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ABSTRACT

The basic Merkle-Hellman additive trapdoor knapsack public-key cryptosystem was recently
shown to be insecure, and attacks have also been developed on stronger variants of it, such as the
Graham-Shamir system and the iterated knapsack cryptosystem. This paper shows that some
simple variants of another Merkle-Hellman system, the multiplicative knapsack cryptosystem, are
insecure. It is also shown that the Shamir fast signature scheme can be broken quickly. Similar
attacks can also be used to break the Scho

. .
bi-Massey authentication scheme. These attacks have

not been rigorously proved to succeed, but heuristic arguments and empirical evidence indicate
that they work on systems of practical size.
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1. Introduction

One of the best-known public-key cryptosystems, the basic Merkle-Hellman additive trapdoor

knapsack system [18], was recently shown to be easy to break by Shamir [25]. Subsequently,

Adleman [2] proposed attacks on the Graham-Shamir scheme and on the multiply iterated

Merkle-Hellman system. Adleman’s attack on the general multiply-iterated knapsack systems

does not seem to succeed [3,7], but other attacks on the doubly iterated knapsack schemes have

been proposed by Adleman and Lagarias (see [7,14]). Furthermore, Brickell [6] and Lagarias and

the author [15] have developed attacks on low-density knapsack cryptosystems. This paper

develops attacks on several other public-key cryptosystems. We show that it is easy to break the

Shamir fast signature public-key scheme [24], which is related to the Merkle-Hellman additive

knapsack system, but is designed for authentication. Another scheme we show how to break, but

only under certain circumstances, is the Merkle-Hellman multiplicative knapsack public-key

cryptosystem [18]. Both of these schemes are described in detail below. We also indicate briefly

how to adapt our methods to attack the Scho
. .
bi-Massey knapsack-based signature scheme.

Both the multiplicative and the additive knapsack systems as well as the Shamir signature

scheme relied for their presumed security on the difficulty of the general knapsack problem:

Given n + 2 integers a 1 , ... , a n , M, and m, find a solution c 1 , ... , c n (if it exists) for the

modular equation

m ≡
j =1
Σ
n

c j a j ( mod M) ,

in which each c j is an integer in the range 0 ≤ c j ≤ 1 (or else in the range



- 2 -

0 ≤ c j ≤ log M).

This problem is known to be NP-complete [24] and so is presumed to be hard, at least in the

worst case. (There is some empirical evidence, backed by heuristics and in some cases by

theoretical analyses, which indicates that many instances of this problem may be solvable in

polynomial time [6,15].) In order to have a usable cryptosystem, however, it is necessary that the

intended user should be able to utilize it, which means that he must be able to rapidly decode

messages or sign them (in a signature scheme). In order to make this possible, the designers of

the systems mentioned above have built into them trapdoors, which enable the intended user to

transform a seemingly very hard general knapsack problem into a very easy one. For instance, in

the basic Merkle-Hellman additive knapsack system, the designer publishes n keys, a 1 , ... ,a n ,

which are all large integers of about 2n bits each, and anyone wishing to send him a message

(ε1 , ... ,εn ), ε i = 0 or 1, computes the integer

m =
i =1
Σ
n

ε i a i

and transmits it over a regular communication channel. An eavesdropper faces the apparently

intractable problem of determining the ε i knowing only the a i and m. The recipient, however,

possesses secret keys W and M such that the sequence Wa 1 , ... ,Wa n , when reduced modulo M,

becomes a superincreasing sequence [18], and the transformed knapsack problem is thus very

easy to solve. In other variations of this scheme, the recipient might have to perform several such

modular multiplications using several sets of secret keys. In all cases, however, there is some

(secret) trapdoor which allows the recipient to transform the seemingly hard knapsack problem

into a very tractable one. It is this presence of trapdoors which makes some of the attacks on the

additive knapsack cryptosystems feasible [2,25]. In those attacks the cryptanalyst carries out an

initial polynomial-time but relatively long precomputation which with high probability finds

some trapdoor (usually not the one built into the system) which then enables him to decrypt each
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cyphertext about as rapidly as the intended recipient can do it. Other attacks, such as those of

[15] and to some extent of [6], do not depend on the existence of specific trapdoors, but on the

public knapsack of the cryptosystem being sparse. In those attacks, decrypting each message is

still a polynomial-time process for the cryptanalyst, but takes substantially longer than for the

possessor of the secret keys (typically on the order of n 4 operations versus n 3 in the case of [15]).

