z), with
Y ZK
f(z) = 1+ W : (10.13)
k=1 '
The function f (z) is ertire and has nonnegative coe cien ts, so it might appear as an ideal
candidate for an application of someof the methods for dealingwith large singularities (such as
the saddlepoint technique) that will be preseried later. However, on circlesjzj = (n+ 1=2)=¢
n2 7, f(z) doesnot vary much, sothere are technical problemsin applying these analytic
methods. On the other hand, combinatorial estimatescan be usedto shav [P33 that the by,

behare in a\regularly irregular" way, sothat, for example,

B(m+1)=2 1 Bnm+y=2 as m! 1 ; (10.14)
bm(m+1):2 mbm(m+:|.):2+1 as m! 1: (10.15)

Theseestimatesare obtained by expanding the product in Eq. (L0.19) and noting that
X 1
by = o (10.16)

r .
1 gg< <kr ki!
ki=n i=

Sincefactorials grow rapidly, the only terms in the sumin ([L0.1 that are signi cant are those

[y

with small kj. The term b,z" for n = m(m + 1)=2 for example, comesalmost ertirely from
the product of z=k!, 1 k m, all other products cortributing an asymptotically negligible

amourt.
10.2. Subtraction of singularities

An important basic tool in asymptotics of coe cien ts of analytic functions is that of
subtraction of singularities. If we wish to estimate [z"]f (z), and we know [z"]g(z), and the
singularities of f (z) g(z) are smaller than those of f (z), then we can usually concludethat
[z")f (z) [z"]g(z) asn! 1 . In practice, given a function f (z), we nd the dominant singu-
larities of f (z) (usually poles), and construct a simple function g(z) with those singularities.

Weillustrate this approac with seweral examples. The basicthemewill recur in other sections.

Example 10.3. Bernoulli numbkers. The Euler-Maclaurin summation formula, introducedin

Section 5.3, involvesthe Bernoulli numbers B, with exponertial generating function

3
f(z2)= Bpn—=
n=0

(10.17)



The denominator exp(z) 1haszerosatO, 2 i, 4 i;:::. The zeroat 0 is canceledby the

zeroof z, sof (z) is analytic for jzj < 2 , but has rst order polesat z= 2 i, 41i;:::.
Consider
. 1
=2 _ _ 10.18
9(z) i TR ( )

Then f (z) g(z) is analytic for jzj < 4 |, so
jZ")(f(z) g@Nj=0(4 )" as n! 1 (10.19)

for every > 0. On the other hand,

0 n odd ;
[z"]0(2) = (10.20)
22 ) " newn:

This gives the leading term asymptotics of B,,. By taking more complicated g(z), we can

subtract more of the singularities of f (z) and obtain more accurate expansionsfor B. It is

even possibleto obtain an exponertially rapidly corvergert seriesfor B,.

Example 10.4. Rational function asymptotics. As another example of the subtraction of
singularities principle, we sketch a proof of Theorem P-1} Supposethat the hypothesesof that

theorem are satis ed. Let

Xk .
W@ Tmha = (1020
Then f (z) u(z) hasno singularities in jzj R, and for jzj = R,
@ u@i f@it+tiu@i W+ jo( §)=h% )i : (10.22)
j=1
Hence,by Theorem[L0.2,
1 X i
[2"](f(z) u@) WR"+ R " jg(;)=hY))i: (10.23)
j=1
On the other hand,
X
[z"u(z) = "t )= ) (10.24)

j=1
The last two estimatesyield Theorem pP-1.
The reader may have noticed that the proof of Theorem P.] presened above does not

depend on f (z) being rational. We have proved the following more generalresult.
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Theorem 10.4. Supmsethat f (z) is meromorphic in an open set containing jzj R, that it
is analytic at z= Oandon jzj = R, and that the only polesof f (z) in jzj< Rareat i;:::; «k,

each of multiplicity 1. Suppse further that

maxjf (z)] W (10.25)
jizi=R
andthat R j jj forsome >0andl1l | K. Then
Xk X
" @+ "t WR "+ R rjj; (10.26)
i=1 j=1

whetee r; is the residueof f (z) at ;.

In the examplesabove, the dominant singularities were separatedfrom other ones,so their
contributions were larger than those of lower order terms by an exponertial factor. Sometimes
the singularity that remains after subtraction of the dominant oneis on the samecircle, and
only slightly smaller. Section 11 preseris methods that deal with some casesof this type, at
least when the singularity is not large. What makes those methods work is the subtraction
of singularities principle. Next we illustrate another application of this principle where the

singularity is large. (The generating function is entire, and sothe singularity is at in nit y.)

Example 10.5. Permutations without longincreasing subsguenes. Let ux(n) bethe number
of permutations of f 1; 2;:::; ng that have no increasingsubsequencef length > k. Logan and
Shepp [E5]] and Vershik and Kerov [B7{] establishedby calculus of variations and conbina-
torics that the averagevalue of the longestincreasingsubsequencén a random permutation is
asymptotic to 2n'=2. Frieze has proved recertly, using probabilistic methods, a stronger
result, namely that almost all permutations have longest increasing subsequence®f length
closeto 2n™2. Here we considerasymptotics of ux(n) for k xed andn! 1 . The Schensted
correspondenceand the hook formula expressug(n) in terms of Young diagrams with k
columns. For k xed, there are few diagrams and their in uence can be estimated explicitly
using Stirling's formula, although Selberg-type integrals are involved and the analysisis com-
plicated. This analysis was done by Regev[B29, who proved more generalresults. Here we

sketch another approad to the asymptotics of ux(n) for k xed. It is basedon a result of

Gessel[[L6]]. If

X u(nyz® |

Uk(2) = - W ;

(10.27)
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then

Uk(2) = det(l; ;j(22)1 ij « (10.28)

wherethe | ,(x) are Besselfunctions (Chapter 9 of [P97]). H. Wilf and the author have noted
that one can obtain the asymptotics of the uy(n) by using known asymptotic results about the
Im(x). Eq. (9.7.1) of [P9]] statesthat for every H 2 7,

X1 |

Im(2) = (2 2) %€ cm;h)z "+ 0O(zj ") ; (10.29)
h=0

where this expansionis valid for jzj! 1 with jArg(z)] 3 =8, say. The ¢(m; h) are explicit
constarts with ¢(m;0) = 1. Let us considerk = 4 to be concrete. Then, taking H = 7 in

(L0229 (higher valuesof H are neededfor larger k) we nd from ([[0.29 that
Ua(2) = €®(3(256 2z%) '+ O(jzj %) for jzj 1: (10.30)

It is alsoknown that I ,( 2) = ( 1)™In(2) and | (2) is relatively small in the angular region

j =2 Arg(z2)j < =8. Therefore U4( z) = U4(z), and one can show that
jUa(2)j = O(jzj *Ua(jz)) (10.31)

for z away from the real axis.
To apply the subtraction of singularities principle, we needan entire function f (z) that is

ewven, is large only near the real axis, and such that forx 2 , x! 1,
f(x) 3(256 %x8) lexp(8x) : (10.32)

The function

f (z) = 3(128 °z%) lcosh(&)

is even and has the desired asymptotic growth, but is not ertire. We correct this defect by

subtracting the cortribution of the poleat z = 0, and let
f(z) = 3(128 ?z%) l(cosh(8z) 1 3222 512*=3 16384°=45 1310728=315): (10.33)

(It is not necessaryto know explicitly the rst 8 terms in the Taylor expansionof cosh8z)

that we wrote down above, asthey do not a ect the nal answer.) With this de nition

jUa(z) f(2)i = Oizj *f(jz})) (10.34)
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uniformly for all zwith jzj 1, say, and soif we apply Cauchy's theoremon the circle jzj = n=4,
say, we nd that

[22"(Us(z) f(2)) = O(n ?"e®16'n 9): (10.35)
(The choice of jzj = n=4 is made to minimize the resulting estimate.) On the other hand, by

Stirling's formula,

[22"1f (2) 3(128 2) 1 ([z2%"*8]cosh(&))

3(128 2) 18"*8 (2n + 8)!

1536 °2n 2"16"e*'n 2 as n! 1 : (10.36)

Comparing ([L0-39) and ([L0.3§), we seethat
ua(n) = (NY?[z22"|Ua(2) (n)21536 °%n 2"16"e¢*"'n 1772

1536 3%2n 216" as n! 1 : (10.37)

Other methods can be applied to Gessel'sgenerating function to obtain asymptotics of
ux(n) for wider rangesof k ([B04]).

The above exampleobtains a good estimate becausehe remainderterm in ([L0.30) is smaller
than the main term by a factor of jzj 1. Had it beensmaller only by a factor of jzj 172, the
resulting estimate would have beenworthless, and it would have been necessaryto obtain a
fuller asymptotic expansionof U4(z) or elseuse smoothnessproperties of the remainder term.
This is due to the phenomenon,mertioned before,that crude absolutevalue estimatesin either
Cauchy's theorem, or the elemernary approacesof Section8, usually losea factor of n=2 when
estimating the n-th coe cien t.

The subtraction of singularities principle canbe applied even whenthe generatingfunctions
seemto be more complicated than those of Example If we considerthe problem of that

example, but with k = 5, then we nd that
Us(z) = 3exp(10z)(5 2'3 52z252) 11+ O(jzj 1) (10.38)

asjzj! 1, with jArg(z)j 3 =8, Us( z) = Us(z), and Us(z) is ertire. We now need an
ertire function with known coe cien ts that grows as exp(10z)z 2°2. This is not dicult to
obtain, as
A2 .
19(102)z *? Gz (10.39)
i=1
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for suitable coe cien ts ¢; hasthe desiredproperties.
10.3. The residue theorem and sums as integrals
Sometimessumsthat are not easily handled by other methods canbe converted to integrals

that can be evaluated explicitly or estimated by the residuetheorem. If t(z) is a meromorphic

z
f(n)= 2—1| f (2)t(z2)dz ; (10.40)

n=

is chosento have residue( 1)" at z = n, then we obtain
Xb Z

( D"f(n)= 2—1| f(2)t(z)dz : (10.41)
n=a
A useful exampleis given by the formula
VA
X n ( 1)"n! f (z)dz
k - : :
~ K ( (k) = 5 2 D) @ n) (10.42)

The advantage of ([L0.4() and ([L0.4)) is that the integrals can often be manipulated to give
good estimates. This is especially valuable for alternating sumssud as ([0.4]). An analytic
function f (z) is extremely regular, soa sum suc asthat in ([[0.40Q) can often be estimated by
methods sud asthe Euler-Maclaurin summation formula (Section 5.3). Howeer, that formula
cannot always be applied to alternating sumssud asthat of ([[0.4]), becausethe sign change
destroys the regularity of f (n). (Howewer, asis noted in Section 5.3, there are generalizations
of the Euler-Maclaurin formula that are sometimesuseful.) It is hard to write down general
rules for applying this method, asmost situations require appropriate choice of t(z) and careful
handling of the integral. For a detailed discussionof this method, often referred to as Rice's

method, seeSection 4.9 of [P0Y]. A pair of popular functions to useast(z) are
t1(z) = =(sin z); ty(z)= =(tan 2z): (10.43)

One can shawv (Theorem 4.9a0of [R09) that if r(z) = p(z)=qz) with p(z) and g(z) polynomials

such that degq(z) degp(z) + 2,and g(n) 6 O for any n 2 Z, then

S X
r(n)
n=1

* X
( 1)%r(n)

Res( (2)t1(2)) ; (10.44)

Res( (2)t2(2)) ; (10.45)

n=1

99



where the sumson the right-hand sidesabove are over the zerosof g(z).

Examples of applications of these methods to asymptotics of data structures are given in

[73) and [E5Y.
10.4. Location of singularities, Rouche's theorem, and unimo dalit y

A recurrent but only implicit theme throughout the discussionin this section is that of
isolation of zeros. For example, to apply Theorem P.] we needto know that the polynomial
h(z) hasonly k zeros,ead of multiplicit y one,in jzj < R. Proofs of suc results can often be
obtained with the help of Rouche's theorem B64.

Theorem 10.5. Supmsethat f1(z) and f,(z) are functions that are analytic inside and on

the boundary of a simple closeal contour . If
if2(2)j < jf1(2)] forall z2 ; (10.46)

then f1(z) and f 1(z) + f2(z) havethe samenumkber of zems (counted with multiplicity) inside

Example 10.6. Sejuenes with forbidden subbleks. We consider again the topic of Exam-
plesp.4 B.§ and P.3 and prove the results that were already usedin Example .2 We again
set

h(z) = z+ (1 22)Ca(2) ; (10.47)

where the only fact about Ca(z) we will useis that it is a polynomial of degree< k and
coe cients 0 and 1, and Ca(0) = 1. We wish to shaw that h(z) hasonly onezeroin jzj 0:6

if k is large. Write

12 1R .
Ca(2) = 1+ 5 Z+ 5 iz (10.48)
j=1 j=1
where j = 1for ead j. Then
2 z
Ca(2) = 20 2 + u(z) ; (10.49)
where
. . izj
u(z — .

Forjzj=r < 1,wehaveju(z)j r=2(1 r)). Onthe otherhand,z! (2 2z2)=1 z) maps

circlesto circles, sinceit is a fractional linear transformation, soit takesthe circle jzj = r to
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the circle with certer on the real axis that goesthrough the two points (2 r)=21 r) and

(2+ r)=(@ + r). Thereforefor jzj=r < 1,

. _ 2+ r 1 r r?
ICA@I zav @ T T (10.50)

and sojCa(z)j 1=16forjzj=r 0:6. Hence,if k 9, then onjzj = 0:6,
i(l1 22)Ca(z)j 1=80> (0:6)* ; (10.51)

and thus (1 2z)Ca(z) and h(z) have the samenumber of zerosin jzj  0:6. On the other
hand, Ca(z) hasno zerosin jzj  0:6 by ([[0.50), while 1 2z hasone, sowe obtain the desired
result, at least for k 9. (A more careful analysis shavs that h(z) has only oneroot inside
jzj = 06evenfor4 k< 9. Forl k 3, there are caseswhere there is no zero inside
jzj 0:6.) Example p.7 shavs how to obtain preciseestimatesof the single zero.

We note that (L0.50Q) shaws that for jzj = 0:55,k 9
ih(z)j j1 1102 (0:55K 002 001 1=100; (10.52)

a result that was usedin Example P.7.

Example 10.7. Coinsin a fountain. An (n; k) fountain is an arrangemer of n coinsin rows
such that there are k coinsin the bottom row, and suc that ead coin in a higher row touches
exactly two coins in the next lower row. Let a,k be the number of (n; k) fountains, and
P

anh = | ank the total number of fountains of n coins. The valuesof a, for1 n 6 are
1;1;2;3;5;9. If welet ag = 1then it can be shavn [B1J that

R 1

f(z) = anz" = —————: (10.53)
n=0 1 1 22

3
Z
S v

This is a famous continued fraction of Ramanujan. (Other combinatorial interpretations of
this corntinued fraction are also known, seethe referencesin [. For related results, see
B271.) Although onecan derive the asymptotics of the a, from the expansion([L0.5), it is
more corveniert to work with another expansion,known from previous studies of Ramanujan's
continued fraction:

f(z= P2 . (10.54)

az) ’
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where

X 21 (r+1)

p(z) = r 0( 1) T 20 @ 7))’ (10.55)
X 22

az) = - 1 20 z?9):::(a zr): (10.56)

r 0
Clearly both p(z) and g(z) are analytic in jzj < 1, sof (z) is meromorphic there. We will shav
that q(z) has a simple real zero xg, 0:57 < Xxg < 0:58, and no other zerosin jzj < 0:62, while

p(Xo) > 0. It will then follow from Theorem [[0.4 that
an=0¢xX,"+O(5=3)") as n! 1 ; (10.57)

where ¢ =  p(xg)=(x009Xo)). Numerical computation shows that ¢ = 0:31236:::, Xg =

0:576148769:: .

