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Algebraic Properties
of Cellular Automata

1984

Cellular automata arediscrete dynamical systems, of simple construction but complex
and varied behaviour. Algebraic techniques are used to give an extensive analysis of
the global properties of a class of finite cellular automata. The complete structure
of state transition diagramsiis derived in terms of algebraic and number theoretical
guantities. The systems are usually irreversible, and are found to evolve through
transients to attractors consisting of cycles sometimes containing a large number of
configurations.

1. Intr oduction

In the simplest case, a cellular automaton consists of a line of sites with each site
carrying a value 0 or 1. The site values evolve synchronously in discrete time
steps according to the values of their nearest neighbours. For example, the rule for
evolution could take the value of a site at aparticular time step to be the sum modulo
two of the values of its two nearest neighbours on the previous time step. Figure 1
showsthe pattern of nonzero sitesgenerated by evolution with thisrulefromaninitial
state containing a single nonzero site. The pattern is found to be self-similar, and is
characterized by afractal dimension log, 3. Even with an initial state consisting of a
random sequence of 0 and 1 sites (say each with probability %), the evolution of such
acellular automaton leads to correl ations between separated sites and the appearance
of structure. This behaviour contradicts the second law of thermodynamics for
systems with reversible dynamics, and is made possible by the irreversible nature
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Figure 1. Example of evolution of a one-dimensional cellular automaton with two possible values at each
site. Configurations at successive time steps are shown as successivelines. Siteswith value one are black;
those with value zero are left white. The cellular automaton ruleillustrated here takes thevalue of asiteat
aparticular time step to be the sum modulo two of the values of its two nearest neighbours on the previous
time step. Thisruleis represented by the polynomial O(x) = x +x"1, and is discussed in detail in Sect. 3.

of the cellular automaton evolution. Starting from a maximum entropy ensemble
in which all possible configurations appear with equal probability, the evolution
increases the probabilities of some configurations at the expense of others. The
configurationsinto which this concentration occurs then dominate ensembl e averages
and the system is “organized” into having the properties of these configurations. A
finite cellular automaton with N sites (arranged for example around a circle so
as to give periodic boundary conditions) has 2V possible distinct configurations.
The global evolution of such a cellular automaton may be described by a state
transition graph. Figure 2 gives the state transition graph corresponding to the
cellular automaton described above, for thecasesN = 11 and N = 12. Configurations
corresponding to nodes on the periphery of the graph are seen to be depopulated by
transitions; all initial configurations ultimately evolve to configurations on one of the
cyclesin the graph. Any finite cellular automaton ultimately enters a cyclein which
a sequence of configurations are visited repeatedly. This behaviour isillustrated in
Fig. 3.

Cellular automata may be used as simple models for a wide variety of phys-
ical, biological and computational systems. Analysis of general features of their
behaviour may therefore yield genera results on the behaviour of many com-
plex systems, and may perhaps ultimately suggest generalizations of the laws of
thermodynamics appropriate for systems with irreversible dynamics. Severa as-
pects of cellular automata were recently discussed in [1], where extensive refer-
ences were given. This paper details and extends the discussion of global proper-
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Figure 2. Global state transition diagrams for finite cellular automata with size N and periodic boundary
conditions evolving according to the rule O(x) = x +x"1, as used in Fig. 1, and discussed extensively
in Sect. 3. Each node in the graphs represents one of the 2V possible configurations of the N sites.
The directed edges of the graphs indicate transitions between these configurations associated with single
time steps of cellular automaton evolution. Each cycle in the graph represents an “attractor” for the
configurations corresponding to the nodesin trees rooted on it.

ties of cellular automata given in [1]. These global properties may be described
in terms of properties of the state transition graphs corresponding to the cellular
automata.

This paper concentrates on a class of cellular automata which exhibit the simpli-
fying feature of “additivity”. The configurations of such cellular automata satisfy
an “additive superposition” principle, which allows a natural representation of the
configurations by characteristic polynomials. The time evolution of the configura-
tionsis represented by iterated multiplication of their characteristic polynomials by
fixed polynomials. Global properties of cellular automata are then determined by
algebraic properties of these polynomials, by methods analogous to those used in
the analysis of linear feedback shift registers [2, 3]. Despite their amenability to
algebraic analysis, additive cellular automata exhibit many of the complex features
of general cellular automata.
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N=12 N=63 N=71 N=192

Figure 3. Evolution of cellular automatawith N sites arranged in a circle (periodic boundary conditions)
according to the rule O(x) = x + x~ 1 (asused in Fig. 1 and discussed in Sect. 3). Finite cellular automata
such as these ultimately enter cycles in which a sequence of configurations are visited repeatedly. This
behaviour is evident herefor N = 12, 63, and 192. For N = 71, the cycle has length 235 - 1.