The trapdoor present in the Merkle-Hellman multiplicative knapsack public-key cryptosystem

makes that system vulnerable to our attack. This system’s design was motivated by the presumed

difficulty of both the general knapsack problem and the discrete logarithm problem. Here the

designer chooses n relatively prime numbers p 1 , ... ,p n (which would usually be the first n primes,

or else random n-bit primes) and a prime q such that

q >
i =1
Π

n
p i , (1.1)

together with a primitive root b modulo q. He then finds integers a i (the discrete logarithms of

the p i to base b), 1 ≤ a i ≤ q − 1, such that

p i ≡ b a i ( mod q) , (1.2)

and publishes a 1 , ... ,a n , keeping b and q secret. Anyone wishing to send him a message

(ε1 , ... ,εn ), ε i = 0 or 1, computes the integer

k =
i =1
Σ
n

ε i a i (1.3)

and transmits it. The intended receipient, knowing b and q, then computes m ≡ b k (modulo q),

1 ≤ m ≤ q − 1. Since

b k =
i =1
Π

n
(b a i ) ε i ≡

i =1
Π

n
pi

ε i ( mod q) ,

and q satisfies (1.1), we have
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m =
i =1
Π

n
pi

ε i ,

and therefore ε i = 1 if and only if p i  m. Thus the message is easy to recover for the intended

recipient. The cryptanalyst, on the other hand, faces the task of either trying to solve for the ε i

knowing only the k in (1.3) and the a i , or else of trying to discover the trapdoor keys b and q.

The first of these attacks (which applies to any knapsack system) is discussed in [15]. Based on

actual tests and heuristics, it appears to work in many cases. Its disadvantage is that it requires a

separate run of the lattice reduction algorithm (which takes at least on the order of n 4 operations)

to attack each n-bit message. Here we discuss an attack that is likely to discover the secret keys b

and q in polynomial time with high probability, provided that the p i (or at least a large subset of

them) are known to the cryptanalyst, and are not too large, so that q is O(n log n) bits long. This

attack does not apply if the p i are not known, or even when they are known but their order is

given by a permutation unknown to the cryptanalyst.

A typical value for n might be 100. In that case, if the p i are the initial n primes, (1.1) forces

q to be on the order of 730 bits in length. If the p i are random 100-bit primes, (1.1) forces q to be

on the order of 10,000 bits in length, which might be regarded as prohibitive, both from the

standpoint of waste of transmission facilities and because of the difficulty of computing m. Thus

the temptation might be to use only small primes p i , and for ease of implementation perhaps

fixed primes all the time, which would make the system vulnerable to our attack.

The multiplicative knapsack system has another weakness which the attack presented here

does not exploit. This comes from the fact that the system designer must be able to compute the

discrete logarithms a i in (1.2). The discrete logarithm problem modulo a prime q is widely

thought to be very hard, and the best general algorithm that is known for it, due to Western and

Miller [28] (see also [19]) and analyzed by Adleman [1], has running time of about
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exp (O( ( log q)
1⁄2 ( log log q)

1⁄2 ) ) .

However, relatively efficient algorithms are known when q − 1 is divisible only by relatively

small primes [20]. Hence in the multiplicative knapsack system, q is chosen to have this

property. This fact provides additional information to the cryptanalyst, which might make it

possible to break the system even when the p i are not known.

The Shamir fast signature scheme [24] is similar in many ways to the basic Merkle-Hellman

additive knapsack system. It was designed to make up for a significant disadvantage of the

additive knapsack, namely that it could not be used for authentication. In many applications,

what is required is not the ability for A to transmit to B without anyone else reading the message,

but rather a way for A to send a message to B in such a way that B can be sure the message comes

from A and not from anyone else. The RSA system [22] is very effective in this role, whereas the

additive and multiplicative knapsack schemes are not very suitable, because only a very small

fraction of the messages that can be transmitted are actually valid cyphertext messages. The

Shamir scheme [24] overcomes this difficulty, and has the additional very desirable feature that it

is very fast, even when implemented in software.