To establish the claim about xg, let pn(z) and g,(z) denote the n-th partial sums of the

series([[0.5) and ([[0.59), respectively. Write a(z) = q(z)(1  2)(1 z?)=(1 z3), sothat
az)=1 2z Z2+28+ 3+ 2% 22° 77 29 (10.58)

and consider
Vo

bz)= (z 37);

j=1
where the z; are 0.57577, 0:46997 iO:811792, 0:74833 i0:07523, 1:05926 i0:36718,
0:49301 i1:58185,in that order. (The z; are approximations to the zerosof a(z), obtained
from numerical library subroutines. How they were derived is not important for the veri -

cation of our proof.) An easyhand or madciine computation shows that if a(z) = P kakz",

P
bz) = bz, then
X2
jax hj 1.7 10 *4;
k=0
and soja(z) b(z)j L7 10 4for all jzi 1. Another computation shaws that jb(z)j

8 10 “for all jzj = 0:62.
On the other hand, for0 u 0:62andjzj= u, wehavefork 5

Z(k+1)2 k2 y2k+1 u® .
1 Zk+1 1 uk+1 1 u5 ' (10'59)
Therefore , «
k 16 9 m
() — S 5 6 10 4: (10.60)
- L, Z) 1 vt 1 u



and soby Rouche'stheorem, g(z) and b(z) have the samenumber of zerosin jzj 0:62, namely
1. Sinceq(z) hasreal coe cien ts, its zerois real. This establishesthe existenceof xo. An easy
computation shaws that q(0:57) > 0, q(0:58) < 0, so 0:57 < xg < 0:58.

To shaw that p(xo) > 0, note that successie summandsin ([[0.59 decreasein absolute
magnitude for eath xed realz> 0,andp(z) > 1 z2=(1 z)> Ofor0< z< 06.

The method usedin the above exampleis widely applicable to generating functions given
by continued fractions. Typically they are meromorphicin a disk certered at the origin, with
a single dominant pole of order 1. Usually there is no corveniert represenation of the form
(LO.5) with explicit p(z) and g(z), and one has to work harder to establish the necessary
properties about location of poles.

It was mentioned in Section 6.4 that unimodality of a sequenceis often deduced from
information about the zerosof the assaiated polynomial. If the zerosof the polynomial

X
A(z) = axz
k=0

k
arereal and 0, then the ax are unimodal, and even the a, E Lare log-concare. However,
wealer properties follow from weaker assumptionson the zeros. If all the zerosof A(z) arein
the wedge-shajd region certered on the negative real axis jArg( z)j =4, and the ay are
real, then the ax arelog-concae, but the ay E ! arenot necessarilylog-concae. (This follows
by factoring A(z) into polynomials with real coe cien ts that are either linear or quadratic, and
noting that all have log-concae coe cien ts, sotheir product doestoo.) One can prove other
results that allow zerosto lie in larger regions, but then it is necessaryto imposerestrictions

on ratios of their distancesfrom the origin.

10.5. Implicit functions

Section6.2 preseried functions, sudch asf " 1 (z), that are de ned implicitly . In this section
we considerrelated problemsthat arise when a generating function f (z) satis es a functional
equation f (z) = G(z;f (2)). Sud equations arise frequertly in graphical enumeration, and
there is a standard procedureinvented by Polya and deweloped by Otter that is almost algo-
rithmic [[[8% [[8F and routinely leadsto them. Typically G(z;w) is analytic in z and w in a
small neighborhood of (0;0). Zerosof analytic functions in more than one dimension are not

isolated, and by the implicit function theorem G(z;w) = w is solvable for w as a function of
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z, exceptfor those points where

Guw(z;w) = gG(z;w) =1: (10.61)

Usually for z in a small neighborhood of 0 the solution w of G(z;w) = w will not satisfy
(L0.6)), and sow will be analytic in that neighborhood. As we enlarge the neighborhood
under consideration,though, a simultaneoussolution to G(z; w) = w and ([[0.67) will evertually
appear, and will usually be the dominant singularity of f (z) = w(z). The following theorem

covers many common enumeration problems.

Theorem 10.6. Supmsethat

R
f(z) = fnz" (10.62)
n=1
is analyticat z= 0, that f,, 0 for all n, and that f (z) = G(z;f (2)), wher
X
G(z;w) = Omnn Z"W" (10.63)
m;n 0

Suppsethat there exist real numbers ;r;s > 0 suchthat
() G(z;w) is analytic in jzj<r+ andjwj< s+ |,
(i) G(r;s) = s, Gu(r;s) = 1,

(i) Gz(r;s) 8 0 and Gyw(r;s) 6 0.

Supmsethat gnn 2 * [ fOg for all m and n, goo = 0, go.1 = 1, and gm:n > O for somem
and somen 2. Assumefurther that there existh> j > i 1 suchthat f,f;f; 6 O while the

greatest common divisor ofj i andh iis 1. Thenf(z) convegesatz=r, f(r)=s, and

fo=[2"1f (2) (rG,(r;s)=(2 Guww(r;s)¥™@n 3%r " as n! 1 : (10.64)
Example 10.8. Rooted labeled trees. As was shavn in Example f.7, the exponertial generat-
ing function t(z) of rooted labeled trees satis es t(z) = zexp(t(z)). Thus we have G(z;w) =

zexp(w), and Theorem [L0.§ is easily seento apply with r = e 1, s = 1. Therefore we obtain

the asymptotic estimate
th=n!'= [2"It(z) (2 ) ¥?n 32" as n! 1 : (10.65)

On the other hand, from Example p.§ we know that t, = n" 1 a much more satisfactory

answver, sothat the estimate ([L0.6%) only providesuswith another proof of Stirling's formula.

104



The example above involves an extremely simple application of Theorem More com-
plicated caseswill be presened in Section15.1.

The statemert of Theorem [L[0.§ is long, and the hypothesesstringent. All that is really
neededfor the asymptotic relation ([L0.69 to hold is that f (z) should be analytic on fz : jzj
r;z 6 rg and that

f(z)=cr 2)¥+o(r zj*? (10.66)

for jz rj , JArg(r  2)j =2 for some > 0. If these conditions are satis ed,
then ([L0.69 follows immediately from either the transfer theorems of Section 11.1 or (with
stronger hypotheses)from Darboux’'s method of Section 11.2. The purposeof Theorem [[0.§is
to presert a generaltheorem that guarartees ([L0.69) holds, is widely applicable, and is stated
to the maximum extent possiblein terms of conditions on the coe cien ts of f (z) and G(z;w).

Theorem is based on Theorem 5 of [BJ and Theorem 1 of [P84. The hypotheses
of Theorem 5 of [BJ are simpler than those of Theorem but, as was pointed out by
Can eld [B7], the proof is faulty and there are counterexamplesto the claims of that theorem.
The dicult y is that Theorem 5 of [BJ] doesnot distinguish adequately betweenthe di erent
solutions w = w(z) of w = G(z;w), and the singularity of the combinatorially signi cant
solution may not be the smallest among all singularities of all solutions. The result of Meir
and Moon [P84 provides conditions that assuresuc pathological behavior does not occur.
(The statemert of Theorem [L0.§incorporates somecorrectionsto Theorem 1 of [P84] provided
by the authors of that paper.) It would be desirable to prove results like ([L0.69 under a
simpler set of conditions.

In many problemsthe function G(z;w) is of the form
G(z;w) = g(z) (w)+ h(z) ; (20.67)

where g(z), (w), and h(z) are analytic at 0. For this caseMeir and Moon have proved a
useful result (Theorem 2 of [P84]) that implies an asymptotic estimate of the type ([0.69.
The hypothesesof that result are often easierto verify than those of Theorem above.
(As was noted by Meir and Moon, the last part of the conditions (4.12a) of [f84 hasto be
replaced by the condition that y; > h;j, y; > h;, and yx > h¢ for somek > j > i 1 with
ged ik i)=1)

Whenewer Theorem [[0.§ applies, fn = [z"]f (z) equalsthe quartity on the right-hand side

of (JL0.6) to within a multiplicativ e factor of 1+ O(n ). One can derive fuller expansionsfor
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the ratio when needed.
11. Small singularities of analytic functions

In most combinatorial enumeration applications, the generating function has a single
dominant singularity. The methods usedto extract asymptotic information about coe cien ts
split naturally into two main classesdepending on whether this singularity is large or small.

In somesituations the samegeneratingfunction canbe saidto have either a large or a small
singularity, depending on the range of coe cien ts that we are interestedin. This is illustrated

by the following example.

Example 11.1. Partitions with boundal part sizes. Let p(n; m) bethe number of (unordered)
partitions of an integer n into integers m. It is easyto seethat

X hd

Pn(z)= p(n;m)z"= (@ Z¢ ': (11.1)

n=0 k=1
The function Py (z) is rational, but has to be treated in dierent ways depending on the
relationship of n and m. If n is large comparedto m, it turns out to be appropriate to say that
Pm(2) has a small singularity, and use methods designedfor this type of problems. Howeer,
if n is not too large comparedto m, then the singularity of Py, (z) can be said to be large.
(Sincethe largest part in a partition of n is almost always O(n*2logn) [L0%, p(n; m)  p(n)
if m is much larger than n*2logn.)

Although P, (z) hassingularities at all the k-th roots of unity for all k m, z = 1lisclearly
the dominant singularity, asjP,(r)j grows much fasterasr ! 1 than jPy(z)jforz= rexp(i )
forany 2 (0;2 ). If mis xed, then the partial function decomposition can be usedto obtain
the asymptotics of p(n;m) asm! 1 . We cannot use Theorem p.] directly, sincethe pole of
Pm(z) at z = 1 hasmultiplicit y 1. Howeer, either by using the generalizationsof Theorem P]]
that are mentioned in Section9.1, or by the subtraction of singularities principle, we can shav
that for any xed m,

w1 w1
p(n;m) [z"] k! @a z ™ k! (m Y ! as n! 1 : (11.2)
k=1 k=1
(See[P for further details and estimates.) This approac canbe extendedfor m growing slowly
with n, and it can be showvn without much e ort that the estimate (L[1.9) holdsforn! 1,
m loglogn, say. Howewer, for larger values of m this approach becomescumbersome,and

other methods, sud asthose of Section 12, are necessary
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11.1. Transfer theorems

This sectionpresers someresults, drawn from [[[37], that allow oneto translate an asymp-
totic expansionof a generating function around its dominant singularity into an asymptotic
expansionfor the coe cien ts in a direct way. These results are useful in combinatorial eru-
meration, since the conditions for validity are frequertly satis ed. The proofs, which we do
not presen here, are basedon the subtraction of singularities principle, but are more involved
than in the casestreated in Section 10.2.

We start out with an application of the results to be presened later in this section.

Example 11.2. 2-regular graphs. The generating function for 2-regular graphsis known [B]]
to be
1 1,

- 1=2 .
f(z)= (1 2 exp Ez zrz : (11.3)

(A simpler proof can be obtained from the exponertial formula, cf. Eq. (3.9.1) of [B71].) We
seethat f (z) is analytic throughout the complex plane except for the slit along the real axis

from 1to 1 , and that nearz = 1 it hasthe asymptotic expansion
- — _ 1 _
f(z)=e 3 @1 2 ¥P2+@1 2+ Z(l 7)%72 + : (11.4)

Theorem[L1.] below then shavs that asn! 1,

— 1=2 3=2 1 5=
[ @) e 7 n v n T2 " n *
e 4 5 15
p— = = 4 ,
n ! 8n 12&? (11.5)

The basic transfer results will be preserted for generating functions that have a single
dominant singularity, but can be extended substartially beyond their circle of corvergence.

Forr, >0,and0< < =2, wedene the closeddomain = ( r;; ) by
(r;; )=*fz:jzj r+ ; jArg(z r)j g: (11.6)

In the main result belov we will assumethat a generating function is analytic throughout
nfrg. Later in this sectionwe will merntion someresults that dispensewith this requiremert.
We will alsoexplain why analyticity throughout nfrgis helpful in obtaining results such as
those of Theorem below.
One advantage to using Caudhy's theoremto recover information about coe cien ts of gen-

erating functions is that it allows oneto prove the intuitiv ely obvious result that small smooth
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changesin the generating function correspond to small smooth changesin the coe cien ts. We
will usethe quartitativ e notion of a function of slow variation at 1 to describe those functions
for which this notion can be made precise. (With more e ort one can prove that the same

results hold with a lessrestrictive de nition than that below.)
De nition  11.1. A function L(u) is of slow variation at 1 if

i) There existreal numbersug and o withug> 0, 0< < =2, suchthat L(u) is analytic
and 6 0 in the domain

fu: jArg(u ug)j 00 : (11.7)

ii) There exists a function (x), dened for x 0 with limyi;  (x) = 0, such that for all

21 ( 0); ol andu ug, we have
LELEE) ) (u) (11.8)
and ,
W < W (11.9)

Theorem 11.1. Assumethat f (z) is analytic throughout the domain nfrg, whee =
(r;; ),r; >0, 0< < =2 andthat L(u) is a function of slow variation at 1 . If is

any real numker, then

A) If
f(z)=0 (z r)L

r z

uniformly for z2 nfrg, then

[z2"f(z)= O(r "n  L(n) asn! 1

B) If
f(z)=0 (z r) L —

uniformly asz! r forz2 nfrg, then

[Z"ff(z2)=o(r "n L(n) asn! 1
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C If 6X0;1;2:::gand

1
f(z) (r z)L -
uniformly asz! r forz2 nfrg, then
n 1
21 (@) L)

The restriction that there be only one singularity on the circle of corvergenceis easyto
relax. If there are seweral (corresponding to oscillatory behavior of the coe cien ts), their
contributions to the coe cien ts add. The crucial fact is that at ead singularity the function
f (z) should be continuous except for an angular region similar to that of ( r;; ).

The requiremert that the generatingfunction f (z) be analytic in the interior of ( r; ; )is
in generalharder to dispensewith, at leastby the methods of [[[33]. However, if the singularity
at r is sucien tly large, one can obtain the sameresults with weaker assumptionsthat only

require analyticity inside the disk jzj < r. The following result is implicit in [[3].

Theorem 11.2. Assumethat f (z) is analytic in the domainfz :jzj r;z 6 rg and that L(u)
is a function of slow variation at 1 . If is any xed real numker with < 1, then the

implications A), B), and C) of Theorem are valid.

Example 11.3. Longestcycle in a random permutation. The averagelength of the longest

cyclein a permutation on n letters is [z"]f (z), where
2 0 13

X X _
f(z)=@1 2! 41 exp@ j 1ZAS5
k 0 ik
It is easyto seethat f (z) is analytic in jzj < 1, and a double application of the Euler-Maclaurin
summation formula shows that f(z) G(1 z) 2asz! 1, uniformly forjzj 1,z 6 1,
where z, Z,

G= 1 exp t letdt dx=0624::: : (11.10)
0 X

Therefore, by Theorem [L1.2 with L (u) = 1,
[z"ff(z) Gn as n! 1 ; (11.11)

aresult rst proved by Sheppand Lloyd [B47 using Poissonapproximations and Tauberian

theorems. The derivation sketched above follows [[34, [L3]]. The paper [[34 cortains many
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other applications of transfer theoremsto random mapping problems. Additional recert papers
on the cycle structure of random permutations are [[L, [L87. They use probabilistic methods,

not transfer theorems, and corntain extensive referenceso other recert works.