Having introduced notation in Sect. 2, Sect. 3 develops algebraic techniques for
the analysis of cellular automata in the context of the simple cellular automaton
illustrated in Fig. 1. Some necessary mathematical results are reviewed in the
appendices. Section 4 then derives general results for all additive cellular automata.
The results alow more than two possible values per site, but are most complete
when the number of possible values is prime. They also allow influence on the
evolution of a site from sites more distant than its nearest neighbours. The results
are extended in Sect. 4D to allow cellular automata in which the sites are arranged
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in a square or cubic lattice in two, three or more dimensions, rather than just on a
line. Section 4E then discusses generalizationsin which the cellular automaton time
evolution ruleinvolves several preceding time steps. Section 4F considers alternative
boundary conditions. In all cases, a characterization of the global structure of the
state transition diagram is found in terms of algebraic properties of the polynomials
representing the cellular automaton time evolution rule.

Section 5 discusses non-additive cellular automata, for which the algebraic tech-
niques of Sects. 3 and 4 are inapplicable. Combinatorial methods are nevertheless
used to derive some results for a particular example.

Section 6 gives a discussion of the results obtained, comparing them with those
for other systems.

2. Formalism

We consider first the formulation for one-dimensional cellular automata in which
the evolution of a particular site depends on its own value and those of its nearest
neighbours. Section 4 generalizes the formalism to several dimensions and more
neighbours.

We take the cellular automaton to consist of N sites arranged around a circle (so
as to give periodic boundary conditions). The values of the sites at time step t are
denoted ag), R ag) ;- The possible site values are taken to be elements of afinite
commutative ring U, with k elements. Much of the discussion below concerns the
case U, = U,, inwhich site values are conveniently represented asintegers modulo k.
In the example considered in Sect. 3, U, = U,, and each site takeson avalue 0 or 1.

The complete configuration of acellular automaton is specified by the values of its
N sites, and may be represented by a characteristic polynomial (generating function)
(cf.[2,3])

N-1
ALX) =" ax, 2.1)
i=0

wherethe value of sitei isthe coefficient of x', and all coefficients are elements of the
ring Uk We shall often refer to configurations by their corresponding characteristic
polynomials.

Itisoften convenient to consider generalized polynomial s containing both positive
and negative powers of x: such objects will be termed “dipolynomials’. In general,
H (x) isadipolynomial if there exists someinteger msuch that x ™H (x) isan ordinary
polynomial in x. As discussed in Appendix A, dipolynomials possess divisibility
and congruence properties analogous to those of ordinary polynomials.

Multiplication of a characteristic polynomial A(x) by x ¥ yields a dipolynomial
which represents a configuration in which the value of each site has been transferred
(shifted) to a site jj places to its right (left). Periodic boundary conditions in the
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cellular automaton are implemented by reducing the characteristic dipolynomial
modulo the fixed polynomial xN - 1 at all stages, according to

N-1
doax' mod(xM-1)=>" Y a,.x . (2.2)
i E

Note that any dipolynomial is congruent modulo (xV - 1) to a unique ordinary
polynomial of degree lessthan N.

In general, thevalue ai(') of asitein acellular automaton istaken to bean arbitrary
function of thevaluesa;", a ¥, and a*;" at the previous time step. Until Sect. 5,
we shall consider a special class of “additive” cellular automata which evolve with
time according to simple linear combination rules of the form (taking the site index

i modulo N)
1) _ t-1 t-1 t-1
a =a a'}Y +a,a Y +a,al,’, (23

where the a; are fixed elements of U,, and &l arithmetic is performed in U,. This
time evolution may be represented by multiplication of the characteristic polynomial
by afixed dipolynomial in x,

Ok) =a_x+a,+a,x ', (2.4)
according to
ADx) " OATD(x)  mod(x" - 1), (2.5)

where arithmetic is again performed in U,. Additive cellular automata obey an
additive superposition principle which implies that the configuration obtained by
evolution for t time steps from an initial configuration A©@(x) + B ©(x) isidentical
to A®(x) + B ®(x), where A®(x) and B (x) are the results of separate evolution of
AO(x) and B ©(x), and all addition isperformedinU,. Sinceany initial configuration
can be represented as a sum of “basis’ configurations A(x) = xJ containing single
nonzero sites with unit values, the additive superposition principle determines the
evolution of all configurations in terms of the evolution of A(x). By virtue of the
cyclic symmetry between the sites it sufficesto consider the casejj = 0.

3. A Simple Example

A. Intr oduction

This section introduces algebraic techniques for the analysis of additive cellular
automatain the context of aspecific simple example. Section 4 appliesthe techniques
to more general cases. The mathematical background is outlined in the appendices.
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The cellular automaton considered in this section consists of N sites arranged
around a circle, where each site has value 0 or 1. The sites evolve so that at each
time step the value of a site is the sum modulo two of the values of its two nearest
neighbours at the previous time step:

a=a'"+a',"  mod2. (3.1)

This rule yields in many respects the simplest non-trivial cellular automaton. It
corresponds to rule 90 of [1], and has been considered in several contexts el sewhere
(e.g. [4]).