In the Shamir scheme with parameter n (n = 100 is suggested in [24]), Party A, who wishes

to provide electronic signatures, publishes a prime p of about n bits and 2n integers a 1 , ... ,a 2n ,

each of about n bits. Then, in order to certify that an n-bit message (δ1 , ... ,δn ) comes from A, A

provides a signature consisting of 2n integers ε1 , ... ,ε2n , 0 ≤ ε i ≤ n for all i, which he computes

using his secret trapdoor information, such that

i =1
Σ
n

δi 2i −1 ≡
j =1
Σ
2n

ε j a j ( mod p) . (1.4)

Any recipient of A’s message can easily check whether (1.4) holds. The presumed security of this

scheme stemmed from the fact that solving (1.4) for the ε j seemed hard without A’s secret
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information. This information consists of a 0-1 matrix E = (e i j ) of size n by 2n, such that for

1 ≤ i ≤ n,

2i −1 ≡
j =1
Σ
2n

e i j a j ( mod p) . (1.5)

This matrix is constructed by choosing the e i j independently to be 0 or 1 with equal probability.

Then, with very high probability, the leading n×n submatrix of E will be nonsingular modulo the

randomly chosen prime p. (One can even choose p after one chooses the matrix E so that p will

not divide the determinant of the leading n×n submatrix of E.) Next, a n +1 , ... ,a 2n are chosen to

be random n-bit integers, and the system (1.5), 1 ≤ i ≤ n, is solved to obtain a 1 , ... ,a n .

The simplest way to form the signature (ε1 , ... ,ε2n ) for an n-bit message (δ1 , ... ,δn ) is to

take

ε j =
i =1
Σ
n

e i j δi ,

which by (1.5) will satisfy (1.4), and will have 0 ≤ ε j ≤ n. This procedure, however, is very

insecure, because every message yields 2n linear equations for the e i j , so that after about n

messages, an eavesdropper can discover the matrix E and thus can break the scheme. To

circumvent this problem, Shamir proposed that to sign (δ1 , ... ,δn ), A should first choose a

random subset a i 1
, ... ,a i k

of the a i , form the signature (ε1′ , ... ,ε2n′ ) for the message

i =1
Σ
n

δi 2i −1 −
j =1
Σ
k

a i j

as above, and then form the signature (ε1 , ... ,ε2n ) by taking ε i j
= εi j

′ + 1, 1 ≤ j ≤ k, and

ε i = εi′ if i ≠ i j for any j. This appears to sufficiently randomize the linear equations so as to

make a linear algebra attack on this scheme unlikely to succeed. However, Section 4 shows that

the difficulties can be overcome by using recently developed tools of diophantine approximation.

We do not reconstruct the secret matrix E. Instead, using on the order of O(n 4 ) bit operations we
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construct a different matrix which then allows us to sign a message using only O(n 3 ) operations.

As a comparison, we note that the secret matrix E takes on the order of n 5 bit operations to

compute (using Gaussian elimination and ordinary arithmetic schemes, which are the only

practical ones in the ranges of interest) even if we don’t count the cost of computing random

numbers, and each signature takes on the order of n 2 bit operations to generate once E is known.

The attack we describe depends on the matrix E being essentially a random 0 − 1 matrix so

that a signature (ε1 , ... ,ε2n ) is recognized as valid whenever it satisfies the congruence (1.4) and

has 0 ≤ ε i ≤ n, 1 ≤ i ≤ 2n. However, it is possible to restrict attention to matrices E in which

all column sums are ≤ m for some m < n, so that valid signatures have 0 ≤ ε i ≤ m. (Shamir

suggested in his original proposed [24] that for n = 100, it might be best for technical reasons to

take m = 63, for example.) If m is taken to be very small, say m < √ n , then the attack we

describe here is expected to fail. However, such a system would still be vulnerable to an attack

similar to the one described here, but directed at each message individually. In addition, each

signature would then reveal a lot of information about the matrix E, which might be sufficient for

the cryptanalyst to recover E. We do not pursue these approaches here, since our purpose is just

to point out some of the basic weaknesses of these systems, which should be sufficient to

discourage people from using them.