In applying transfer theorems, it is usefulto have explicit expansionsand estimatesfor the

coe cien ts of somefrequertly occurring functions. We state seweral asymptotic series:

0 1
n * X O«
"1 z) ——=@+ e’'n*A; 6012:::; (11.12)
() K1
where
Rk .
d’= (D g+ +2) (+i); (11.13)
j=k
and the ; are determined by
., X ,
e@d+vt) T V= ki vEY (11.14)
k;jj O
In particular,
e(l) = ( +1)=2
) = (+1)( +2@ +1)=24:

Also, for ;  620;1;2;:::0,

0 1
X
"1 2) ( z tlogl 2)) ;(Iogn) @1 + e(k; J(logn) kA (11.15)
k1
where
G o) K dk 1
g =V ) &xC9 " (11.16)

Further examplesof asymptotic expansionsare presered in [[3].
Why is the analyticity of a function f (z) throughout ( r;; ) nfrg soimportant? We

explain this using as an examplea function f (z) that satis es

f(z)= 1+ o)1 2)*? (11.17)
asz! 1lwithz2 = (1; =8;1). Wewrite
fz)=1 27+9(2) ; (11.18)
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so that

j92)j = o(ji1  zj'?) (11.19)
Since[z"](1 2)¥? grows liken 372, we would like to show that
i[z"19(2)j=o(n *?) as n! 1 : (11.20)

If g(z) were analytic in a disk of radius 1+ for some > 0, then we could conclude that
j[z"]a(z)j < (1 + =2) " for large n, a conclusion much stronger than ([I.2)). Howeer, if all
we know is that g(z) satises ([L1.19 in jzj 1, then we can only conclude from Cauchy's
theorem that [z"]g(z) = O(1), since ([L1.19) implies that jg(z)j C for all jzj < 1 and some
C > 0. Then Theorem[L0.7 gives

jlz"lg(z)j Cr " (11.21)
uniformly for all n 0 and all r < 1, and hencej[z"]g(z)] C for all n, a result that is far

from what is required. If we know that g(z) canbe cortinuedto nfrg and satis es ([1.19

there, we cando a lot better. We choosethe contour = [ 2[ 3[ 4, pictured in Fig. 1,
with
1 = fz:jz 1= 1=n; jArg(z 1) =g ; (11.22)
o = fz: z=1+rexp( i=4); 1=n r g; (11.23)
3 = fz:jzj=j1+ exp( i=4)j; jArg(z 1) =g ; (11.24)
4 = fz:z=1+rexp( i=4); 1=n r g; (11.25)
where0< < 1=2. We will shav that the integrals
z
— 1 n 1
g = 5+ 0(2)z dz (11.26)

21
J
onthe ; aresmall. On 3, g(z) is bounded, so we trivially obtain the exponertial upper
bound

jgi= O+ =2) "): (11.27)

on 4,jo@@j=on ¥),jz" Y (@ 1=n " 1= 0(1), andthe length of ;is 2 =n, so

jgmj=on ¥?) as n! 1 : (11.28)
Next, on ,, for z= 1+ r exp( i=4),
jzi " o= 1+ r2 PP ir2 0 = (14 2P+ ) 072
(L+r) ™2 exp( nr=10) (11.29)
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for 0 r < 1. Sinceg(z) satis es ([L1.19), for any > 0 we have

jo(L+ rexp( i=4)j r'? (11.30)
ifo<r forsome = () . Therefore
z Z,
192] r¥2 exp( nr=10)dr + O exp( nr=10)dr
o .
n 32 r2exp( r=10)dr + O(exp( n =10)) ; (11.31)
0
and so
jgi = o(n %) : (11.32)

Sincejgaj = jgpj, inequalities (L1.2]), ([I.29, and ([1:3] shaw that ([[I.2]) holds.

The critical factor in the derivation of (L1.2() was the bound for (L1.29 for jzj " on the
segmeh z = 1+ rexp( i=4). Integrating on the circle jzj = 1 or even on the line Re(z) = 1
does not give a bound for jzj " that is anywhere as small, and the resulting bounds do not
approadh (L1.2)) in strength. The use of the circular arc 1 in the integral is only a minor
technical device usedto avoid the singularity at z = 1.

When one cannot corntinue a function to a region like nflg, it is sometimespossible
to obtain good estimatesfor coe cien ts by working with the generating function exclusively
in jzj 1, provided some smoothnessproperties apply. This method is outlined in the next

section.

11.2. Darb oux's theorem and other metho ds

A singularity of f (z) at z = w is called algebraic if f (z) can be written asthe sum of a

function analytic in a neighborhood of w and a nite number of terms of the form
Q@ z=w) 9(2); (11.33)

where g(z) is analytic near w, g(w) 6 0, and 620;1;2;:::g. Darboux's theorem [B7] gives
asymptotic expansionsfor functions with algebraic singularities on the circle of corvergence.

We state one form of Darboux's result, derived from Theorem 8.4 of [B54].

Theorem 11.3. Supmse that f (z) is analytic for jzj < r, r > 0, and has only algebaic

singularities on jzj = r. Let a be the minimum of Re( ) for the terms of the form ([L1.39 at
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the singularities of f (z) on jzj = r, and let wj, ;, and g;j(z) be the w, , and g(z) for those

terms of the form ([L1.33 for which Re( ) = a. Then, asn! 1,

w1 L
gwn ' - Jn +o(r "n @1 (11.34)

2" @) T

i

Jungen has extended Darboux's theorem to functions that have a single dominant
singularity which is of a mixed algebraic and logarithmic form. His method can be applied
alsoto functions that have seweral such singularities on their circle of corvergence.

We do not dewte much attention to Darboux's and Jungen'stheoremsbecausethey canbe
obtained from the transfer theoremsof Section11.1. The only reasonfor stating Theorem
is that it occursfrequertly in the literature.

Somefunctions, sudc as

\1
f(z)= 1+ =P ; (11.35)
k=1

are analytic in jzj 1, cannot be continued outside the unit circle, yet are nicely behaved
on jzj = 1. Therefore there is no dominant singularity that can be studied to determine the
asymptotics of [z"]f (z). To minimize the size of the integrand, it is natural to move the
contour of integration in Cauchy's formula to the unit circle. Oncethat is done, it is possible
to exploit smoothness properties of f (z) to bound the coe cien ts. The Riemann-Lebesgue

lemmaimplies that if f (z) is integrable on the unit circle, thenasn! 1,
Z .
[Z"f(z)= 2 ) ¢! f(e )exp( ni )d =o0(1) : (11.36)

More can be said if the derivative of f (z) exists on the unit circle. When we apply integration

by parts to the integral in (L1.3§), we nd
Z
[2"f(z)=@n) * 9 )exp( (n 1) )d ; (11.37)

and soj[z"]f (2)j = o(n 1) if f {2) existsand is integrable on the unit circle. Existenceof higher
derivativesleadsto even better estimates. We do not attempt to state a generaltheorem, but
illustrate an application of this method with an example. The sametechnique can be usedin

other situations, for examplein obtaining better error terms in Darboux's theorem [B7].

Example 11.4. Permutations with distinct cycle lengths. Example B.9 shaved that for the
function f (z) dened by Eq. (B59, [z"]f(z) exp( )asn! 1. This coecient is the

probability that arandom permutation on n letters hasdistinct cyclelengths. The more precise
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estimate (B.59 was derived by Greeneand Knuth [[L7]] by working with recurrencesfor the
coe cien ts of f (z) and auxiliary functions. Another approac to deriving fuller asymptotic
expansionsfor [z"]f (z) is to use the method outlined above. It suces to shav that the
function g(z) de ned by Eq. (B:6) has a nice expansionin the closeddisk jzj 1. Since

s (1)ml
m

ogz)= z+ fLim(z™) z"g; (11.38)

m=2
wherethe Liny (w) are the polylogarithm functions [P5]], one can usethe theory of the Lim (w).
A simpler way to proceedis to note, for example, that

o2k X L%

— = ——+1(2) ; (11.39)
k=2 k? k=2 k(k 1)
where
A 72k
r(z) = - Kk 1) (11.40)

and sor{z) is boundedand continuousfor jzj 1, asare the terms in (B.6) with m 3. On

the other hand,
A 22k

k(k 1)

=z2+ (1 Z)logl 2Z?) (11.41)
k=2

sowe canwrite g(z) = g1(z) + g2(z), wheregi(z) is an explicit function (given by Eq. (L1.4]))
such that the coe cien ts of exp(gi(z)) can be estimated asymptotically using transfer methods
or other techniques,and g(z) hasthe property that g9(z) is boundedand cortinuousin jzj 1.
Continuing this processwe can nd, for every K, an expansionfor the coe cien ts of f (z) that
has error term O(n X). To do this, we write g(z) = G1(z) + G2(z). In this expansionG(z)
will be explicitly given and analytic inside jzj < 1 and analytically continuable to someregion
that extendsbeyond the unit disk with the exception of cuts from a nite number of points on
the unit circle out to in nit y. Further, G,(z) will have the property that G(2K)(z) is bounded
and corntinuous in jzj 1. This will then give the desired expansionfor the coe cien ts of

f (2).
12. Large singularities of analytic functions

This section preserts methods for asymptotic estimation of coe cien ts of generatingfunc-

tions whosedominant singularities are large.
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12.1. The saddle point metho d

The saddle point method, also referred to as the method of steepest descem, is by far
the most useful method for obtaining asymptotic information about rapidly growing functions.
It is extremely exible and has beenapplied to a tremendous variety of problems. It is also
complicated, and there is no simple categorization of situations whereit can be applied, much
lessof the resultsit produces. Given the purposeand limitations on the length of this chapter,
we do not present a full discussionof it. For a complete and insightful introduction to this
technique, the reader is referred to [F3. Many other books, such as [[[10, also
have extensive preserations. What this section doesis to outline the method, shov when
and how it can be applied and what kinds of estimatesit produces. Examples of proper and
improper applications of the method are preseried. Later subsectionsare then dewoted to
generalresults obtained through applications of the saddle point method. Theseresults give
asymptotic expansionsfor wide classesof functions without forcing the readerto go through
the details of the saddle point method.

The saddle point method is based on the freedomto shift cortours of integration when
estimating integrals of analytic functions. The sameprinciple underlies other techniques, suc
asthe transfer method of Section11.1,but the way it is applied hereis di erent. When dealing
with functions of slow growth neartheir principal singularity, ashappensfor transfer methods,
one attempts to push the cortour of integration up to and in some ways even beyond the
singularity. The saddle point method is usually applied when the singularity is large, and it
keepsthe path of integration closeto the singularity.

In the remainder of this sectionwe will assumethat f (z) is analytic in jzj< R 1. We

will also make the assumptionthat for someRy, if Rg < r < R, then
max jf (z)j = f(r) : (12.1)
jzj=r

This assumption is clearly satis ed by all functions with real nonnegative coe cien ts, which
are the most commononesin combinatorial enumeration. Further, we will supposethat z=r
is the unique point with jzj = r where the maximum value in ([2]) is assumed. When
this assumption is not satis ed, we are almost always dealing with some periodicity in the
asymptotics of the coe cien ts, and we can then usually reduceto the standard caseby either
changing variables or rewriting the generating function as a sum of seweral others, as was

discussedin Section 10. (Such a reduction cannot be applied to the function of Eq. (P-39),
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though.)

The rst stepin estimating [z"]f (z) by the saddlepoint method isto nd the saddlepoint.
Under our assumptions,that will be a point r 2 (Rg;R) which minimizesr "f (r). We have
encourtered this condition before, in Section 8.1. The minimizing r = rg will usually be
unigque, at least for large n. (If there are sewral r 2 (Rg;R) for which r "f (r) achievesits
minimum value, then f (z) is pathological, and the standard saddle point method will not be
applicable. For functions f (z) with nonnegative coe cien ts, it is easyto shov uniquenessof
the minimizing r, as was already discussedin Section 8.1.) Cauchy's formula ([0-9) is then
applied with the cortour jzj = rg. The reasonfor this choice is that for many functions, on
this contour the integrand is large only near z = rg, the cortributions from the region near
Z = rp do not canceleat other, and remaining regions cortribute little. This is in contrast
to the behavior of the integrand on other contours. By Caucdhy's theorem, any simple closed
contour enclosingthe origin givesthe correct answer. Howewver, on most of them the integrand
is large, and there is so much cancellation that it is hard to derive any estimates. The circle
going through the saddle point, on the other hand, yields an integral that can be controlled
well by techniquesrelated to Laplace's method and the method of stationary phasethat were
mertioned in Section 5.5. We illustrate with an example, which is a totally self-cortained

application of the saddlepoint method to an extremely simple situation.

Example 12.1. Stirling's formula. We estimate (n!) 1 = [z"]exp(z). The saddle point,

accordingto our de nition above, isthat r 2 * that minimizesr "exp(r), which is clearly

r = n. Considerthe contour jzj = n, and setz = nexp(i ), . Then
z
[zZ"]exp(z) = i eanle)dz
2 |ijj:n Z
= zi n "exp(ne' ni )d : (12.2)

Sincejexp(z)j = exp(Re(z)), the absolute value of the integrand in ([2.9 isn " exp(n cos ),

which is maximized for = 0. Now
€ =cos +isin =1 22+i +0( j°;

soforany o2 (0; ),
Z 0 Z 0
n "exp(ne ni )d = n "exp(n n 2=2+ O(nj j3)d : (12.3)

0 0

116



(It is the cancellation of the ni term coming from ne' andthe ni term that camefrom
change of variablesin z " that is primarily responsible for the successof the saddle point
method.) The O(nj j3) term in (T2} could causeproblemsif it becametoo large, so we will

select o= n %2 sothat nj j3 n ¥forjj o, and therefore

exp(h n 2=2+ O(nj j3) = exp(h n 2=2)(1+ O(n ¥)) : (12.4)
Hence
z . Z
n "exp(ne’ ni )d = (1+ O(n ¥O)n " exp( n ?=2)d
0 0
But
z Z, Z,
exp( n ?=2)d = exp( n 2=2)d 2  exp( n ?=2)d
0 1 0
= (2 =n)*? O(exp( n'™®=2)) ;
SO z

" n Nexpne ni )d = (1+ O(n )2 =n)¥?n "e": (12.5)

0
On the other hand, for o< j j ,

cos coso=1 32=2+0(9);

o)
ncos n n¥=2+ 0(n ¥);
and therefore for large n

z

n "exp(ne ni )d n "exp(n n*¥=R);
0

and similarly for the integral from to . Combining all theseestimateswe therefore nd
that

(n) 1= [z"1exp(z) = 1+ O(n )2 n) ¥2n "e"; (12.6)
which is a weak form of Stirling's formula (3. (The full formula can be derived by using

more preciseexpansionsfor the integrand.)

Supposewe try to pushthrough a similar argumert using the contour jzj = 2n. This time,

instead of Eq. ([2.3), we nd
Z
[z"]exp(z) = zi 2 "n "exp(2ne'  ni )d : (12.7)
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At = 0, the integrand is 2 "n " exp(2n), which is exp(n) times as large as the value of the
integrand in (L2.7). Sincethe two integrals do producethe sameanswer, and from the analysis
above we seethat this answeris closeto n " exp(n) in value, the integral in ([Z-]) must involve
tremendous cancellation. That is indeed what we seein the neighborhood of = 0. We nd
that

exp(2ne  ni )=exp2n n %+ ni + O(nj jd) ; (12.8)

and the exp(ni ) term produceswild oscillations of the integrand even over small ranges of

. Trying to work with the integral ([2.]) and proving that it equalssomething exponertially
smaller than the maximal value of its integrand is not a promising approac. By cortrast, the
saddle point contour usedto produce Eq. (2.9 gives nice behavior of the integrand, so that
it can be evaluated.

The estimates for n! obtained in Example 10.1 came from a simple application of the
saddle point method. The motivation for the choice of the contour jzj = n is provided by the
discussionat the end of the example; other choiceslead to oscillating integrands that cannot
be approximated by a Gaussian,nor by any other nice function. The example above treated
only the exponertial function, but it is easyto seethat this phenomenonis general;a rapidly
oscillating term exp(ni ) for 6 0 is presert unlessthe contour passesthrough the saddle
point. When we do use this contour, and the Gaussianapproximation is valid, we nd that

for functions f (z) satisfying our assumptionswe have the following estimate.