The time evolution (3.1) is represented by multiplication of the characteristic
polynomial for a configuration by the dipolynomial

Ox) =x+x1! (3.2)

according to Eq. (2.5). At each time step, characteristic polynomials are reduced
modulox™ - 1 (whichisequal tox" +1 since all coefficients are here, and throughout
this section, taken modulo two). This procedure implements periodic boundary
conditions as in Eq. (2.2) and removes any inverse powers of x.

Equation (3.2) implies that an initial configuration containing a single nonzero
site evolves after t time steps to a configuration with characteristic dipolynomial

t
061 = (x+x 9t =Y :xz”. 3.3)
=0

Fort < N'/2 (before“wraparound” occurs), theregion of nonzero sitesgrowslinearly
with time, and the values of sites are given ssimply by binomial coefficients modulo
two, asdiscussed in [1] and illustrated in Fig. 1. (The positions of nonzero sites are
equivalently givenby — 21— 22— wherethejj; givethe positionsof nonzerodigits
in the binary decomposition of the integer t.) The additive superposition property
impliesthat patterns generated from initial configurations containing more than one
nonzero site may be obtained by addition modulo two (exclusive digunction) of the
patterns (3.3) generated from single nonzero sites.

B. Irreversibility

Every configuration in a cellular automaton has a unique successor in time. A
configuration may however have several distinct predecessors, as illustrated in the
state transition diagram of Fig. 2. The presence of multiple predecessorsimpliesthat
thetime evolution mapping isnot invertible but isinstead “ contractive”. The cellular
automaton thus exhibitsirreversible behaviour in which information oninitial statesis
lost through time evolution. The existence of configurations with multiple predeces-
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sors implies that some configurations have no predecessorst. These configurations
occur only asinitial states, and may never be generated in the time evolution of the
cellular automaton. They appear on the periphery of the state transition diagram of
Fig. 2. Their presence is an inevitable consequence of irreversibility and of thefinite
number of states.

Lemma 3.1. Configurations containing an odd number of sites with value 1 can
never be generated in the evolution of the cellular automaton defined in Sect. 3A,
and can occur only asinitial states.

Consider any configuration specified by characteristic polynomial A@(x). The
successor of this configuration is A®(x) = O)A O(x) = (x +x 1)AO(x), taken, as
always, modulo xN - 1. Thus

AD(x) = (x2 +1)B(x) + Rx)(xN - 1)

for some dipolynomials R(x) and B(x). Sincex?+1=xV-1=0forx =1,
A (1) = 0. Hence A (x) contains an even number of terms, and corresponds to a
configuration with an even number of nonzero sites. Only such configurations can
therefore be reached from someinitial configuration A©(x).

An extension of thislemmayieldsthe basi c theorem on the number of unreachable
configurations:

Theorem 3.1. The fraction of the 2V possible configurations of asize N cellular
automaton defined in Sect. 3A which can occur only asinitial states, and cannot be
reached by evolution, is1/2 for N odd and 3/4 for N' even.

A configuration A®W(x) is reachable after one time step of cellular automaton
evolution if and only if for some dipolynomial A©)(x),

ADx) " OAQX) " (x+x HAOKX)  mod(x" - 1), (3.4)
S0 that
AD(x) = (x2 +1)B(x) + Rx)(xN - 1) (3.5)

for some dipolynomials R(x) and B(x). To proceed, we use the factorization of
(xN - 1) givenin Eq. (A.7), and consider the cases N even and N' odd separately.

(@ N even. Since by Eq. (A.4), (x?+1) = (x +1)2 = (x - 1)? (taken, as always,
modulo 2), and by Eq. (A.7),

(x- D?(x"2- 1)7=(xN - 1)
for even N, Eq. (3.5) shows that
(x- 1 ADx)

in this case. But since (x - 1)2 contains a constant term, AM(x) /(x - 1) 2 isthus an

1 Such configurations have been termed “ Gardens of Eden” [5].
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ordinary polynomial if A (x) is chosen as such. Hence all reachable configurations
represented by apolynomial A®M(x) are of the form

AD(x) = (x- 1)°C(x),

for some polynomial C(x). The predecessor of any such configuration is xC(x), so
any configuration of this form may in fact be reached. Since deg A(x) < N, deg
C(x) <N - 2. There arethus exactly 2N-? reachable configurations, or 1/4 of all the
2N possible configurations.