Recently Shamir and Tulpan [26] have developed another attack on the Shamir signature

scheme. Unlike the attack prescribed here, it can be proved to succeed with high probability, but

its running time is exponential in n. For n not too large, though, the running time is not very

high. The case of n = 100 was tested successfully in [26], and the authors extrapolated that even

n = 500 might be doable.

Scho
. .
bi and Massey [23] have proposed a knapsack-based signature scheme different from the

Shamir one. Its advantage is that it can be used both for transmission of information and
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authentication. Its disadvantage is that the secret key is very large, and it is much slower than

Shamir’s. In Section 5 we briefly indicate how it can be attacked by methods similar to those

used for breaking the multiplicative knapsack system and the Shamir scheme.

As is the case with the other attacks [2,6,15,25] on the additive knapsack schemes, we cannot

prove that our attacks always succeed. In fact, while attacks on the basic Merkle-Hellman

additive knapsack cryptosystem can be shown to succeed most of the time [14,25], we cannot

prove even that for our attacks. The main reason is that we rely on the Lenstra, Lenstra, and

Lova ´ sz lattice basis reduction algorithm [17] satisfying certain conditions (at least on average)

which it has not been proved to possess. However, extensive numerical experiments by Brickell

[8] and the author show that the algorithm often does satisfy those conditions (which are

discussed in Section 2). Extrapolation from these numerical experiments indicate that our attack

on the Shamir scheme, for example, ought to be successful for n up to at least 1000.

In Section 2, we discuss briefly the lattice basis reduction algorithm which is the basic tool of

our attacks, as well as other algorithms that could possibly be used in its place. Sections 3 and 4

present the cryptanalysis of the multiplicative knapsack system and the Shamir fast signature

scheme, respectively. Section 4 also describes successful attempts to break the Shamir scheme

using the approach presented there. Finally, in Section 5 we briefly discuss attacks on the

Scho
. .
bi-Massey scheme.

2. Lattice basis reduction algorithm

The initial attack on the additive knapsack cryptosystems by Shamir relied on H. W. Lenstra’s

polynomial time algorithm for the integer programming problem when the number of variables is

fixed [16]. Since then, this algorithm has been largely superseded in cryptographic applications

by the Lenstra, Lenstra, and Lova ́ sz lattice reduction algorithm [17], (which we will refer to as the

L3 algoritm), which is easy to program and whose running time is polynomial in the total size of
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the problem. It was first applied in cryptography by Adleman [2].

Given n vectors v_1 , ... ,v_n ∈ Z n , the lattice L spanned by them is the collection of all integer

linear combinations

i =1
Σ
n

c i v_i , c i ∈ Z .

Many problems in computational complexity, number theory, and cryptography can be reduced to

the problem of finding the shortest vector in a lattice. In many cases, it suffices just to find some

short vector in a lattice. The L3 algorithm [17] does find a fairly short vector. To be precise,

given a basis v_1 , ... ,v_n for a lattice L, the algorithm produces another basis w_ _1 , ... ,w_ _n for L that

Lenstra, Lenstra, and Lova ́ sz call reduced. We do not need the precise definition, but it can be

shown [17] that the shortest vector in the reduced basis is relatively short:

i
min   w_ _i   2 ≤ 2n −1

v_∈ L ′
min   v_    2 , (2.1)

where L ′ = L \ {( 0 , ... , 0 ) }, and

  (u 1 , ... ,u n )  2 =


î i =1
Σ
n

ui
2




1⁄2

is the euclidean norm of a vector. Furthermore, the other vectors of the reduced lattice basis tend

to be short also. The running time of the original algorithm was shown to be O(n 6 ( log B)3 ),

where B is an upper bound for the coordinates of the initial basis v_1 , ... ,v_n , and slightly faster

variants have been proposed [12].