Saddle point appro ximation
[Z"f (z2) (2 b(rg)) Y°f (ro)ro" asn! 1 ; (12.9)

where rg is the saddle point (where r "f (r) is minimized, sothat rof Qro)=f (rg) = n)

and
_Hqn) L L% i) 2_ 9 °.
b(r) = rf(r) +r? 0 r? - rore OBk (12.10)

Example 12.2. Bell numbers. Example p.4 shaved how to estimate the Bell number B,
by elemenary methods, starting with the represertation (F.39). The exponertial generating
function
3 2N
B(z) = Bnm (12.11)
n=0 ’
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satis es

B(z) = exp(exp@) 1);

as can be seenfrom (-39 or by other methods (cf. [B]]). The saddle point occurs at that
ro> 0that satis es

roexp(ro) = n; (12.12)

and
(ro) = ro(1+ ro)exp(ro) ; (12.13)

sothe saddlepoint approximation says that asn! 1 ,

Bn n!(2 rexp(ro)) exp(exp(ro) 1)ry": (12.14)

The saddlepoint approximation canbe justi ed evenmore easily than for the Stirling estimate

of nl.

The above approximation is widely applicable and extremely useful, but care hasto be

exercisedis applying it. This is showvn by the next example.

Example 12.3. Invalid application of the sadde point methad. Considerthe trivial example
f(zy= (1 2z) 1 sothat [z"]f(z) = 1foralln 0. Thenfqr)=f(r) = (1 r) %, and so
the saddle point is ro = n=(n + 1), and b(ro) = ro=(1 r)?> = n(n + 1). Therefore if the

approximation (f[2.9 were valid, it would give

2@ @nn+ D) P+ ) 1+t n

2) ¥?e as n! 1 : (12.15)

Since(2 ) ¥2e= 1:0844::: 6 1= [z"]f (z), somethingis wrong, and the estimate ([229 does

not apply to this function.

The estimate ([L2.9 gave the wrong result in Example becausethe Gaussianapproxi-
mation on the saddlepoint method cortour usedsoe ectiv ely in Example [[2.] (and in almost
all caseswhere the saddle point method applies) does not hold over a su cien tly large re-
gionfor f(z) = (1 2z) ! In Example [[2.] we usedwithout detailed explanation the choice

0 = n 27 which gave the approximation (L2739 forj j 0, and yet led to an estimate for the

integral over o< j j that was negligible. This was possiblebecausethe third order term
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(i.e., nj j%) in Eq. ([2-9 wassmall. When wetry to imitate this approac for f (z) = (1 2) 1,

we fail, becausethe third order term is too large. Instead of nel ni , we now have
i C_ 1 2 1 3 .
logl roe ) ni = log(l ro) En(n + 1) (—Sn (n+1) °+ : (12.16)

More fundamertally, the saddle point method fails here becausethe function f (z) = (1 z) *!
doesnot have a large enoughsingularity at z = 1, sothat when one traversesthe saddlepoint
contour jzj = rg, the integrand doesnot drop o rapidly enoughfor a small region near the
real axis to provide the dominant cortribution.

When can one apply the saddlepoint approximation ([2.9? Perhapsthe simplest, yet still
general, set of su cien t conditions for the validity of ([2.9) is provided by requiring that the
function f (z) be Hayman-admissible. Hayman admissibility is described in De nition in
the following subsection. Generally speaking, though, for the saddlepoint method to apply we
needthe function f (z) to have a large dominant singularity at R, sothat f (r) grows at least
asfast asexp((log(R r))?) asr! R for R < 1, and as fast asexp((logr)?) asr ! 1
for R = 1 . The faster the growth rate, the easierit usually is to apply the method, so that
exp(1=(1 z)) or exp(exp(1=(1 z))) can be treated easily.

In our application of the saddle point method to exp(z) in Example [[2.] we were cortent
to obtain a poor error term, 1+ O(n ™), in Stirling's formula for n!. This was done to
simplify the presenation and concertrate only on the main factors that make the saddlepoint
method successful. With more care dewoted to the integral one can obtain the full asymptotic
expansionof n!. (Only the rangej | o hasto be consideredcarefully.) This is usually true
when the saddle point method is applicable.

This sectionprovided a sketchy intro duction to the saddlepoint method. For a much more
thorough presenation, including a discussionof the topographical view of the integrand and

the \hill-clim bing" interpretation of the cortour of integration, see[FJ.
12.2. Admissible functions

The saddlepoint method is a powerful and exible tool, but in its full generality it is often
cumbersometo apply. In many situations it is possibleto apply general theorems derived
using the saddle point method that give asymptotic approximations that are not the sharpest
possible,but which allow oneto avoid the drudgery of applying the method step by step. The
generaltheoremsthat we presert were proved by Hayman [P04] and by Harris and Schoenfeld
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[L99. We next describe the classef functions to which thesetheoremsapply, and then presert
the estimatesone obtains for them. It is not always easyto verify that thesede nitions hold,
but it is almost always easierto do this than to apply the saddle point method from scratc.
It is worth mentioning, furthermore, that for many generating functions, there are conditions
that guarantee that they satisfy the hypothesesof the Hayman and the Harris-Schoenfeld
theorems. These conditions are discussedater in this section.

The de nition below is stated somewhatdi erently than the original onein [E04], but can

be shown to be equivalert to it.

De nition 12.1. A function 2
f(z) = faz" (12.17)

n=0
is admissiblein the senseof Hayman (or H-admissible) if
i) f(z) is analytic in jzj < R for some0O< R 1,

i) f(z)isreal for z real, jzj < R,

i) for Rp<r <R,

max jf (z)j = f(r); (12.18)
jzj=r
iv) for
_ .
a(r) = rm. (12.19)
- I () Y A (D NP ) () N
b(r) = rao(r) =T 0 +r () r m ; (12.20)

and for somefunction (r), de nedin therangeRg<r < Rtosatisfy0O< (r) < , the

following three conditions hold:

a) f(re) f(r) exp( a(r) 2p(r)=2)

asr! R uniformly forj j< (r); (12.21)
b) f(ré) = off (N(r) )

asr! R uniformly forj j< (r); (12.22)
C) b(r)! 1 asr! R: (12.23)
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For H -admissiblefunctions, Hayman proved a basicresult that givesthe asymptotics

of the coe cien ts.

Theorem 12.1. If f (z), de ned by Eq. ([2.17), is H-admissiblein jzj < R, then

(a(r) n)?

fo=(2 br)) 2f)r " exp o)

+ 0(1) (12.24)
asr! R, with the o(1) term uniform in n.

If we chooser = rp to be a solution to a(r,) = n, then we obtain from Theorem a
simpler result. (The uniquenessof r,, follows from a result of Hayman which shaws that

a(r) is positive increasingin somerangeR1 < r < R, R; > Rg.)
Corollary 12.1. If f(z), de ned by Eq. ([2.T}), is H-admissiblein jzj < R, then

fo (2 bry)) 2 @rr," asnt 1 ; (12.25)
whete ry, is de ned uniquely for largen by a(rn) = n, Rg< rp < R.

Corollary is adequate for most situations. The advantage of Theorem is that
it givesa uniform estimate over the approximate rangeja(r) nj b(r)¥™2. (Note that the
estimate ([2.2) is vacuousfor ja(r) nj b(r) ¥21 1 .) Theorem [[2-] shows that the f,r"
are approximately Gaussianin the certral region.

There are many direct applications of the above results.

Example 12.4. Stirling's formula. Let f (z) = exp(z). Then f (z) is H-admissiblefor R = 1 ;
conditions i){iii) of De nition [[2.] are trivially satis ed, while a(r) = r, b(r) = r, soiv) also
holds for Ro = 0, (r) =r 3, sa. Corollary [[2.] then shaws that

1

fn:m

2 n) ¥?e'n " asn! 1 ; (12.26)
sincer, = n, which givesa weak form of Stirling's approximation to n!.

In many situations the conditions of H-admissibility are much harder to verify than for
f (z) = exp(z), and even in that casethere is a little work to be doneto verify that condition
iv) holds. Howewver, many of the generating functions one encourters are built up from other,
simpler generating functions, and Hayman [R04] has shown that often the resulting functions
are guaranteed to be H -admissible. We summarize someof Hayman's results in the following

theorem.
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Theorem 12.2. Letf (z) and g(z) be H-admissiblefor jzj< R 1 . Let h(z) be analytic in

jzj < R and real for real z. Let p(z) be a polynomial with real coe cients.

i) If the coe cients a, of the Taylor seriesof exp(p(z)) are positive for all su ciently large

n, then exp(p(z))) is H-admissiblein jzj < 1 .
i) exp(f (z)) and f (z)g(z) are H-admissiblein jzj < R.
i) If, for some > 0,andR;<r <R,
max ih@)j=o( M ); (12.27)

then f (z) + h(z) is H-admissiblein jzj < R. In particular, f (z) + p(z) is H-admissible
in jzj < R and, if the leading coe cient of p(z) is positive, p(f (z)) is H-admissiblein

jzj < R.

Example 12.5. H-admissiblefunctions. a) By i) Theorem exp(z) is H-admissible, so
we immediately obtain the estimate ([2.2§), which yields Stirling's formula. b) Since exp(z)
is H -admissible, part iii) of Theorem[[2.2 shows that exp(z) 1 is H-admissible. c) Applying
part ii) of Theorem[[2.3, we next nd that exp(exp(z) 1) is H-admissible, which yields the

asymptotics of the Bell numbers.

Hayman's results give only rst order approximations for the coe cien ts of H-admissible
functions. In somecircumstancesit is desirableto obtain full asymptotic expansions. This is
possibleif we imposeadditional restrictions on the generating function. We next state some

results of Harris and Schoenfeld [[L99.

De nition  12.2. A function f (z) de ned by Eq. ([2.I]) is HS-admissibleprovided it is ana-

Iytic in jzj< R,0< R 1, s real for real x, and satis es the following conditions:

A) Thereis an Rp, 0< Rg < R and a function d(r) de ned for r 2 (Rg; R) suchthat

O0<d(r)<1;
rfl+ d(r)g< R ; (12.28)
and suchthat f (z) 6 O for jz rj < rd(r).
B) If wedene, for k 1,
_ 42, R AINCIIPN _Z .
A(z) = ﬁ’ Bk(z) = HA (2); B(2) = EBl(Z) : (12.29)
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then we have

B(r)>0 for Rg<r<R and By(r)! 1 asr! R:

C) For suciently largeR; and n, there is a unique solution r = u, to

Bi(r)=n+1 Ri<r<R: (12.30)
Let _
j

Ci(z;r) = W:FL) Bj+2(2) + E +1)281(r) : (12.312)

There exist nonngyative D,,, E,, and ng suchthat for n  ng,

iCi(un;un)j EnDL; j =12 (12.32)
D) Asn! 1,
B(un)d(un)?! 1
DnEnB(un)d(un)d! 0; (12.33)
Dnpd(un) ! O:

For HS-admissiblefunctions, Harris and Schoenfeld obtain completeasymptotic expansions.

Theorem 12.3. If f(z), de ned by ([2.17), is HS-admissible,then for any N 0,

( )
X
fo=2( n) ¥ (up)u," 1+ Fr(n) nk+ O( n(n;d)) asn! 1 ; (12.34)
k=1
where
n = B(un); (12.35)
1k R (m+k+ 1
Fk(n) = (p_) ( - 2) () . (n); (12.36)
m=1 ) jit +im=2k
jpemimo 1
j(n) = Cj(un;un) ; (12.37)
and
n(nid) = maxf (un;d)iEQ(DnER, AN g ;
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with
E2 = min(1;E,); ES%= max(1;E,) ; (12.38)

d) = . 1=, €xp(_B(r)d(r)?)
(r;d) = max  (r;d)B(r); (0B (1)1=2 ;

where (r;d) is the maximum value of jf {z)=f (z)j for z on the oriented path Q(r) consisting

(12.39)

of the line sggmentfromr + ird(r) to (1 d(r)®*? + ird(r) and of the circular arc from the

last point to ir to r.

The conditions for HS-admissibility are often hard to verify. Howewer, there is a theorem

which guaranteesthat they do hold for a large classof interesting functions.

Theorem 12.4. If g(z) is H-admissible, then f (z) = exp(g(z)) is HS-admissible. Further-
more, the error term n(n;d) of Theorem is theno( ,N)asn! 1 for every xed

N O

Example 12.6. Bell numbers and H S-admissibility. Sinceexp(x) 1 is H-admissible,aswe
saw in Example we nd that exp(exp(z) 1) is H S-admissible,and Theorem [[2.3 yields

a complete asymptotic expansionof the Bell numbers.

Theorem doesnot apply when g(z) is a polynomial. As is pointed out by Scimutz
B39, for g(z) = z* z3+ Zz? the function f(z) = exp(g(z)) is HS-admissible, but Theo-
rem [L2.3 doesnot give an asymptotic expansionbecausethe error term (n;d) is too large.
Schmutz [B39 has obtained necessaryand su cien t conditions for Theorem to give an

asymptotic expansionfor the coe cien ts of f (z) = exp(g(z)) when g(z) is a polynomial.

12.3. Other saddle point applications

Section12.1 preseried the basicsaddlepoint method and discussedts range of applicabil-
ity. Section12.2wasdewoted to results derived using this method that are generaland yet can
be applied in a cook-book style, without a deepunderstanding of the saddle point technique.
Such a cook-book approad is satisfactory in many situations. Howewer, often one encourters
asymptotic estimation problems that are not covered by any of generalresults mentioned in
Section 12.2, but can be solved using the saddle point method. This section mertions sev-
eral such results of this type that illustrate the range of problems to which this method is
applicable. Additional applications will be preseried in Section 15, where other techniquesare

conmbined with the saddlepoint method.
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Example 12.7. Stirling numkers. The Stirling numbersof the rst kind, s(n; k), satisfy (F-9)
aswell as [B1]

s(n;k)zk=2z(z 1) (z n+1): (12.40)
k=0

Since( 1)"Xs(n; k) > 0, (which is re ected in the behavior of the generatingfunction ([2.47),
which grows faster along the negative real axis than along the positive one), we rewrite it as

X0
( D" Ks(n;k)zK=z(z+ 1) (z+n 1): (12.41)
k=0

The function on the right-hand side behaveslike a good candidate for an application of the

saddlepoint method. For details, see[P9% R4

The estimates mertioned in Example [[2.7 are far from best possiblein either the size of
the error term or (more important) in the range of validity. Referencedor the best currently
known results about Stirling numbers of both the rst and secondkind are given in [B63.
Someof the results in the literature are not rigorous. For example, [B63 preserts elegan and
uniform estimates based on an application of the saddle point method. They are likely to
be correct, but the necessaryrigorous error analysis has not been performed yet, although it
seemsthat this should be doable. Other results, like those of [P37 are obtained by methods
that there doesnot seemto be any hope of making rigorous in the near future. Someof the
results, though, such asthe original onesof Moser and Wyman [P95, P94, and the more recert
one of Wilf [B7§, are fully proved.