(b) N odd. Using Lemma 3.1 the proof for this case is reduced to showing that
all configurations containing an even number of nonzero sites have predecessors. A
configuration A®M(x) with an even number of nonzero sites can always be written in
the form (x + 1)D (x). But

AD(x) = (x +1)D (x)
" xHx x4 +xNHD ) mod (xN - 1)
" O +xt+ .. +xV YD) mod(xN - 1),

giving an explicit predecessor for AD(x).
The additive superposition principle for the cellular automaton considered in this
section yieldsimmediately the result:

Lemma 3.2. Two configurations A(Q(x) and B (9 (x) yield the same configuration
Cx) * OxAO(x) » OK)B @ after one time step in the evolution of the cellu-
lar automaton defined in Sect. 3A if and only if A©(x) = BO(x) + Q(x), where
OxQ(x) " 0.

Theorem 3.2. Configurationsin the cellular automaton defined in Sect. 3A which
have at least one predecessor have exactly two predecessors for N' odd and exactly
four for N even.

Thistheorem is proved using Lemma 3.2 by enumeration of configurations Q (x)
which evolve to the null configuration after one time step. For N' odd, only the
configurationsQand 1+x+ ... +xN-1 = % (correspondingto sitevalues11111.. . )
have this property. For N even, Q(x) hasthe form

ot e x5 = 5 2500
x2-1 ’
where the S (x) are the four polynomials of degree less than two. Explicitly, the
possible formsfor Q(x) are0, 1 +x2+ ... +xN2 x+x3+ ... +xN- 1 and1+x+
x2+ .. +xNL

C. Topology of the State Transition Diagram
This subsection derives topological properties of the state transition diagrams il-

lustrated in Fig. 2. The results determine the amount and rate of “information
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loss’ or “self organization” associated with the irreversible cellular automaton evo-
[ution.

The dtate transition network for a cellular automaton is a graph, each of whose
nodes represents one of the possible cellular automaton configurations. Directed arcs
jointhenodesto represent thetransitions between cellular automaton configurationsat
each time step. Since each cellular automaton configuration has a unique successor,
exactly one arc must leave each node, so that al nodes have out-degree one. As
discussed in the previous subsection, cellular automaton configurations may have
several or no predecessors, so that the in-degrees of nodes in the state transition
graph may differ. Theorems 3.1 and 3.2 show that for N odd, 1/2 of all nodes have
zero in-degree and the rest have in-degree two, while for N even, 3/4 have zero
in-degree and 1/4 in-degree four.

Asmentionedin Sect. 1, after apossible“transient”, acellular automaton evolving
from any initial configuration must ultimately enter a loop, in which a sequence of
configurations are visited repeatedly. Such aloop is represented by a cycle in the
dtate transition graph. At every node in this cycle a tree is rooted; the transients
consist of transitions leading towards the cycle at the root of the tree.

Lemma 3.3. Thetreesrooted at all nodeson all cyclesof the statetransition graph
for the cellular automaton defined in Sect. 3A areidentical.

Thisresult is proved by showing that trees rooted on all cyclesareidentical to the
tree rooted on the null configuration. Let A(x) be a configuration which evolves to
the null configuration after exactly t time steps, so that O)'A(x) ” 0 mod (x N - 1).
Let R(x) be a configuration on a cycle, and let R (x) be another configuration on
the same cycle, such that Ox)!RD(x) ” R(x) mod (x N - 1). Then define

Erpo[AX)] = AX) +R C9(x).

Wefirst show that as A(x) ranges over all configurationsin the tree rooted on the null
configuration, ER(X)[A(x)] ranges over all configurations in the tree rooted at R(x).
Since

O)" Erp[AX)] = O) 'A(x) + O6) 'REV(x) " R(x)  mod (x - 1),
itisclear that all configurations ER(X)[A(x)] evolveafter t time steps[wherethevalue
of t dependson A(x)] to R(x). To show that these configurationsliein the tree rooted
at R(x), one must show that their evolution reaches no other cycle configurations for

any s < t. Assume this supposition to be false, so that there exists somem ,, O for
which

REM(x) " OK) *Egy[AX)] = O6) *A(x) +REV(x)  mod (x" - 1).

Since O()'A(x) ” 0 mod(x N - 1), thiswould imply Rt s™(x) = RO(x) = R(x),
or REM(x) = REY(x). But REM(x) - RED(x) » OK)SA(x), and by construc-
tion OK)SA(x) , O for any s < t, yielding a contradiction. Thus ER(X) maps

80



1aT=X filename: Algebraic.tex (Paper: 1.2 [2]) 12:08p.m.  October 20, 1993

Algebraic Propetiesof Cellular Automata(1984)

configurations at height t in the tree rooted on the null configuration to configurations
at height t in the tree rooted at R(x), and the mapping E is one-to-one. An analogous
argument shows that E is onto. Finally one may show that E preserves the time
evolution structure of the trees, so that if Ox)A @(x) = AM(x), then

OK)E g [AQX)] = By [AD )],

which follows immediately from the definition of E. Hence E is an isomorphism, so
that trees rooted at all cycle configurations are isomorphic to that rooted at the null
configuration.