What is perhaps most striking about the L3 algorithm is that it performs much better in

practice than it is guaranteed to. Very extensive tests by Brickell [8] and independently by the

author (up to dimension 102) show that in most cases the reduced basis vectors are very short, in

fact much shorter than the worst case bound (2.1) guarantees. Some of the computational results

are described in greater detail in [15]. The assumption underlying our attacks is that when the L3
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algorithm is applied to the lattices that arise in our problems (which are of a somewhat special

nature), it will in a substantial fraction of the cases find reduced bases in which the shortest vector

is at most a constant factor longer than the shortest vector in the lattice, and that the next few

shortest vectors in the reduced basis are also short. This assumption is fully supported by the

experiments that have been carried out so far, in dimensions up to around 100. This is sufficient

for our attack on the Shamir scheme, for example, with parameter n <∼ 500.

There are some indications that in higher dimensions the performance of the L3 algorithm

might deteriorate. For example, the numerical evidence seems to imply that the ratio of the

product of the lengths of the vectors in a reduced basis produced by the L3 algorithm to the

determinant of the lattice grows roughly like exp (cn 2 ) for some small constant c. Except for the

value of c, this is similar to the worst case bound of [17]. On the other hand, by reasoning in

analogy with the reduction theory of quadratic forms [9; pp. 259-263] we might expect that for

most lattices there would be some reduced basis for which the above ratio grows only as

exp (c ′ n log n). Thus it is quite possible that our attacks might fail in very high dimension, say

on the order of several hundred. Such high dimensions, though, would be required in the case of

the Shamir signature scheme (for example) only when the parameter size n in that scheme (which

is about 2 log 2 n times larger than the dimension of the lattice that is used in the cryptanalysis) is

on the order of several thousand, which makes that scheme impractical. Furthermore, as new

diophantine approximation algorithms are developed, the range of applicability of our attacks can

be expected to increase.

It is possible to significantly speed up the L3 algorithm by performing some of the crucial

multiprecision operations in floating point arithmetic. The rigorous analysis of [17] then no

longer applies, but since all operations on basis elements are still carried out in integers, at the

end of the computation it is easy to check that the basis is in fact reduced. The running time of

this modified algorithm, assuming that roundoff errors do not cause it to make incorrect
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decisions, can be shown to be O(n 4 ( log B)3 ). In practice, the running time seems to be much

shorter, perhaps on the order of n ( log B)3 or so. Present computational experience with lattices

in dimensions up to 102 indicates that even a relatively inefficient high-level language

implementation of the modified algorithm on a high-speed machine such as the CRAY-1 can find

a reduced basis for a typical 50-dimensional lattice given in terms of 100-bit coordinates in a few

minutes.

We use the L3 algorithm primarily because its basic version is the only one in this area which

is guaranteed to produce reasonably short vectors in a lattice in polynomial time. It is quite

possible that other algorithms, such as those of [4,5,10,11,21,27], or modifications of them, could

perform just as well or better in practice on typical lattices. Therefore the running time bounds

that we quote should be regarded as provisional, and capable of substantial improvement.

3. Multiplicative knapsack

In this section we present an attack on the multiplicative knapsack cryptosystem. We assume

that integers a 1 , ... ,a n are known and at least some of the primes (or relatively prime numbers)

p 1 , ... ,p n are known, and we try to find the unknown integer b and prime q such that

b a i ≡ p i ( mod q) . (3.1)

We assume that b, q, and the a i are of about m bits; if the p i are the first n primes, then

m ∼ n log 2 n, and if the p i are n-bit primes, then m >∼ n 2 , since we must have q >∼ Π p i . Our

attack will take polynomial time only if m = O(n log n).