The saddle point method can be usedto obtain full asymptotic expansions. These expan-
sionsare usually in powersof n 72 when estimating [z"]f (z), and they hardly ever converge,
but are asymptotic expansionsasde ned by Poincare (asin Eq. (R.2). The usual forms of the
saddle point method are incapable of providing expansionssimilar to the Hardy-Ramanujan-
Rademader convergert seriesfor the partition function p(n) (Eq. (B-]). However, the saddle
point method can be applied to estimate p(n). There are technical di culties, sincethe gen-
erating function

R ¥
f(z)= pn)z"= @ Zz%°? (12.42)
n=0 k=1
has a large singularity at z = 1, but in addition has singularities at all other roots of

unity. The cortribution of the integral for z away from 1 can be crudely estimated to be
O(n lexp(Cn'™2=2)) (the last term in Eqg. (). A simple estimate of the integral nearz = 1

yields the asymptotic expansionof Eq. ([.4). A more careful treatment of the integral, but
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one that follows the corvertional saddle point technique, replacesthe 1+ O(n ¥2) term in
Eqg. (L.§) by an asymptotic (in the senseof Poincare, so noncorvergert) seriesP on K2, To
obtain Eq. ([.§), one needsto choosethe cortour of integration near z = 1 carefully and use
preciseestimatesof f (z) nearz = 1.

De Bruijn [B3] alsodiscussesapplications of the saddlepoint method whenthe saddlepoint
is not on the real axis, and especially when there are sewral saddle points that cortribute
comparableamounts. This usually occurswhen there are oscillationsin the coe cien ts. When
the oscillations are irregular, the tricks mertioned in Section 10 of changing variables do not

work, and the cortributions of the multiple saddle points have to be evaluated.

Example 12.8. Oscillating seqguen@. Consider the sequencea, of Examples P.4 and
As is shavn in Example P4 its ordinary generating function is given by (P-39. It has an
essetial singularity at z = 1, but is analytic every place else. This function is not covered by
our earlier discussion. For example, its maximal value is in generalnot taken on the positive
real axis. It can be shown that the Cauchy integral has two saddle points, at approximately
z=1 (2n) ' in 2@ (4n) Y172 Evaluating [z"]f (z) by using Cauchy's theoremwith the

cortour chosento passthrough the two points in the correct way yields the estimate (P-39).

In applying the saddle point method, a general principle is that multiplying a generating
function f (z) with dominant singularity at R by another function g(z) which is analytic in
jzj < R and has much lower growth rate near z = R yields a function f (z)g(z) whosesaddle

point is closeto that of f (z). Usually one can obtain a relation of the form

[2"1(f (2)9(2))  9(ro)([2"]f (2)) ; (12.43)

where rq is the saddle point for f (z). This principle (which is related to the one behind
Theorem[7.]) is useful, but hasto be applied with caution, and proofs have to be provided for
eat case. For fuller exposition of this principle and generalresults, see[[[5]. The advantage
of this approad is that often f (z) is easyto manipulate, sothe determination of a saddlepoint
for it is easy whereasmultiplying it by g(z) producesa messyfunction, and the exact saddle

point for f (z)g(z) is dicult to determine.

b3 2N
A(Z)=  an=exp(z+explz) 1): (12.44)
n=0 ’
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We can write A(z) = exp(2z)B(z), where B(z) is the exponertial generatingfunction for the

Bell numbers (Example [L2.3). SinceB(z) grows much faster than exp(2z), it is easyto show
that ([2.4) applies, and so

an, exp(2ro)B, as n! 1 ; (12.45)

where rq is the saddle point for B(z). Using the approximation ([[2.13 of Example we
nd that
an (n=logn)’B, as n! 1 : (12.46)

The insensitivity of the saddle point approximation to slight perturbations is re ected in
slightly dierent de nitions of a saddle point that are used. The saddle point approximation
(L2239 for [z"]f (2) is stated in terms of ro, the point that minimizes f (r)r ". The discussion
of the saddle point emphasizedminimization of the peak value of the integrand in Cauchy's
formula, which is the sameas minimizing f (r)r " 1, sincethe contour integral (L0.9) involves
f(z)z " 1. Somesourcescall the point minimizing f (r)r " ! the saddle point. It is not
important which de nition is adopted. The asymptotic seriescoe cien ts look slightly di er-
ertly in the two cases,but the nal asymptotic series,when expressedin terms of n, are the
same. The reasonfor slightly preferring the de nition that minimizes f (r)r " is that when
the changeof variable z = r exp(i ) is madein Cauchy's integral, there is no linear term in
and the integrand involvesexp( cn 2+ O(j j3)). If we minimized f (r)r " 1, we would have
to deal with exp( ¢4 & 2+ O(j j3)), which is not much more dicult to handle but is
lesselegarn.

The sameprinciple can be applied when the exact saddle point is hard to determine, and
it is awkward to work with an implicit de nition of this point. When that happens, there
is often a point near the saddle point that is easyto handle, and for which the saddle point

approximation holds. We refer to for examplesand discussionof this phenomenon.

12.4. The circle metho d and other techniques

As we mernioned in Section 12.3, the saddle point method is a powerful method that
estimatesthe cortribution of the neighborhood of only a single point, or at most a few points.
The cornvergert seriesof Eq. ([[.3) for the partition function p(n) (as well as the earlier non-

corvergert but asymptotic and very accurate expansionof Hardy and Ramanujan) is obtained
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by evaluating the cortribution of the other singularities of f (z) to the integral. The m-th term
in Eq. (L. comesfrom the primitiv e m-th roots of unity. To obtain this expansionone needs
to use a special cortour of integration and detailed knowledge of the behavior of f (z). The
details of this technique, called the circle method, can be found in [[[3 P3.

Convergert seriescanbe obtained from the circle method only whenthe generatingfunction
is of a special form. For results and referencesseelf], [J].

Noncorvergen but accurate asymptotic expansionscan be derived from the circle method
in a much wider variety of applications. It is especially usefulwhen there is no single dominant
singularity. For the partition function p(n), all the singularities away from z = 1 corntribute
little, and it is z = 1 that createsthe dominant term and yields Eq. ([.8). For other functions
this is often false. For example, when dealing with additive problems of Waring's type, where
one studies Ny (n), the number of represenations of a nonnegative integer n as

xn

n= X
i=1

K xj2 *[fog forall j; (12.47)

the natural generating function to study is

s
Nk;m(n)Zn = g(z)m ; (12.48)
n=0
where
>€- k
9= 2" : (12.49)
h=0

The function g(z) hasa natural boundary at jzj = 1, but it again grows fastestasz approadtes
a root of unity from within jzj < 1, soit is natural to speak of g(z) having singularities at
the roots of unity. The singularity at z = 1 is still the largest, but not by much, as other
roots of unity cortribute comparableamourts, with the contribution of other roots of unity

diminishing asthe order of increases.All the contributions can be estimated, and one can
obtain solutions to Waring's problem (which wasto shaw that for every k, there is an integer
m such that Ny.(n) > O for all n) and other additiv e problems. For details of this method see
[23]. We mertion herethat for technical reasons,onenormally works with generatingfunctions

of the form G,(z)™, where

byt
Gn(z) = A (12.50)
h=0

(sothat the generatingfunction dependson n), and analyzesthem for jzj = 1 (since they are

now polynomials), but the basic explanation above of why this processworks still applies.
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13. Multiv ariate generating functions

A major dicult y in estimating the coe cien ts of multiv ariate generating functions is
that the geometry of the problem is far more di cult. It is harder to seewhat are the critical
regionswhere the behavior of the function determinesthe asymptotics of the coe cien ts, and
those regions are more complicated. Singularities and zerosare no longer isolated, asin the
one-dimensionalcase, but instead form (k  1)-dimensional manifolds in k variables. Even
rational multiv ariate functions are not easyto deal with.

One basic tool in one-dimensionalcomplex analysis is the residue theorem, which allows
oneto move a cortour of integration past a pole of the integrand. (We derived a form of the
residuetheorem in Section 10, in the discussionof poles of generating functions.) There is an
impressive generalizationby Leray [f, of this theory to seeral dimensions. Unfortunately,
it is complicated, and with few exceptions(such asthat of [P57], seealso [£]]) sofar it has not
beenapplied successfullyto enumeration problems. On the other hand, there are somemuch
simpler tools that can frequertly be usedto good e ect.

An important tool in asymptotics of multiv ariate generating functions is the multidimen-

sional saddle point method.

Example 13.1. Alternating sums of powers of binomial coe cients. Consider

)gn
S(s;n) = (1"
k=0

an - (13.1)
where s and n are positive integers. It has been known for a long time that S(1;n) = 0,
S(2;n) = (2n)I(n!) 2, S(3;n) = (3n)!(n!) 2. However, no formula of this type hasbeenknown
for s > 3. De Bruijn (see Chapter 4 of [F3]) shaved that S(s;n) for integer s > 3 cannot
be expressedas a ratio of products of factorials. Although his proof is not preseried as an
application of the multidimensional saddle point method, it is easyto translate it into those

terms. S(s;n) is easily seento equal the constart term in
F(ziiinizs )= ( D"+ z)™ 0L+ 25 )™ (22 1) D (13.2)

and so Z 7
S(s;n) = (2 i) s* F(ze;::052s 1)z bz tdzg idzs 1 (13.3)
where the integral is taken with ead z; traversing a circle, say. De Bruijn's proof in e ect

shows that for s xed andn! 1 , there are two saddlepoints at z; = =25 1= exp(@ ),
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with = (2s) 1, and this leadsto the estimate
n Oons+s 1
S(sin)  2cos o 22 S( n)d 925 172 a5 n1 1 (13.4)
valid for any xed integers 2. Sincecoq (2s) 1!) is algebraic but irrational for s 4, the
asymptotic estimate ([[3:4) showsthat S(s;n) cannot be expressedasa ratio of nite products
of (gjn)! for any xed nite setof integersa;.
In Chapter 6 of [63], de Bruijn derivesthe asymptoticsof S(s;n) asn! 1 for generalreals.

The approad sketched above no longer applies, and de Bruijn usesthe integral represetation

Z s
+
S(s:n) = 2n+1) _ c_lz ;
c (n+z+1)(n z+1) 2isin z
where C is a simple closed curve that contains the points n; n+ 1;:::; 1,0;1;:::;n in

its interior and has no other integer points on the real axis in its closure. A complicated
conmbination of analytic techniques, including the one-dimensionalsaddle point method, then

leadsto the nal asymptotic estimate of S(s;n).

The multidimensional saddlepoint method works best when applied to large singularities.
Just as for the basic one-dimensionalmethod, it doesnot work when applied to small singu-
larities, sudh as those of rational functions. Fortunately, there is a trick that often succeeds
in corverting a small singularity in n dimensionsinto a large onein n 1 dimensions. The
main idea is to expand the generating function with respect to one of the variables through
partial fraction expansionsor other methods. It is hard to write down a generaltheorem, but

the next exampleillustrates this technique.

Example 13.2. Alignments of k sequenes. Let f (k;n) denotethe number of Kk m matrices
of O's and 1's such that ead column sumis 1 and ead row sumis exactly n. (The number

of columns, m, can vary, although obviously k m  kn.) We considerk xed, n! 1 [L7§.

If welet N(rq;:::;rg) denotethe number of 0; 1 matrices with k rows, no columns of all 0's,
and row sumsry;:::;ry, then it is easyto see[[L7§ that
0 1,
X YK
F(zy:i0z¢) = N (ra;:ii;re)zyd zlr(k = @ 1+ zj)A : (13.5)
ry;arg O j=1
We have f (k;n) = N(n;:::;n), and sowe needthe diagonalterms of F = F(z1;:::;2¢). The

function F is rational, soits singularity is small. Moreover, the singularities of F are di cult
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to visualize. Howevwer, in any single variable F is simple. We take advantage of this feature.

Let
V1
A(2)= (1+1z); (13.6)
j=1
where z standsfor (zy;:::;2¢ 1) 2 k1 and expand
0 " 1,
X A(z)Mz"
@2 1+z)A =2 A@@A+1z)) t= 2 k. 13.7
Therefore
Z Z
..... SN 1 A()™ dz dz 1 .
N(rq;::i5rg 1;m) = W 2 A" Z£1+1 er(k : : (13.8)

The function whosecoe cien ts we are trying to extract is now A(z)™=(2 A(z))™*!, which is
still rational. However, the interesting casefor usism ! 1 , which transforms the singularity
into alarge one. We are interestedin the caser, = rp = = rx 1= r = n. Then the integral
in (@ can be shown to have a saddlepoint at z; = , 1 ] k 1, where = 2%k 1,

and one obtains the estimate
f(k:n)=r"n & D=2g  (k D=21=2) 1> D=2K) L on *2)g as n! 1 : (13.9)

The examplesabove of applications of the multidimensional saddle point method all dealt
with problemsin a xed dimension as various other parametersincrease. A much more chal-
lenging problem is to apply this method when the dimensionvaries. A noteworthy casewhere
this has beendone successfullyis the asymptotic enumeration of graphs with a given degree

sequenceby McKay and Wormald [P79.

is the coe cien t of z81z%2  z% in

Y
F = 1+ zz); (13.10)

and so by Caucdhy's theorem

G(n;dy;:iiidy) = (2 i) " Fz, 1 2% ldz dz ; (13.11)
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whereead integral is on a circle certered at the origin. Let all the radii be equalto somer > 0.

The integrand takeson its maximum absolute value on the product of thesecirclesat precisely
the two points z; = 2z, = =zy=randz; =2z, = =z,= r.lfdi=dy= = dp, so
that we consideronly regular graphs, McKay and Wormald [P79 show that for an appropriate

choice of the radius r, thesetwo points are saddlepoints of the integrand, and succeeadhrough

careful analysis in proving that if dn is even, and min(d;n d 1) > cn(logn) * for some
c> 2=3, then

1+10 10?2

G(n:d;d:;::z;d) = 21722 n WL )N 4y n=2eyp Za )

+0(n ) (13.12)

asn! 1 forany < min(1=4;1=2 1=(3c)), where = d=(n 1).

McKay and Wormald [P79 also succeedin estimating the number of irregular graphs,
provided that all the degreesd; are closeto a xed d that satis es conditions similar to those
above. The proof is more challenging becausedi erent radii are used for di erent variables
and the result is complicated to state.

The McKay-Wormald estimate of Example is a true tour de force. The problem is
that the number of variablesis n and so grows rapidly, whereasthe integrand grows only like
exp(cn?) at its peak. More precisely after transformations that remove obvious symmetries
are applied the integrand near the saddlepoint dropso likeexp( n P J-Z). This is just barely
to allow the saddle point method to work, and the symmetriesin the problem are exploited
to push the estimatesthrough. This approac can be applied to other problems (cf. [P79]),
but it is hard to do. On the other hand, when the number of variables grows more slowly,
multidimensional saddle point contributions can be estimated without much trouble.

Sofar this section has beendewted primarily to multiv ariate functions with large singu-
larities. However, there is also an extensiwe literature on small singularities. The main thread
connectingmost of theseworks is that of certral and local limit theorems. Bender [B7] initiated
this developmert in the setting of two-variable problems. We present someof his results, since
they are simpler than the later and more general onesthat will be mertioned at the end of
this section.

Consider a double sequenceof numbers an 0. (Usually the a,x are 6 0 only for
0 k n.) Wewill assumethat X

k
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for all n, and de ne the normalized double sequence

We will say that a,k satis es a certral limit theoremif there exist functions , and p sud

that
z

X X
lim sup pn(k) (2) ' exp( t?=2)dt = 0: (13.15)
Ty 1

K nX+ n

Equivalertly, p, (k) is asymptotically normal with mean , and variance 2.