Notice that this proof makes no reference to the specific form (3.2) chosen for
O() in this section; Lemma 3.3 thus holds for any additive cellular automaton.

Theorem 3.3. For N odd, atree consisting of asinglearcisrooted at each node on
each cyclein the state transition graph for the cellular automaton defined in Sect. 3A.

By virtue of Lemma 3.3, it suffices to show that the tree rooted on the null
configuration consists of asingle node correspondingto theconfiguration 111 . .. 111.
This configuration has no predecessors by virtue of Lemma 3.1.

Corollary. For N odd, the fraction of the 2N possible configurations which may
occur in the evolution of the cellular automaton defined in Sect. 3A is 1/2 after one
or more time steps.

The " distance” between two nodesin atreeis defined asthe number of arcswhich
arevisited in traversing the tree from one node to the other (e.g. [6]). The “height” of
a (rooted) treeis defined as the maximum number of arcstraversed in a descent from
any leaf or termina (node with zero in-degree) to the root of the tree (formally node
with zero out-degree). A treeis“balanced” if al its leaves are at the same distance
fromitsroot. A treeis termed “quaternary” (“binary”) if each of its non-terminal
nodes has in-degree four (two).

Let D,(N) bethe maximum 2V which divides N (so that for example D,(12) = 4).

Theorem 3.4. For N even, abalanced tree with height D,(N)/2 isrooted at each
node on each cyclein the state transition graph for the cellular automaton defined in
Sect. 3A; the trees are quaternary, except that their roots have in-degree three.

Theorem 3.2 shows immediately that the tree is quaternary. In the proof of
Theorem 3.1, we showed that a configuration Q,(x) can be reached from some
configuration Q,(x) if and only if (1 +x2) | Q,(x); Theorem 3.2 then shows that if
Q,(x) isreachable, it is reachable from exactly four distinct configurations Q ,(x).
We now extend this result to show that a configuration Q ,,(x) can be reached from
some configuration Q ,(x) by evolution for m time steps, withm £ D ,(N)/2, if and
only if (1 +x2)™| Q,,(x). To seethis, note that if

Q) ” O ™Qy(x)  mod(xM - 1), (3.6)

81



1aT=X filename: Algebraic.tex (Paper: 1.2 [2]) 12:08p.m.  October 20, 1993

Wolfram on Cellular Automata and Complexity

then
(N - 1)1 Q00 + (x? + )™M ™Q(x), (3.7)
and so, since by Eq. (A.7), (x? + 1)™ | (xN - 1) for m £ D ,(N)/2, it follows that
(X*+ )™ Q%) (3.8)

for m £ D,(N)/2. On the other hand, if (x? +1)™|Q,,(X), say Q,,(X) = (x*+
1)™Q,(x), then Q ,(x) " O) ™x™Q,(x), which showsthat Q , () isreachablein m
steps.

The balance of the trees is demonstrated by showing that for m < D,(N)/2, if
(x%+1)™| Q,,(x), then Q ,,(x) can be reached from exactly 4™ initial configurations
Qo (x). This may be proved by induction on m. If

1+x)™|Qu(x)  (LEm<D,(N)/2),

then all of the four states Q,, , (x) from which Q ,,(x) may be reached in one step
satisfy (x? +1)™ 1| Q,, ,(x). Consider now the configurations Q (x) which satisfy

(x* + 1) M2 Q(x). (3.9)
If we write Q(x) = (x + 1) P2MR(x), then as in Theorem 3.2, the four predecessors
of Q(x) are exactly
N2 q 2

Qu( =+ PN IR+

S (), (3.10)

wherexR(x) ” R *(x) mod (x"V - 1). S (x) rangesover the four polynomialsof degree
lessthan two, asin Theorem 3.2. Exactly one of these polynomials satisfies Eq. (3.9),
whereas the other three satisfy only

(x+1)PM-21Q_, (x).

Any dtate satisfying Eq. (3.9) thus belongs to a cycle, since it can be reached after
an arbitrary number of steps. Conversely, since any cycle configuration must be
reachable after D,(N)/2 time steps, any and all configurations Q_,(x) satisfying
Eq. (3.9) areindeed on cycles. But, as shown above, the three Q_,(x) which do not
setisfy Eq. (3.9) are roots of balanced quaternary trees of height D,(N)/2- 1. The
proof of the theorem is thus completed.

Corollary. For N even, afraction 4! of the 2V possible configurations appear
after t steps in the evolution of the cellular automaton defined in Sect. 3A for
t £ D,(N)/2. A fraction 22 of the configurations occur in cycles, and are
therefore generated at arbitrarily large times.

Corollary. All configurations A(x) on cycles in the cellular automaton of Sect.
3A are divisible by (1 +x)P2M),
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Thisresult follows immediately from the proof of Theorems 3.3 and 3.4.