The basic idea behind the attack is to find a collection of vectors δ _ = (δ1 , ... ,δn ) such that

0 =
i =1
Σ
n

δi a i , (3.2)

and such that the δi are not too large. (If not all the p i are known, then we also require that
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δi = 0 for those i for which p i is not known.) By (3.1), each such vector δ _gives a congruence of

the form

1 ≡
v(δ _)
u(δ _)_ ____ ( mod q) , (3.3)

where

u(δ _) =

δi >0
i

Π pi
δi , v(δ _) =

δi <0
i

Π pi
− δi . (3.4)

But then

q u(δ _) − v(δ _) .

If we compute several of the u(δ _) − v(δ _), then their greatest common divisor is likely to be q.

Once we have found q, it is easy us to compute b. We find a solution δ _ to

1 =
i =1
Σ
n

δi a i (3.5)

(with δi = 0 for those i for which p i is not known, again) and then compute

b ≡ Πpi
δi ( mod q) .

Since q is already known, we do not require the δi in (3.5) to be small in order to compute b

efficiently. In some cases it may be impossible to find a solution to (3.5), but that can happen

only if gcd(a 1 , ... ,a n ) = d > 1, in which case we might as well work with b d and a 1 / d , ... ,a n / d.

In most cases, however, even the first few of the a i should be relatively prime, so there will be no

difficulty.

We now consider this approach in detail. Vectors δ _ that satisfy (3.2) are easy to find in

general. The difficulty is in finding δ _ that satisfy (3.2) with small δi . There are several ways to

use the L3 algorithm to find solutions to (3.2) with small δi . We pick a subset of k a i’s for which

the p i are known. By renumbering the a i and p i , we can assume that we are dealing with
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a 1 , ... ,a k and p 1 , ... ,p k . We next apply the L3 algorithm to the lattice L spanned by the k + 1

vectors in Z k +1 given by

w_ _1 = ( 1 , 0 , 0 , ... , 0 , 2ma 1 ) ,

w_ _2 = ( 0 , 1 , 0 , ... , 0 , 2ma 2 ) ,

... (3.6)

w_ _k = ( 0 , 0 , ... , 0 , 1 , 2ma k ) ,

w_ _k +1 = ( 0 , 0 , ... , 0 , 0 , 24m ) .

(In actual implementations one would replace 2m by a smaller power of 2, but we will not worry

about such details here.) Note that any vector in L is given by




î
δ1 ,δ2 , ... ,δk , 2m



î i =1
Σ
k

δi a i





+ d 24m





(3.7)

for some δ1 , ... ,δk , d ∈ Z. For a vector to be short, its last coordinate has to be zero, and the δi

should all be small. This can only happen if d = 0 and Σ δi a i = 0, since if d ≠ 0, some of the

δi would have to be very large, which would make the vector long.

To determine how short the vectors in the reduced basis might be, we apply the pigeon-hole

principle. Consider the integers

i =1
Σ
k

x i a i , 0 ≤ x i ≤ B .

They are all <∼ kB2m in absolute magnitude, and so if their total number, (B + 1 ) k , exceeds kB2m

(which occurs for B ∼∼ 2m /(k −1 )), two of them will have to be equal, and so we obtain an equation

of the form

i =1
Σ
k

x i a i =
i =1
Σ
k

xi′ a i , 0 ≤ x i , xi′ ≤ B ,

which gives, for y i = x i − xi′ ,
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i =1
Σ
k

y i a i = 0 ,  y i  ≤ B .

In fact, it is easy to show that many such equations have to be satisfied. Therefore we can expect

that there are many vectors in our lattice of length <∼ √ k 2m /(k −1 ) . The basic unproved

assumption underlying our attack is that the L3 algorithm will find such vectors.

We next consider the running time of the algorithm. The L3 algorithm takes about O(km3 )

bit operations (somewhat more if we use the original rigorously analyzed form of it). The

integers u(δ _) and v(δ _) will each have on the order of km 2m /(k −1 ) bits, and so will the

u(δ _) − v(δ _). Hence computing the u(δ _) − v(δ _) and their greatest common divisors, which

will give q, takes on the order of k 2 m 2 4m /(k −1 ) bit operations. Finally, computing b takes

O(m 3 ) operations. Hence our estimate for the total work involved is on the order of

km3 + k 2 m 222m /(k −1 )

bit operations. If m ∼ n log 2 n (when the p i are the initial n primes, for example), and if we

choose k = n, this results in about n 6 bit operations. However, if the p i are n-bit primes,

m ∼ n 2 , and the algorithm is exponential.