Theorem 13.1. [B]. Letank O, and set
X
f(z;w) = ank 2"WK : (13.16)
nk 0

Suppsethat there are (i) a function g(s) that is continuous and 6 O near s = 0, (ii) a function

r(s) with bounded third derivative near s = 0, (iii) an integerm 0, and (iv) ; > 0 such
that
2 ey 9D (13.17)
r(s) 1 z=r(s)
is analytic and bounded for
jzZj< i dzi<jr(Qj+ (13.18)
Let
= rq0)=r0); ?= 2 r%0)=r(0): (13.19)

If 6 0, then ([3.19) holdswith ,=n and 2=n 2

A certral limit theorem s useful, but it only givesinformation about the cumulative sums
of the ank . It is much better to have estimatesfor the individual a,.x. We sa that pp(k) (and

ank) satisfy a local limit theorem if
lim sup npn(b nx+ n0) (2) =2 exp( x?=2) = 0: (13.20)
: X

In general, we cannot derive (L3:2Q) from ([[3.19) without someadditional conditions on the
ank, sud asunimodality (see[7]). The other approad onecantake is to derive ([L3.20) from

conditions on the generating function f (z; w).
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Theorem 13.2. [B7. Supmse that ank 0, and let f (z;w) be de ned by ([[3:16. Let

1 <a<b<1.Dene
R()=fz:a Re(z) b;jim(2)j g: (13.21)
Suppsethere exist > 0, > 0, anintegerm 0, and function g(s) and r(s) suchthat
() g(s) is continuous and 6 0 for s2 R( ),
(i) r(s) 8 0 and has a boundd third derivative for s 2 R( ),

(i) for s 2 R() and jzj jr(s)j(1 + ), the function de ned by ([3:I]) is analytic and
bounded,
(iv)

) 2. )
() S0

(v) f(z;€®) is analytic and bounded for

for a b; (13.22)

iz jr(Re(s))j(L+ ) and s jIm(s)]

Then
nme Xg()
an:k mr ()™ (@ )2 as n! 1 (13.23)
uniformly for a b, where
r{)
- = —; 13.24
) ( )
k 2 r%)
2 _ " .
= - 0y (13.25)

There have beenmany further developmeris of certral and local limit theoremsfor asymp-
totic enumeration since Bender's original work [BZ. Currently the most powerful and general
results are those of Gao and Richmond [[[5]]. They apply to general multiv ariate problems,

not only two-variable ones. Other papers that deal with certral and local limit theorems or

other multiv ariate problems with small singularities are [Bg, £2 E5, P§, B27.
14. Mellin and other integral transforms

When the best generating function that one can obtain is an in nite sum, integral trans-

forms can sometimeshelp. There is a large variety of integral transforms, sudc as those of
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Fourier and Laplace. The one that is most commonly used in asymptotic enumeration and
analysis of algorithms is the Mellin transform, and it is the only one we will discussexten-
sively below. The other transforms do occur, though. For example,if f (x) = P apx"=nl is an
exponertial generating function of the sequencea,, then the ordinary generating function of

an can be derived from it using the Laplace transform
zZ, X zZ,
f (xy) exp( x)dx any"(n!) ! x"exp( x)dx
X ° (14.1)
= any" :
n

(This assumesthat the a, are small enoughto assurethe integrals above corverge and the

interchange of summation and integration is valid.) Related integral transforms can be used

to transform generating functions into other forms. For example, to transform an ordinary

. : P . .
generating function F(u) =  anu" into an exponertial one, we can use
z
1
2 | juji=r
The basic referencesfor asymptotics of integral transforms are [Bg, P3, B47. This

F (u) exp(w=u)du : (14.2)

sectionwill only highlight someof the main properties of Mellin transforms and illustrate how
they are used. For a more detailed survey, especially to analysis of algorithms, see[[[37.
Let f (t) be a measurablefunction de ned for realt 0. The Mellin transform f (z) of

f (t) is a function of the complex variable z de ned by
z

1
f (2) = f(t)t? ldt: (14.3)
0
If f(t) = O(t )ast! O andf(t)= O(t )ast! 1 ,then the integralin ([[4.3 corvergesand
de nesf (z) to be an analytic function inside the \fundamental domain" < Re(z) <
As an example, for f (t) = exp( t), wehavef (z)= (z)and =0, = 1 . Thereisan
inversion formula for Mellin transforms which states that
1 Z ctil
f(t)= — f (2)t *dz; (14.4)
21 c il

and the integral is over the vertical line with Re(z) = c¢. The inversion formula ([[4.9) is valid
for <c< , but much of its strength in applications comesfrom the ability to shift the
contour of integration into wider domainsto which f (z) can be analytically cortinued.

The advantage of the Mellin transform is due largely to a simple property, namely that if

g(t) = af (bx) for breal, b> 0, then
g (z) = ab *f (2): (14.5)
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This readily extendsto shaow that if
X
F(t) = kF(kt) (14.6)
k

(wherethe § and ¢ > 0 are sud that the sum corvergesand F(t) is well behaved), then
!

X
F (2) = ko f(2): (14.7)
k
In particular, if 2
F(t)= f(kt); (14.8)
k=1
then ]
ps
F (2) = k 2 f (2)= (2f (2); (14.9)
k=1

where (z) is the Riemann zeta function.

Example 14.1. Runsof headsin coin tosses.What is Ry, the expectedlength of the longest
run of headsin n tossesof a fair coin? Let p(n; k) be the probability that there is no run of k
headsin a coin tosses.Then
X
Rnp = kK(p(n;k+ 1) p(n;K)) : (14.10)
k=1
We now apply the estimates of Example P.. To determine p(n; k), we take A = 00 0, and
then Ca(z) = zX 1+ 2z 2+  +z+1,50Ca(1=2)= 1 2 k. Hence(P.19 shows easily that

in the important rangeswherek is of order logn, we have
p(n; k) = exp( n2 ¥); (14.11)

and there R, is approximated well by

3
r(ny)=  k(exp( n2 K1) exp( n2 X)) : (14.12)
k=0

The function r(t) is of the form ([[4.§) with
k=k k=2K f@)=exp( t=2) exp( t); (14.13)

is easily seento be well behaved, and sofor 1< Re(z) < 0,
|
% !
r@= k2 f (=220 2) % (): (14.14)
k=0
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Next, to determinef (z), we note that for Re(z) > 0 we have
z 1 z 1 z 1
f ()t dt = e B2t2 ldt e 't? ldt
0 0 0
2 1(2: (14.15)

f (2)

By analytic cortinuation this relation holdsfor 1< Re(z), andwe nd that for 1< Re(z) <
0,
r(z)= 2222 1) '(z2): (14.16)

We now apply the inversionformula to obtain
Z o4t

r(t) = i. 2222 1) Y(2)t %dz: (14.17)
210 12201

The integrand is a meromorphic function in the whole complex plane that dropso rapidly on
any vertical line. We move the contour of integration to the line Re(z) = 1. The new integral
is O(t 1), and the residuesat the poles(all on Re(z) = 0) will give the main contribution to
r(t). There are rst order polesat z = 2 imlog2 for m 2 nf0Og coming from 2% = 1, and
a single secondorder pole at z = 0, since ( z) hasa rst order pole there aswell. A short
computation of the residuesgives

R
r(t) = log,t (log2) 1( 2 ih(log2) )exp(2 ihlog,t)+ O(t 1) : (14.18)
h=1

There are other ways to obtain the sameexpansion([L4.19 for r(t) (cf. [[8]]). The periodic
oscillating componert in r(t) is commonin problems involving recurrencesover powers of 2.
This happens, for example, in studies of register allocation and digital trees [[3§ [3§ [4]).
The periodic function is almost always the sameas the one in Eq. ([4.1J, even when the
conmbinatorics of the problem varies. Tednically this is easyto explain, becauseof the closely
related recurrencesleading to similar Mellin transforms for the generating functions.

Mellin transforms are useful in dealing with problems that combine combinatorial and
arithmetic aspects. For example, if S(n) denotesthe total number of 1's in the binary repre-

sertations of 1;2;:::;n 1, then it was shavn by Delangethat
1
S(n) = én log,n + nu(log,n) + o(n) asn! 1 ; (14.19)

where u(x) is a cortinuous, nowhere di eren tiable function that satis es u(x) = u(x+ 1). The
Fourier coe cien ts of u(x) are known explicitly. Perhapsthe best way to obtain theseresults

is by using Mellin transforms. See[[[2], for further information and references.
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Mellin transforms are often combined with other techniques. For example, sums of the

P . I . .
forms, =  ax E with oscillating ax lead to generating functions

X
s(z) = aw(2)X: (14.20)
k

The asymptotic behavior of s(z) nearits dominant singularity can sometimesbe determined by
applying Mellin transforms. For a detailed explanation of the approad, see[[37. Examples

of the application of this technique can be found in [[[3, P&Q.
15. Functional equations, recurrences, and combinations of metho ds

Most asymptotic enumeration results are obtained from combinations of techniques pre-
serted in the previous sections. Howewer, it is only rarely that the basicasymptotic techniques
can be applied directly. This section describes a variety of methods and results that are not
easyto categorize. They use combinations of methods that have been presened before, and
sometimesdewvelopthem further. In most of the examplesthat will be preserned, somerelations
for generating functions are available, but no simple closed-formformulas, and the problem is
to deducewhere the singularities lie and how the generating functions behave in their neigh-
borhoods. Oncethat task is done, previous methods can be applied to obtain asymptotics of

the coe cien ts.

15.1. Implicit functions, graphical enumeration, and related topics

Example 15.1. Rooted unlakelad trees. We sketch a proof that T,,, the number of rooted
unlabeledtreeswith n vertices, satis es the asymptotic relation ([.9). The functional equation
(L3 holds with T(z) regarded as a formal power series. The rst stepis to shav that T(z)
is analytic in a neighborhood of 0. This can be done by working exclusively with Eq. ([.9).
(There is an argumert of this type in Section 9.5 of [[8g].) Another way to prove analyticity
of T(z) is to use conbinatorics to obtain crude upper bounds for T,,. We use a conmbination
of theseapproades. If atree with n 2 vertices has at least two subtreesat the root, we can
decomposeit into two trees, the rst consisting of one subtree at the root, the other of the

root and the remaining subtrees. This shaws that
K 1

Tn Th 1+ TkTh k; N 2: (15.1)
k=1
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Therefore, if we de ne a; = 1, and

X 1
an=a, 1+ aan k, h 2; (15.2)
k=1
then we have T, a,. Now if 2
A(z) = anz" ;
n=1

then the de ning relation ([5.9 yields the functional equation
A(z) z=zA(2)+ A(2)?; (15.3)

so that

A)=@1 z @ 6z+ )= (15.4)
SinceA(z) is analytic in jzj < 3 2IO 2= 0:17157::: , we have
0 T, a,=0(6"): (15.5)

It will alsobe cornveniert to have an exponertial lower bound for T,,. Let b, bethe number
of rooted unlabeledtreesin which every internal vertex has 2 subtrees.Thenb; = 1,lp = 1,

and
b(nxl)=2c

b, bbb, « 1 for n 3: (15.6)
k=1

We use this to show that b, (6=5)" for n 7. Direct computation establishesthis lower
boundfor7 n 14,andforn 15weuseinduction andb, b, « 1 with k= b(n 1)=2c.
Since T, b (6=5)", T(z) corvergesonly in jzj < r for somer with r < 1. Since
TO)=0,jT(2)j Cijzjinjzj r for every > 0, and therefore
R
u(z) = T(Z4=k (15.7)
k=2
is analytic in jzj < r¥2, and in particular at z = r. Therefore, although we know little about

r and u(z), we seethat T(z) satis es G(z;T(z)) = T(z), where
G(z;w) = zexp(w + u(z2)) (15.8)

is analytic in z and w for all w and for jzj < r 1.
We will apply Theorem First, though, we needto establish additional properties of
T(z). We have

T(2)exp( T(z2)) = zexp(u(z)) ! rexp(u(r)) as z! r ; (15.9)
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and 0 < rexp(u(r)) < 1 . SinceT(z) is positive and increasingfor 0< z < r, T(r), the limit
of T(z) asz! r must existand be nite.

We next show that T(r) = 1. We have

gG(z;w) = G(z;w) : (15.10)

We know that G(z;T(z)) = T(z) for jzj < r, and in particular for somez arbitrarily closeto
r. If T(r) 6 1, then by ([[5.10)
—@(G(z;w) w) 60 (15.11)
@v w=T(z)
in a neighborhood of z = r, and therefore T(z) could be corntinued analytically to a neighbor-
hood of z = r. This is impossible,sincer is the radius of corvergenceof T(z), and T, 0
implies by Theorem[[0.3that T(z) hasasingularity at z = r. Thereforewemust haveT(r) = 1,
and Gy (r;T(r)) = 1.

We have now shawvn that conditions (i) and (ii) of Theorem hold with the r of that
theorem the sameasthe r we have dened and s = T(r) = 1, = r¥ r. Condition (i)
is easyto verify. Finally, the conditions on the coe cien ts of T(z) and G(z;w) are clearly
satis ed.

SinceTheorem [[0.§ applies, we do obtain an asymptotic expansionfor T, of the form ([[.9),
with C given by the formula ([[0.69. It still remainsto determine r and C. No closed-form
expressionsare known for these constarts. They are conjectured to be transcendernal and
algebraically independert of standard constarts such as and e, but no proof is available.

Numerically, howeer, they are simple to compute. Note that

Gy(r;1) = exp(l+ u(r))(d + rudr))
= r Y+ u4r); (15.12)
Guww(r;1) = 1; (15.13)

sowe only needto compute r and uqr). Thesequartities can be computed along with u(r) in
the sameprocedure. The basic numerical procedureis to determine r asthe positive solution
to T(r) = 1. To determine T(x) for any positive x, we take any approximation to the T (x¥),
k 1 (starting initially with xX asan approximation to T(x*), say), and combine it with ([L.9)
(applied with z = x™, m 1) to obtain improved approximations. This procedure can be

maderigorous. Upper boundsfor r, u(r), and uYr) are especially easy SinceT; = 1, T(x) X
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for 0< x < 1, and therefore, T(xK)  xK fork 1. Supposethat we start with a xed value of

x and derive somelower bounds of the form T (x¥) u(kl) O0for k 1. Then the functional

equation ([[.9) implies
|
% !
Tx™  u® = xexp Ukm =k m 1: (15.14)
k=1

This processcan be iterated seweral more times, and to keepthe computation manageable we
can always setu(kj) = O0fork Kq. If weever nd alower bound T (x) > 1 by this processthen
we know that r < x, sinceT(r) = 1. Lower boundsfor r are slightly more complicated.

We mertion here that if U, denotesthe number of unlabeled trees, then the ordinary

generating function U(z) = P Unz" satis es
U@) = T(2) T(2)?=2+ T(z%)=2: (15.15)
Using the results from Example [[5.] about the analytic behavior of T(z), it can be shavn that
U, ¢c% "n 52, (15.16)
wherer = 0:3383219:: is the sameas before, while C%= 0:5349485: : .

Example 15.2. Leftist trees. Let a, denotethe number of leftist trees of sizen (i.e., rooted
planar treeswith n leaves,sud that in any subtree S, the leaf nearestto the root of Sisin the
right subtreeof S [P37]). Thena; = a; = ag = 1, a4 = 2, as = 4. No explicit formula for a, is
known. Even the recurrencesfor the a, are complicated, and involve auxiliary sequenceslf

R
f(z) = anz" (15.17)

n=1
denotesthe ordinary generating function of a,, then the combinatorially derived recurrences
for the a, shaw that [P24]

_ 1, 5 1R 2.
f(z)=2z+ Ef (2)c + > Om(2)°; (15.18)

m=1
wherethe auxiliary generatingfunctions gm(z) (which enumerate leftist treeswith the leftmost

leaf at distancem 1 from the root) satisfy

2 3
r)(l

h(2) = z; %R(2) = zf (2); Gn+1(2) = gn(2) 4 (2) G5 m 2; (15.19)
j=1
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and
3
f(z) = On(2) : (15.20)

m=1

These generating function relations might not seempromising. If r is the smallest singularity
of f (2), then P gm(2)? is not analytic at r, sowe cannot apply Theorem [0.§in the way it was
usedin Example However, Kemp [224] has sketched a proof that the analytic behavior
of f (z) is of the sametype as that involved in functions covered by Theorem sothat it

has a dominant squareroot singularity, and therefore
an= c"n 32+ 0(c"n 52 (15.21)

where

= 0:250363429 ::; c= 2749487902 :: : (15.22)

The constarts and c are not known explicitly in terms of other standard numberssuch as or
e, but they can be computed e cien tly. The ¢ "n 3%2 term in ([[5.2)) givesan approximation
to a, that is accurateto within 4% for n = 10, and within 0.4%for n = 100. Thus asymptotic
methods yield an approximation to a, which is satisfactory for many applications. Further

results about leftist trees can be found in [P2]].