Entropy may be used to characterize the irreversibility of cellular automaton
evolution (cf. [1]). One may define aset (or topological) entropy for an ensemble of
configurations i occurring with probabilities p; according to

1
$= 109> ab), (311)
i
where q(p) = 1 for p > 0, and 0 otherwise. One may also define a measure entropy
1
Sm:'ﬁzpi log, p; - (3.12)
i

For amaximal entropy ensemblein which all 2V possible cellular automaton config-
urations occur with equal probabilities,

s=s§ =1
These entropies decrease in irreversible cellular automaton evolution, as the proba-
bilities for different configurations become unequal. However, the balance property
of the state transition trees implies that configurations either do not appear, or occur
with equal nonzero probabilities. Thusthe set and measure entropies remain equal in

the evolution of the cellular automaton of Sect. 3A. Starting from amaximal entropy
ensembl e, both neverthel ess decrease with timet according to

s(t)=s(t)=1- 2t/N, O£t £D,(N)/2,
S(t) =s.(t) =1- D,(N)/N,  t1D,(N)/2

D. Maximal Cycle Lengths

Lemma 3.4. Thelengthsof all cyclesin acellular automaton of size N as defined
in Sect. 3A divide the length C,, of the cycle obtained with an initial configuration
containing asingle site with value one.

This follows from additivity, since any configuration can be considered as a
superposition of configurations with single nonzero initial sites.

Lemma 3.5. For the cellular automaton defined in Sect. 3A, with N of the form
2,Cy =1

Inthiscase, any initial configuration evolves ultimately to afixed point consisting
of the null configuration, since

x+x 5217 x2 +x2)" xN+xNy" 0 mod(x" - 1).

Lemma 3.6. For the cellular automaton defined in Sect. 3A, with N’ even but not
of theform 2/, Gy = 2Cy .

A configuration A(x) appearsin acycle of length p if and only if
OK)PAX) " Ax) mod(x V- 1),
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and therefore

(™ - 1) [[(x? + 1) + xP]AX).
After t time steps, the configuration obtained by evolution from an initial state
containing a single nonzero site is (x + x~1)!; by Theorems 3.3 and 3.4 and the
additive superposition principle, the configuration

A(x) ” (x +X —l)Dg(N)/Z
is therefore on the maximal length cycle. Thus the maximal period C,, is given by
the minimum p for which

(N - 1) [ + )P+ xP)(x + 1) PN,

and so
xh. 1 D)
= P ex, (3.13)

with N = D,(N)n, n odd. Similarly,

(xN/2 - 1) | [(x2 + 1)QN/2 +xQN/2](x + 1)D2(N/2),

} D2(N)/2 3.14
x"-1 7 | [(xz + 1)QN/2 +XQN/2]_ ( )

x+1
Squaring thisyields
xn .1 DV

e L R AR !

from which it follows that

Cn |2Cy - (3.15)

SincexN - 1 divides[(x? +1)®N +x%N](x +1)P2M) 50 does its square root, xN/2 - 1,
and therefore

Cny2 | Gn- (3.16)
Combining Egs. (3.15) and (3.16) impliesthat either Cy = 2Cy , Or Cyy = Cy . TO
exclude the latter possibility, we use derivatives. Using Eqg. (A.6), and the fact that
the derivative of x? + 1 vanishes over GF (2), one obtains from (3.13),

x"-1 Cu-1

71 ORI S
If G, were odd, theright member would be non-trivial, and the divisibility condition
could not hold. Thus C,, must be even. But then the right member of (3.13) is a
perfect square, so that

2
| [(XZ + 1)QN /2 4 xGn /2]2.

xN/2-1
(x + 1)D2(N)/2

Thus Cy , | Gy /2, and the proof is complete.
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Theorem 3.5. For the cellular automaton defined in Sect. 3A, with N odd,
Cn |Gl = 2@ - 1 where sordy (2) is the multiplicative “suborder” function
of 2 modulo N, defined as the least integer jj such that 2/ = —1 mod N. (Properties
of the suborder functions are discussed in Appendix B.)

By Lemma 3.1, aninitial configuration containing a single nonzero site cannot be
reached in cellular automaton evolution. The configuration (x +x~1) mod (xV - 1)
obtained from this after one time step can be reached, and in fact appears again after
2% - 1 time steps, since

O(x) zsordN (%) 1 ” (x + X - l)zsordN (%) ” (xzsordN (%) + x_ zsordN (2))

"ot Hx™ (x+x7h) mod(xN - 1).

The maximal cycle lengths C,, for the cellular automaton considered in this
section are given in the first column of Table 1. The values are plotted as a function
of N'inFig. 4. Table 1together with Table 4 show that G, = Cy, for aimostall odd N..
The first exception appears for N = 37, where C,, = Gy, /3; subsequent exceptions

are (;95 = (;;5/3; ClOl = CT01/3’ Cl4l = (;?41/3’ C197 = (;197/3’ Clgg - (;ng/7’
(;203 = (;§03/105 and so on.