4. Shamir’s fast signature scheme

The cryptanalysis of the Shamir fast signature scheme is in some ways similar to the attack on

the multiplicative knapsack system. Suppose that the prime p of about n bits and the n-bit

numbers a 1 , ... ,a 2n are the public keys. To be able to sign a message, we only need to be able to

find, for each integer m in the range 0 ≤ m ≤ p − 1, some integers ε1 , ... ,ε2n such that

m ≡
i =1
Σ
2n

ε i a i ( mod p) , (4.1)

and such that 0 ≤ ε i ≤ n. We will find a way to do this fast without discovering the secret

matrix E = (e i j ).
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We first find solutions to

i =1
Σ
2n

ε i a i ≡ 0 ( mod p) , (4.2)

where the ε i are to be small but not identically zero. Initially, we work with only a subset of the

a i , which without loss of generality we may take to be a 1 , ... ,a k .

By the pigeon-hole principle, a solution to

i =1
Σ
k

ε i a i = 0 (4.3)

with ε i  ≤ B is guaranteed to exist approximately when B >∼ 2n /(k −1 ) . Each such solution will

of course give a solution to

i =1
Σ
k

ε i a i ≡ 0 ( mod p) . (4.4)

To find solutions to (4.4), we consider the lattice L spanned by

w_ _1 = ( 2ra 1 , 1 , 0 , ... , 0 ) ,

w_ _2 = ( 2ra 2 , 0 , 1 , ... , 0 ) ,

... (4.5)

w_ _k = ( 2ra k , 0 , 0 , ... , 1 ) ,

w_ _k +1 = ( 2rp , 0 , 0 , ... , 0 ) ,

where r ∼∼ 4n / k, say. A vector in L is of the form

w_ _ = ( 2r


î i =1
Σ
k

ε i a i − dp




, ε1 ,ε2 , ... ,ε k ) ,

and so is short only when the ε i are small and

i =1
Σ
k

ε i a i = dp ,
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that is, when we have a solution to (4.4). Our assumption, supported by empirical evidence, is

that when the LLL algorithm is applied to a basis of the form (4.5), it will find a reduced basis

w_ _1
∗ , ... ,wk +1

∗ such that the first coordinate of each of w_ _1
∗ , ... ,w_ _k

∗ is equal to 0, and the other

coordinates are <∼ 2n /(k −1 ) in absolute magnitude.

Once the reduced basis w_ _1
∗ , ... ,w_ _k +1

∗ has been found with the above properties, vectors v_i ,

1 ≤ i ≤ k, are formed by deleting the first coordinate of w_ _i
* . The v_i generate a k-dimensional

lattice of solutions to (4.4). We then form the matrix whose rows are the v_i , and compute its

inverse. This completes the basic stage of our attack.

Once the steps outlined above have been completed, we can easily generate solutions to (4.1),

which give the desired forged signatures. Suppose that m is given. We choose d 1 , ... ,d 2n to be

integers in the range 0 ≤ d i ≤ n, subject to the constraint that d 1 , ... ,d k should be close to n /2.

We next select x ∈ Z such that

xa 1 ≡ m −
i =1
Σ
2n

d i a i ( mod p) . (4.6)

Using the precomputed inverse of the matrix of the v_i , we express

(x, 0 , ... , 0 ) =
i =1
Σ
k

c i v_i , c i ∈ R .

(Since we only need to know the c i to within ± 1/10, say, the inverse of the matrix can be

computed in floating point arithmetic.) We then form

y_ = (y 1 , ... ,y k ) = (x, 0 , ... , 0 ) −
i =1
Σ
k

( (c i ) ) v_i =
i =1
Σ
k

{ c i − ( (c i ) ) } v_i ,

where ( (t) ) denotes the integer nearest to t. We expect the c i − ( (c i ) ) to behave like independent

random variables distributed uniformly on [ − 1/2 , 1/2 ], and so we expect the coordinates of y_ on

average to be about <∼ B(k /12 )
1⁄2 in absolute magnitude. Hence we can expect that the y i + d i ,

1 ≤ i ≤ k, will all be in the range [ 0 ,n] if Bk
1⁄2 is sufficiently much smaller than n, and we will
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have

i =1
Σ
k

(y i + d i ) a i +
i =k +1
Σ
2n

d i a i ≡ m ( mod p) ,

which gives the desired signature.