15.2. Nonlinear iteration and tree parameters

Example 15.3. Heights of binary trees. A binary tree [DEK] is a rooted tree with unlabeled
nodes,in which eat node hasO0 or 2 successorsand left and right successorsare distinguished.
The sizeof a binary tree is the number of internal nodes,i.e., the number of nodeswith two
successors. We let B, denote the number of binary trees of sizen, sothat B = 1 (by

corvention), By = 1,B,=2,B3=5;:::. Let
B(z) = Bnz" : (15.23)

Since eat nonempty binary tree consistsof the root and two binary trees (the left and right

subtrees), we obtain the functional equation
B(z) = 1+ zB(2)?: (15.24)

This implies that
1 1 4

B(2)= 2z '

(15.25)
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so that
1 2n
B, = ; 15.26
=1 ( )

and the B, are the Catalan numbers. The formula (f-4) (easily derivable from Stirling's

formula (B.1)) shaws that
Bn %20 324" as n! 1 : (15.27)

The height of a binary tree is the number of nodesalong the longest path from the root to
a leaf. The distribution of heights in binary trees of a given sizedoesnot have exact formulas
like that of ([[5.2]) for the number of binary trees of a given size. There are seweral problems
on heights that have beenanswered only asymptotically, and with varying degreesof success.
The most versatile approad is through recurrenceson generating functions. Let By, be the
number of binary trees of sizen and height  h, and let

b3
bh(2) = Bhnz" : (15.28)
n=0

Then
to(z) = 0, bi(z)=1; (15.29)

and an extension of the argumert that led to the relation ([[5.29 yields
bhe1(2) = 1+ zbh(2)?; h O: (15.30)

The b,(z) are polynomials in z of degree2” 1 1for h 1. Unfortunately there is no simple
formula for them like Eq. ([5.29 for B(z), and one hasto work with the recurrence ([5.30)
to obtain many of the results about heights of binary trees. Di erent problems involve study
of the recurrencein di erent rangesof valuesof z, and the behavior of the recurrencevaries
drastically.

For any xed z with jzj 1=4,b,(z)! B(z) ash! 1 . Forjzj > 1=4 the behavior of by (z)
is more complicated, and is a subject of of nonlinear dynamics [P7]. (It is closelyrelated to the
study of the Mandelbrot set.) For any real z with z> 1=4, b,(z) ! 1 ash! 1. To study
the distribution of the By, asn variesfor h xed, but large, it is necessaryto investigate this
range of rapid growth. It canbe shown [[[33 that for any ; and , with 0< ;< ;< 1=2,

_exp@ *((r) r qr)logr))
Bh;n

= 302G (2 o qnp= T 0@ T (15.31)

144



uniformly ash;n! 1 with
1<n=2"< ,; (15.32)

wherethe function (x) isdened for 1=4< x< 1 by

*

i 1
= + ! + — .
(x) = logx - 2'log 1 O (15.33)
and r is the unique solution in (1=4;1 ) to
r qr)=n2 Mt (15.34)

The formula ([[5.3)) might appear circular, in that it describesthe behavior of the coe -
cients p., of the polynomial b, (z) in terms of the function (z), which is de ned by b,(z) and
all the other b (z). However, the series([[5.39) for (z) corvergesrapidly, sothat only the rst
few of the by, (z) matter in obtaining approximate answers, and computation using ([[(5.39 is
e cien t. The function (z) is analytic in a region cortaining the real half-line x > 1=4, sothe
behavior of the By, is smooth. It is alsoknown [[[37 that the behavior of By, asa function
of n is Gaussiannear the peak, which occurs at n 2" 1 0:628968::. The distribution of
Bnh;n is not Gaussianthroughout the range ([[5.3), though.

The proof of the estimate ([[5.3]) is derived from the estimate

bh(z) = exp(2* ' (z) logz)(1+ O(exp( 2")) ; (15.35)

valid in a region along the half-axis x > 1=4. The estimates for the coe cien ts By, are
obtained by applying the saddle point method. Becauseof the doubly-exponertial rate of
growth of b,(z) for z closeto the real axis, it is easyto show that on the circle of integration,
the region away from the real axis cortributes a negligible amourt to By,.,. The relation ([L5.3)
is su cien t, together with the smoothnessproperties of (z), to estimate the contribution of
the integral near the real axis. To prove ([[5.3%, one proceedsas in Example P.7 Howewer,
greater careis required becauseof the complex variablesthat occur and the needfor estimates

that are uniform in the variables. The basic recurrence([[5.30) shows that

loghh+1 (2) 2logh,(z) + logz+ log 1+

1
zby(2)2
(15.36)

1
2lo z)+logz+log 1+ ———FMM—
gbn(2) g g bt (2) 1
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Iterating this relation, we nd that for h 1,

i 1
loghh+1(z) = 2"lloghi(z) + 2" 1)logz+  2€log 1+ 1
k=0 tha «(2) 1
8 9 (15.37)
A < b(kl . 1 =
= 2" logz+ 2)log 1+ ——— logz :
T TC R

The basic equation ([[5.3) then follows. The technical dicult y is in establishing rigorous
bounds for the error terms in the approximations. Details are preserted in [[3].

Most of the binary trees of a given height h are large, with about 0:3 2" internal nodes.
This might give the misleading impressionthat most binary trees are closeto the full binary
tree of a similar size. Howewer, if we considerall binary trees of a given size n, the average
height is on the order of n172, sothat they are far from the full balancedbinary trees. The
methods that are usedto study the averageheight are di erent from those usedfor trees of a
xed height. The basic approad of is to let

X
H, = ht(T) ;
where the sum is over the binary trees T of sizen, and ht(T) is the height of T. Then the
averageheight is just H,=B,.

The generating function for the H, is

R X
H(z) = Haz"= (B(2) W(2); (15.38)

and the analysis of proceedsby investigating the behavior of H(z) in a wedge-shaed

region of the type encourtered in Section11.1. If we let

(20 = @1 492, (15.39)
&n(z) = (B(2) m(2)=(2B(2)) ; (15.40)

then the recurrence([L5.30) yields
&n+1(2) = (1 (2)en()(1  en(2)) 5 &(2) = 1=2: (15.41)

Extensive analysis of this relation yields an approximation to en(z) of the form

@0 @" .

e (15.42)

en(2)
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valid for j (z)j suciently small, jJArg (2)j < =4+ fora xed > 0. (The preciseerror
terms in this approximation are complicated, and are given in [[L33].) This then leadsto an

expansionfor H(z) in asectorjz 1=4j< , =2 < jArg(z 1=4)j< =2+ of the form
H(z) = 2log(1 4z)+ K + O(j1 4zj"); (15.43)

wherev is any constart, v < 1=4, and K is a xed constart. Transfertheoremsof Section11.1

now yield the asymptotic estimate
Hy 2n 4" asn! 1 : (15.44)

When we combine ([[5.4) with ([[5.2]), we obtain the desiredresult that the average height
of a binary tree of sizenis 2( n)'?2 asn! 1.

Distribution results about heights of binary trees can be obtained by investigating the
generating functions

h(B(z) n(2) : (15.45)
h 0

This procedure,carried out in by using modi cations of the approadc sketched above for
the averageheight, obtains asymptotics of the momerts of heights. The method mentioned in
Section 6.5 then leadsto a determination of the distribution. Howewer, the resulting estimates
do not say much about heights far away from the mean. A more careful analysisof the behavior
of en(z) can be used [[[2§] to show that if x = h=(2n172), then

242

R
2xn 2 m?(@2m?x?> 3)e ™ (15.46)

m=1

Bh;n Bh 1n
Bn

asn;h! 1, uniformly for x = o((log n)¥2), x 1= o((log n)1).

For extremely small and large heights, di erent methods are used. It follows from [[2{]

that
Bh;n Bh 1;n
Bn

for a constart ¢> 0, which shaws that extreme heights are infrequert. (The estimatesin [[L2]]

exp( c(h?=n+ n=h?)) (15.47)

are more precisethan ([[5.47).) Bounds of the above form for small heights are obtained in
by studying the behavior of the b,(z) almost on the boundary between corvergenceand
divergence,using the methods of [B99. Let x,, be the unique positive root of by (z) = 2. Note
that B(1=4) = 2, and ead coe cient of the b,(z) is nondecreasingash ! 1 . Therefore

X2 > X3> > 1=4. More e ort shows [[[2q] that xy, is approximately 1=4+ h 2 for a certain
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> 0. This leadsto an upper bound for By, by Lemmaf.]. Bounds for treesof large heights
are even easierto obtain, sincethey only involve upper boundsfor the by(z) b, 1(2) inside

the disk of corvergencejzj < 1=4.

In addition to the methods of [[[33, that were mentioned above, there are also other
techniquesfor studying heigtts of trees, such asthose of [FJ, B31]. However, there are problems
about obtaining fully rigorous proofsthat way. (Seethe remarksin [[[2§] on this topic.) Most
of these methods can be extended to study related problems, such as those of diameters of
trees [B5]).

The results of Example [[5.3 can be extendedto other families of trees (cf. [[[33, L24).
What matters in obtaining results such as those of the above example are the form of the

recurrences,and especially the positivity of the coe cien ts.

Example 15.4. Enumeration of 2,3-trees [B0J. Height-balanced trees satisfy di erent func-
tional equations than unrestricted trees, which results in di erent analytic behavior of the
generating functions, and di erent asymptotics. Consider 2; 3-trees;i.e., rooted, oriented trees
sud that ead nonleaf node has either two or three successorsand in which all root-to-leaf
paths have the samelength. If a, is the number of 2; 3-trees with exactly n leaves, then

a;= a= az= a4 = 1, a5 = 2;:::, and the generating function

p s
f(z) = anz" (15.48)
n=1
satis es the functional equation
f(z)=z+f(z°+ 23 : (15.49)
Iteration of the recurrence([[5.49) leadsto
R
f(z)=  Qu2); (15.50)
k=0

where Qo(2) = z, Qk+1(2) = Q«(z? + z3), provided the series([[5.50) corverges. The Taylor
series([[5.4) corvergesonly in jzj < 1, where = (1+ 52)=2is the \golden ratio." Study
of the polynomials Qx(z) shows that the expansion([L5.5() corvergesin a region

D=fz:jzi< 1+ :jArg(z hHij> = g (15.51)
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for certain , > 0, and that inside D,

1

f(z) = clog( z)+wlog( ' 2)+O( * 7); (15.52)

wherec= [ log(4 )] 1, and w(t) is a nonconstart function, analytic in a strip jlm (t)j <
for some > 0, such that w(t + log(4 )) = w(t). The expression([[5.5) only hasto be

proved in a small vicinity of (intersectedwith D, of course). Since
QU '+ )= t+@ ) +0(G i} (15.53)

(sothat !is arepelling xed point of Q), behavior like that of ([5.5) is to be expected,
and with additional work can be rigorously shovn to hold. Once the expansion ([5.5) is
established,singularity analysistechniques can then be applied to deducethat
n
an Fu(Iog n) as n! 1 ; (15.54)
where u(t) is a positive nonconstart cortinuous function that satis es u(t) = u(t+ log(4 )),
and hasmeanvalue ( log(4 )) . For details, see[B0(].

The samemethods can be applied to related families of trees, such asthose of B -trees.

The results of Example and the generalizations mentioned above all apply only to
the standard courting models, in which all treeswith a xed value of somesimple property,
such as sizeor height, are equally likely. Often, especially in computer scienceapplications,
it is necessaryto study trees produced by some algorithm, and consider all outputs of this
algorithm as equally likely. For example, in sorting it is natural to considerall permutations
of n elemerns asequally probable. If random permutations are usedto construct binary seart
trees, then the distribution of heights will be di erent from that in the standard model, and
the two trees of maximal height will have probability of 2=n! of occurring. The averageheight
turns out to be clognasn! 1 ,for c= 4:311::: a certain constart given as a solution to
a transcendental equation. This was shavn by Devroye [P7] (seealso [PJ]) by an application
of the theory of branching processes. For a detailed exposition of this method and other
applications to similar problems, see[P7(. The basic generating function approac that we
have usedin most of this chapter leadsto functional iterations which have not beensolved so

far.
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15.3. Dieren tial and integral equations

Section9.2shovedthat di erential equationsarisenaturally in analyzing linear recurrences
of nite order with rational coe cien ts. There are other settings when they arise even more
naturally. As is true of nonlinear iterations in the previous sectionand the functional equations
of the next one, di erential and integral equations are typically usedto extract information
about singularities of generating functions. We have already seenin Example P.3 and other
caseshat di erential equationscanyield an explicit formula for the generating function, from
which it is easyto deducewhat the singularities are and how they a ect the asymptotics of
the coe cien ts. Most di erential equationsdo not have a closed-formsolution. Howewer, it
is often still possibleto derive the necessaryinformation about analytic behavior even when
there is no explicit formula for the solution. We demonstrate this with a brief sketch of a

recert analysis of this type [[3]]. Other examplescan be found in [P77].

Example 15.5. Search costsin quadtrees [[3]]. Quadtreesare a well-known data structure
for multidimensional data storage[[[6§. Considera d-dimensional data space,and let n points
be drawn independertly from the uniform distribution in the d-dimensional unit cube. We
taked xed andn! 1 . Supposethat the rst n 1 points have already beeninserted into
the quadtree,and let D, bethe seart cost(de ned asthe number of internal nodestraversed)
in inserting the n-th item. The result of Flajolet and La orgue [[[3]] is that D, corvergesin
distribution to a Gaussianlaw whenn! 1. If , and , denotethe mean and standard

deviation of D, respectively, then
no2d tlogn; , d Y2logn)*? as n! 1 ; (15.55)

and for allreal < ,asn! 1,

z
Pr( n<Dn o< ) (@)% exp( x?>=2)dx: (15.56)

The results for , and ,, had beenknown before, and required much simpler techniques
for their solution, see[P7(]. It wasonly necessaryto study asymptotics of ordinary di eren tial
equationsin a single variable. To obtain distribution results for seart costs,it was necessary
to study bivariate generating functions. The basicrelation is

X
PriDn = kgu* = 2% 1) *( n(u) o () ; (15.57)
k
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where the polynomials n(u) have the bivariate generating function

b
(uz)= a(wz" : (15.58)
n=0

which satis es the integral equation

Z Z Z
(u;z)=1+ 29 o %t dxp T dxg
’ 0o X1(1 x1) o X2(1 x2) o X3l x3)
15.59)
Zy, z (
d X 1 d
Xd 1 ( u;Xq) Xd

o Xd 1l Xd1) o 1
This integral equation can easily be reducedto an equivalent di erential equation, which is

what is usedin the analysis. For d = 1 there is an explicit solution
(wz)=@1Q 2z2) 2; (15.60)

which shawnvsthat D, canbe expressedn terms of Stirling numbers. This is not surprising, since
for d = 1 the quadtree reducesto the binary seart tree, for which these results were known
before. For d = 2, ( u;z) can be expressedin terms of standard hypergeometric functions.
Howewer, for d 3 there do not seemto be any explicit represenations of ( u;z). Flajolet
and La orgue usea singularity perturbation method to study the behavior of ( u;z). They
start out with the di erential systemderivable in standard way from the di erential equation
asswiated to ([[5.59 (i.e., a systemof d linear di erential equationsin z with coe cien ts that
are rational in z). Sinceonly valuesof u closeto 1 are important for the distribution results,
they regard u as a perturbation parameter of this system. For every xed u, they determine
the dominant singularity of the linear di erential systemin the variable z, using the indicial
equations that are standard in this setting. It turns out that the dominant singularity is a
regularoneat z= 1, and

(uz) cu@d z) 27, (15.61)

at least for z and u closeto 1. This behavior of ( u;z) is then used (in its more precise
form, with explicit error terms) to deduce,through the transfer theorem methods explainedin

Section 11, the behavior of (u):
a(U)  o(u) (2 utdy ptt 1. (15.62)

This form, again in a more preciseformulation, is then usedto deducethat the behavior of

Dy is normal near its peak, and that the tails of the distribution are small.
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15.4. Functional equations

One area that needsand undoubtedly will receive much more attention is that of com-
plicated nonlinear relations for generating functions. Even in a single variable our knowledge
is limited. Some of the work of Mahler [R67, P69, dewoted to functions f (z) satisfying
equationsof the form p(f (z);f (z9)) = 0, wherep(u; V) is a polynomial, shavsthat it is possible
to extract information about the analytic behavior of f (z) nearits singularities. This canthen
be usedto study the coe cien ts.