Figure 4. The maximal length Gy of cycles
generated in the evolution of a cellular au-
tomaton withsizeN and Ox) = x +x"1, asa
function of N. Only values for integer N are
plotted. The irregular behaviour of Cy as a
function of N is a consequence of the depen-
dence of G on number theoretical properties
of N.

As discussed in Appendix B, sordy (2) £ (N - 1)/2. This bound can be attained
only when N is prime. It implies that the maximal period is 2N-1/2- 1. Notice
that this period is the maximum that could be attained with any reflection symmetric
initial configuration (such as the single nonzero site configuration to be considered
by virtue of Lemma 3.4).

E. Cycle Length Distribution

Lemma 3.4 established that all cycle lengths must divide C,, and Theorems 3.3 and
3.4 gave the total number of statesin cycles. This section considers the number of
distinct cycles and their lengths.
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36
37
38
39

k=2 k=3 k=4
1 1 6 1 3 2 2 1 1
1 2 2 2 2 1 4 1 4
3 3 8 8 4 6 6 3 6
2 1 6 6 3 2 2 2 2
7 7 26 26 13 14 14 7 14
1 4 4 8 8 1 8 1 8
7 7 18 1 9 14 14 7 14
6 6 8 8 8 6 12 6 12
31 31 242 121 121 62 62 31 62
4 2 6 6 6 4 4 4 4
63 21 26 13 13 126 42 63 42
14 14 26 26 13 14 28 14 28
15 15 24 24 12 30 30 15 30
1 8 16 80 80 1 16 1 16
15 15 1,640 6,560 820 30 30 15 30
14 14 18 18 9 14 28 14 28
511 511 19,682 19,682 9,841 1,022 1,022 511 1,022
12 12 16 40 40 12 24 12 24
63 63 78 78 39 126 126 63 126
62 62 242 242 242 62 124 62 124
2,047 2,047 177,146 88,573 88,573 4,094 4,094 2,047 4,094
8 4 12 24 24 8 8 8 8
1,023 1,023 59,048 59,048 29,524 2,046 2,046 1,023 2,046
126 42 26 26 26 126 84 126 84
511 511 54 1 27 1,022 1,022 511 1,022
28 28 26 26 26 28 56 28 56
16,383 16,383 4,782,968 4,782,968 2,391,484 32,766 32,766 16,383 32,766
30 30 24 24 24 30 60 30 60
31 31 1,103,762 14,348,906 551,881 62 62 31 62
1 16 160 6,560 6,560 1 32 1 32
31 31 726 363 363 62 62 31 62
30 30 1,640 6,560 6,560 30 60 30 60
4,095 4,095 265,720 265,720 132,860 8,190 8,190 4,095 8,190
28 28 18 18 18 28 56 28 56
87,381 29,127 19,682 19,682 9,841 174,762 58,254 87,381 58,254
1,022 1,022 19,682 19,682 9,841 1,022 2,044 1,022 2,044
4,095 4,095 78 39 39 8,190 8,190 4,095 8,190
24 24 80 40 40 24 48 24 48

Table 1. Maximal cycle lengths Cn for one-dimensional nearest-neighbour additive cellular automata
with size N and k possible values at each site. Results for all possible nontrivial symmetrical rules with
k £ 4 are given. For k = 2, the fixed time evolution polynomias are O) = x +x  andx +1+x°1
(corresponding to rules 90 and 150 of [1], respectively). For k = 3, the polynomialsarex +x"1, x +1+x"1,
andx +2+x° 1, whilefork =4, theyarex +x 1, x +1+x 1, x+2+x 1 andx +3+x"L.
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4.1 4
1-1 1
1-1;5-3 6
4-1,6-2 10
1-1;,9-7 10
1-1 1
4.1,36-7 40
1-1;5-3;40:- 6 46
1-1;33-31 34
4.1,6- 2,60 4 70
1-1;65- 63 66
1-1,9-7,288: 14 298
4.1;20- 3;1,088- 15 1,112
1-1 1
1-1,51-5;4352- 15 4,404
4.1;6- 2,36 7;4,662- 14 4,708
1-1,513- 511 514
1-1,5-3;40- 6;5,440- 12 5,486
4-1;36- 7;16,640- 63 16,680
1-1;33- 31;16,896 - 62 16,930
1-1;2,049- 2,047 2,050
4-1;6-2;60- 4,8,160- 8 8,230
1-1,5- 3;16,400- 1,023 16,406
1- 1,65 63;133,120- 126 133,186
4. 1;36- 7,131,328 - 511 131,368
1-1;9- 7,288 14,599,040 - 28 599,338
1-1,16,385- 16,383 16,386
4-1;6- 2,20 3;670- 6;1,088 - 15;8,947,168 - 30 8,948,956
1-1,34,636,833- 31 34,636,834
1-1 1
4. 1;138,547,332- 31 138,547,336
1-1;51-5;6,528- 10; 4,352 15; 143,161,216 - 30 143,172,148
1-1;5-3;9: 7,45 21;4,195,328 - 4,095 4,195,388
4.1;6- 2,60 4,36 7:4,662- 14; 153,389,340 - 28 153,394,108
1- 1,786,435 87,381 786,436
1. 1;513- 511; 67,239,936 - 1,022 672,340,450
4. 1;260- 63;49,164 - 1,365; 67,108,860 - 4,095 67,158,288
1-1,5-3;40- 6;5,440- 12;178,954,240 - 24 178,959,726