The computational complexity of this attack and the allowable choices for k are easy to

evaluate. The LLL algorithm takes on the order of k 4 n 3 bit operations. We are constrained by

the fact that we need to have B√ k <∼ n (actually, <∼ n( log n)− 1⁄2 ), where B ∼∼ 2n /(k −1 ) . If we

choose k slightly larger than 2n /( log 2 n), the constraints will be satisfied, and the running time

of the initial preprocessing stage will be on the order of n 4 . Once the initial stage is completed,

any signature takes about n 3 bit operations to generate.

The above attack might occasionally fail because some coefficient y i + d i is either < 0 or > n.

In that case, we can either try to correct this problem by adding some combination of the v_i , or

else can try again with a different set of d i’s. In any case, this problem is unlikely to arise, at

least in the basic Shamir signature scheme described here. If the matrix E is chosen so that its

column sums are all ≤ m < n, so that valid signatures have 0 ≤ ε i ≤ m, it might be necessary to

choose k larger than 2n /( log 2 n), since we need Bk 1/2 m −1 to be quite small.

The attack presented above on the basic Shamir scheme was implemented using the Vaxima

symbolic manipulation system. It was tested on about half a dozen sets of keys that were

generated using n = 30 and p = 231 − 1. The basic stage was carried out using k = 12 and

r = 10. In about 200 examples, the absolute values of coordinates of the y_ vector were always

≤ 7, and were ≤ 5 most of the time. Several sets of keys with n = 50 and

p = 669369903482281 were also tested using k = 16 and r = 14. In over 50 examples, the

absolute values of the coordinates of the y_ vector were usually ≤ 7, although once a coefficient of

14 appeared.
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5. The Schobi-Massey scheme

This scheme [23] is a modification of the iterated Merkle-Hellman additive knapsack

cryptosystem. The designer publishes keys a 1 , ... , a n , derived from the usual iterated system,

which can be used to transmit n-bit messages to him (or her). To sign a message m (which we

can again regard as an integer in the range 0 ≤ m ≤
1
Σ
n

a i ), the designer provides a set of

integers x i such that

m =
i =1
Σ
n

x i a i , (5.1)

and the x i are not too large in absolute value. The construction of the x i is quite complicated, and

we will not present it here. In their paper, Scho
. .
bi and Massey [23] suggest the use of a triply

iterated knapsack with n = 200, in which case the x i might satisfy  x i  ≤ 100, say.

Our attack on the Scho
. .
bi-Massey signature scheme is very similar to those on the

multiplicative knapsack and on Shamir’s scheme, so we only briefly sketch it. Given a message

m, to forge a signature we select x k +1 , ... , x n at random in the allowed range, and attempt to

compute x 1 , ... , x k so that the x i are small and (5.1) is satisfied. (The size of k would depend on

n, the sizes of the a i , and the desired sizes of the x i .) We form the lattice (cf. [15])

w_ _1 = ( 1 , 0 , ... , 0 , a 1 ) ,

w_ _2 = ( 0 , 1 , ... , 0 , a 2 ) ,

...

w_ _k = ( 0 , 0 , ... , 1 , a k ) ,

w_ _k +1 = ( 0 , 0 , ... , 0 , b) ,

where
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b = m −
i =k +1
Σ
n

x i a i .

If x k +1 , ... , x n were chosen so that b is large (as will happen for most random choices), then

vectors

x 1 w_ _1 + x 2 w_ _2 + ... + x k w_ _k − w_ _k +1

corresponding to solutions of (5.1) with small x 1 , ... , x k will be short, and we expect that the L3

algorithm will find them.
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