Sometimesseemingly complicated functional equationsdo have easysolutions.

Example 15.6. A pebblinggame. In a certain pebbling game[fd], minimal con gurations of
sizen are counted by T,(0), whereT,(x) is a polynomial that satises T,(x) = OforO n 2,

Ta(x) = 4x + 2x2, andforn 3,
Ther (X) = x Y1+ x)?Th(x)  x 1Th(0) + xT20) + nx" : (15.63)
The coe cien ts of T,(x) are 0, and
To+r (1) 4Ta(Q)+ Ta(D)+ 1 6Th(L) ; (15.64)
soclearly eath coe cient of T,(x) is 6", sa. Let
h 3
focy)= Ta(x)y": (15.65)
n=0

The bound on T,(1) shaws that f (x;y) is analytic in x andy for jxj < 1, jyj < 1=6, sa, with
x and y complex. Then the recurrence([[5.6J) leadsto the functional equation

(x yA@+x)AF(y) = 22+ x)y°+ x¥y(L 2Py)(L xy) 2
(15.66)
yf (0;y) + x2yfx(0y) ;
where fx(Xx; y) is the partial derivative of f (x;y) with respect to x. We now di erentiate the

equation ([[5.6 with respectto x and setx = 0. We nd that

(1 29 0y) = yix(0ry) ; (15.67)

and therefore

(X yd+x)A)fF(xy) = 232+ x)y>+ x%y?(1  2x%y?)(1  xy) 2
(15.68)
[y+ (2y 1x?f (0;y) :
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When
X = y@l+ x)?; (15.69)

the left sideof Eq. ([[5.69 vanishes,and Eq. ([5.69 yields the value of f (0;y). Now Eq. ([5.69

holds for
x=(2y) ‘0 2y @ 4

To ensurethat ([[5.69 holds for x and y both in a neighborhood of 0, we set

ay)=(@y) '@ 2y @O 4)¥H: (15.70)

Then g(y) = y(1 + g(y))?, g(y) is analytic for jyj small, and so substituting x = g(y) in
Eq. (I5.69 yields

y+ 2y D1ay)2f(©;y) = 29(y)?2+ g(y)y?
(15.71)

+ y29(0)*(1  2y*g(y)A)L  yaly) *:
Thusf (0;y) is an algebraic function of y. Eq. ([[5.7)) was proved only for jyj small, but it can
now be usedto continue f (0;y) analytically to the ertire complex plane with the exception of
a slit from 1/4 to in nit y along the positive real axis. There is a rst order poleat y = 1=r,

with r = 4:1478990357: : the positive root of
r 7r?+ 14 9=0; (15.72)
and no other singularities in jyj < 1=4. Hencewe obtain
Tn(0) = [y"If (O;y) = cr" + O((4 + )") (15.73)

asn! 1, for evwery > 0, wherec is an algebraic number that can be given explicitly in

terms of r.

The value of f (0;y) is determined by Eq. ([[5.7)), and together with Eq. ([5.69 gives
f (x;y) explicitly as an algebraic function of x and y. The resulting expressioncan then be
usedto determine other coe cien ts of the polynomials T (x).

Example [[5.§waseasyto presen becauseof the special structure of the functional equation.
The main trick was to work on the variety de ned by Eq. ([5.69, on which the main term

vanishes,so that one can analyze the remaining terms. The samebasic approad also works
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in more complicated situations. The analysis of certain double queue systemsleadsto two-
variable generating functions for the equilibrium probabilities that satisfy equations such as

the following one, obtained by specializing the problem treated in [[4:
Q(z;w)f (z;w) = 2z(w  Df (z;0)+ 3w(z 1)f (O;w) ; (15.74)
valid for complex z and w with jzj;jwj 1, where
Q(z;w) = 6zw 3w 2z Z2w?: (15.75)

The generating function f (z;w) is analytic in z and w. What makes this problem tractable
is that on the algebraic curve in two-dimensional complex spacede ned by Q(z;w) = 0,
the quantity on the right-hand side of Eq. ([L5.749 hasto vanish, and this imposesstringent
conditions on f (z; 0) and f (0; w), which leadsto their determination. Oncef (z;0) and f (0; w)
are found, f (z;w) is de ned by Eq. ([[5.79), and one can determine the asymptotics of its
coe cien ts. Treatmert of functional equations of the type ([[5.79 was started by Malyshev
[£77]. For recert work and referencedo other papersin this area, see[[[44, [49]. This approac
hassofar beensuccessfubnly for two-variable problemswith Q(z; w) of low degree. Moreover,

the mathematics of the solution is far deeper than that usedin Example
16. Other metho ds

This section mentions a variety of methods that are not covered elsewherein this chapter
but are useful in asymptotic enumeration. Most are discussedbrie y, since they belong to

large and well developed elds that are beyond the scope of this survey.

16.1. Permanents

Van der Waerden'sconjecture, proved by Falikman [[13 and Egorychev [Pg], can be used
to obtain lower boundsfor certain enumeration problems. It statesthat if A isann n matrix
that is doubly stochastic (entries 0, all row and column sumsequalto 1) then the permanen
of A satises per(A) n "nl. (For most asymptotic problemsit is sucient to rely on an
earlier result of T. Bang and S. Friedland which givesa lower bound of per(A) e "
that is worseonly by a factor of n1¥2.) There is also an upper bound for permanerts. Minc's

conjecture, proved rst by Bragman and in a simpler way by Sdrijver [B4(] states that an
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n n matrix A with 0;1 entries and row sumsr;:::;rn has
¥ i}
per(A) (riH¥n -
j=1

We now show how theseresults can be applied.

Example 16.1. Latin rectangles. Supposewe aregivenak n Latin rectangle,k < n, sothat
the symbols are 1;2;:::;n, and no symbol appearstwice in any row or column. In how many
ways can we extend this rectangleto a (k+ 1) n Latin rectangle? To get a lower bound, form
ann n matrix B = (b ), with b = 1if i doesnot appearin columnj of the rectangle, and
bj = O otherwise. Then the row and column sumsof B are all equalto n k, so(n k) g
is doubly stochastic. Therefore per(B), which equalsthe desirednumber of ways of extending
the rectangle,is (n  k)"n "n! by van der Waerden's conjecture. By Minc's conjecture,
we alsohave per(B)  ((n  k))™( K |f we let L(k;n) denote the number of k n Latin
rectangles,then L(1;n) = n!, and the bounds derived above for the number of ways to extend

any given rectangle give

(V1
L(k;n) f(n j)"n "nlg=n K"(n)"(n k) " (16.1)

j=0

k1 .

L(k;n) f(n j)g= . (16.2)

j=0
Sharper estimatesfor L (k;n) have beenobtained through more powerful and complicated
methods by Godsil and McKay [[[63. They obtain an asymptotic relation for L(k;n) that is
valid for k = o(n%7), and improved estimates for other k. (It is known that for any xed Kk,

the sequencel. (k; n) satis es a linear recurrencewith polynomial coe cien ts [[[6(].)

There are problemsin which inequalities for permanerts give the correct asymptotic esti-

mates. One such exampleis preserted in [B1§ which discussesa variation on the \probl eme

desrencortres."

16.2. Probabilit y theory and branc hing pro cess metho ds

Many combinatorial enumeration results can be phrasedin probabilistic language, and
a few probabilistic techniques have appearedin the preceding sections. However, the stress
throughout this chapter hasbeenon elemenary and generatingfunction approacesto asymp-

totic enumeration problems. Probabilistic methods provide another way to approacd many of
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theseproblems. This has beenappreciated more in the former Soviet Union than in the West,
as can be seenin the books B34.

The last few years have seena great increasein the applications of probabilistic methods
to combinatorial enumeration and analysis of algorithms. Many powerful tools, sud as mar-
tingales, branching processesand Brownian motion asymptotics have beenbrought to bear

on this topic. Generalintroductions and referencesto thesetopics can be found in Chapter ?
aswell asin [§, [[1 B3 3. P4 3. P3 ES3 BT
16.3. Statistical physics

There is an extensiwe literature in mathematical physics concernedwith asymptotic enu-
meration, especially in Ising models of statistical mecdanics and percolation methods. Many

of the methods are related to conbinatorial enumeration. For an introduction to them, see

Chapter ? or the books [B4, p24.
16.4. Classical applied mathematics

There are many techniques, such as the ray method and the WKB method, that have
beendeweloped for solving di erential and integral equationsin what we might call classical
applied mathematics. An introduction to them can be found in [B7]. They are powerful, but
they have the disadvantage that most of them are not rigorous, sincethey make assumptions
about the form or the stability of the solution that are likely to be true, but have not been
established. Therefore we have not preseried such methaods in this survey. For someexamples
of the nonrigorous applications of these methods to asymptotic enumeration, seethe papers
of Knessland Keller [P31, 37. It is likely that with additional work, more of these methods

will be rigorized, which will increasetheir utilit y.
17. Algorithmic and automated asymptotics

Deriving asymptotic expansionsoften involvesa substartial amourt of tedious work. How-
ewver, much of it can now be done by computer symbolic algebra systemssuch as Macsyma,
Maple, and Mathematica. There are many widely available packagesthat can compute Taylor
seriesexpansions. Se\eral can alsocompute certain typesof limits, and somehave implemented
Gosper's inde nite hypergeometricsummation algorithm [[[7]]. They easethe burden of car-

rying out the necessarybut uninteresting parts of asymptotic analysis. They are especially
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usefulin the exploratory part of researd, when looking for identities, formulating conjectures,
or searting for counterexamples.

Much more powerful systemsare being developed. Given a sequencethere are algorithms
that attempt to guessthe generating function of that sequence[fld, [[6]. It is possibleto
go much further than that. Many of the asymptotic results in this chapter are stated in
explicit forms. As an example,the asymptotics of a linear recurrenceis derived easily from the
characteristic polynomial and the initial conditions, as was shown in Section 9.1. One needs
to compute the roots of the characteristic polynomial, and that is precisely what computer
systemsdo well. It is therefore possibleto write programs that will derive the asymptotics
behavior from the speci cation of the recurrence. More generally, one can analyze asymptotics
of a much greater variety of generating functions. Flajolet, Salvy, and Zimmermann [[2,
have written a powerful program for just such computations. Their systemusesMaple to carry
out most of the basic analytic computations. It contains a remarkable amount of automated
expertise in recognizing generating functions, computing their singularities, and extracting

asymptotic information about their coe cien ts. For example, if
f(z)= log[l+ zlog(l z?)]+ @ Z3) °+ exp(z€?) ; (17.1)

then the Flajolet-Salvy-Zimmermann system can determine that the singularity of f (z) that

is closestto the origin isat z= , where is the smallest positive root of
1= logl ?); (17.2)
and then can deducethat
["If(z)=n?! "+0O(n? ™ asn! 1 : (17.3)

The Flajolet-Salvy-Zimmermann systemis even more powerful than indicated above, since
it doesnot always require an explicit presenation of the generating function. Instead, often
it can accept a formal description of an algorithm or data structure, derive the generating
function from that, and then obtain the desiredasymptotic information. For example,it can

shaw that the averagepath length in a generalplanar tree with n nodesis

1 ., 4 1 _
> =2n3=2 4 S+ o(n*™) asn! 1 : (17.4)

What makes systemssud asthat of possibleis the phenomenon,already mentioned in
Section 6, that many common conbinatorial operations on sets, such as unions and permuta-

tions, correspond in natural ways to operations on generating functions.
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Further work extending that of [[[39 is undoubtedly going to be carried out. There are
somebasic limitations coming from the undecidability of even simple problems of arithmetic,
which are already known to imposea limitation on the theories of inde nite integration. If we
approximate a sum by an integral Z,

X dx; (17.5)

a

then as a next step we needto decide whether = 1 or not, sinceif = 1, this integral
is log(b=9 (assuming0 < a < b < 1), whereasif 6 1, it is (b at )=1 ).
Deciding whether = 1 or not, when s given implicitly or by complicated expressions,can
be arbitrarily complicated. Howewer, such di culties are infrequent, and so one can expect
substartial increasein the applicability of automated systemsfor asymptotic analysis.

The question of decidability of asymptotic problemsand genericproperties of combinatorial
structures that canbe speci ed in various logical frameworks hasbeentreated by Compton in a
seriesof papers[[7}, /8, (9. There is the beautiful recert theory of 0-1 laws for random graphs,
which says that certain (so-called rst-order) properties are true with probability either 0 or 1
for random graphs. Compton provesthat certain classesof asymptotic theories also have 0-1
laws, and describes general properties that have to hold for almost all random structures in
certain classes.His analysis usesTauberian theoremsand Hayman admissibility to determine

asymptotic behavior. For somefurther developmerts in this area, seealso [Bg.
18. Guide to the literature

This section preserns additional sourcesof information on asymptotic methods in enumer-
ation and analysis of algorithms. It is not meart to be exhaustive, but is intended to be used
asa guide in seardiing for methods and results. Many referenceshave beenpresened already
throughout this chapter. Here we describe only books that cover large areasrelevant to our
subject.

An excellert introduction to the basic asymptotic techniquesis givenin [[[73. That book,
intended to be an undergraduate textb ook, is much more detailed than this chapter, and
assumesno knowledge of asymptotics, but covers fewer methods. A lesscomprehensie and
less elemertary book that is oriented towards analysis of algorithms, but provides a good
intro duction to many asymptotic erumeration methods, is [[L77].

The best sourcefrom which to learn the basicsof more advancedmethods, including many

of those covered in this chapter, is de Bruijn's book [FJ. It was not intended particularly
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for those interested in asymptotic enumeration, but almost all the methods in it are relevant.
De Bruijn's volume is extremely clear, and provides insight into why and how various methods
work.

General presenations of asymptotic methods, although usually with emphasison applica-
tions to applied mathematics (di eren tial equations, special functions, and soon) are available
in the books [F4, [[00, [14, 13 P13 B44 B54 B73 P82 B8Y. Integral transforms are treated
extensiwely in [B9, P35, P99, B61l. Booksthat deal with asymptotics arising in the analysis
of algorithms or probabilistic methods include [[L1, B3, pog B39.

Nice general introductions to conbinatorial identities, generating functions, and related
topics are preseried in [B], B71. Further material can be found in

A very useful book is the compilation [[L6§. While it doesnot discussmethods in too much
detall, it lists a wide variety of enumerative results on algorithms and data structures, and
givesreferenceswvhere the proofs can be found.

Last, but not least in our listing, is Knuth's three-volume work [235, B37. While it
is devoted primarily to analysisof algorithms, it cortains an enormousamount of material on

combinatorics, especially asymptotic enumeration.
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