Table 2. Multiplicities and lengths of cycles in the cellular automaton of Sect. 3A with size N. The

notation g; -

pi indicates the occurrence of g; distinct cycles each of length p;. The last column of the

table gives the total number of distinct cycles or “attractors’ in the system.
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Lemma 3.7. For the cellular automaton defined in Sect. 3A, with N amultiple of
3, there are four distinct fixed points (cycles of length one); otherwise, only the null
configuration is afixed point.

For N' = 3n, the only stationary configurationsare 000000 . . . (null configuration),
0110110..., 1011011..., and 1101101 .. ..

Table 2 gives the lengths and multiplicities of cycles in the cellular automaton
defined in Sect. 3A, for various values of N'. One result suggested by the table isthat
the multiplicity of cycles for a particular N increases with the length of the cycle,
so that for large N, an overwhelming fraction of all configurations in cycles are on
cycles with the maximal length.

When C,, is prime, the only possible cycle lengths are C,, and 1. Then, using
Lemma 3.7, the number of cycles of length G, is (2N - 4)/C, for N = 3n, andis
(2N-V - 1)/C, otherwise.

When C,, is not prime, cycles may exist with lengths corresponding to various
divisorsof C,. It hasnot been possibleto expressthe lengths and multiplicities of cy-
clesinthiscasein termsof simplefunctions. We neverthel ess give acomputationally
efficient algorithm for determining them.

Theorems 3.3 and 3.4 show that any configuration A(x) on acycle may bewritten
in theform

Alx) = (1+x) VB (x),

where B (x) is some polynomial. The cycle on which A(x) occurs then has alength
given by the minimum p for which

. n_q DN

OxPB(Xx)” (x+x 1)PB(x)” B(x) mod

3.17
= (317)

where N = D,(N)n with n odd, and (x" - 1)P2N) =xN - 1. Using the factorization
[givenin Eq. (A.8)]

f(d)
ordg (2)

x"-1=x- )] [] Cai. (3.18)
din i=1
d,1

where the C; ;(x) are the irreducible cyclotomic polynomials over U, of degree
ord,(2), Eq. (3.17) can be rewritten as
(x+x H)PB(x)” B(x) modC,;(x)°*™ (3.19)

forald|n,d, 1,andforalisuchthat1£1i £ f(d)/ord,(2). Let p,y ;[B(x)] denote
the smallest p for which (3.19) holds with given d, i. Then the length of the cycle
on which A(x) occurs is exactly the least common multiple of al thep 4 ;[B(x)]. If
Cy (P2 | B(x), then clearly Eq. (3.19) holds for p = 1, and p, ;[B(x)] = 1. If
Cy ()@ BONB(x) (and 0 £ 1y ; [B(x)] < D,(N)), then Eq. (3.19) is equivalent to

(x+x P71 modCy, (x)P2MN)railBIL (3.20)
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The values of p,; for configurations with r, ;[B(x)] = s are therefore equal, and
will be denoted py ; ¢ (O £ 8 £ D,(N)). Since Cy ;(x) | (x9-1)/(x+1) @, 1),the
value of py ; ; dividesthe minimum p for which (x +x" HP " 1 mod(x? - 1)/(x+1).
This equation is the same asthe one for the maximal cycle length of asized cellular
automaton: the derivation of Theorem 3.5 then shows that

Pgp ] 274@ - 1. (3.21)

It can also be shownthat py ; o5 = Pg s OF Py i.2s = 2P, i.s-
Asan example of the procedure described above, consider the case N’ = 30. Here,

x¥+1=(xP®+1)°= C1,1(X)2C3,1(X)2C5,1(X)2015,1(X)2C15,2(x)2’ (322
where
Cpix)=x+1,

Cy (X) =x®+x+1,
Co () =x*+x3+x?+x+1,
Cpg () =x*+x+1,

Cus,(¥) =x*+x° +1.

Then
Pa,i2 =1
P311=1 P310=2
Ps11=3, Ps10 =6 (3.23)

P15,1.1 = Pis21 = 15,

P15,1,0 = P1s,2,0 = 30-
Thus the cycles which occur in the case N = 30 have lengths 1, 2, 3, 6, 15, and 30.

To determine the number of distinct cycles of a given length, one must find the
number of polynomials B (x) with each possible set of valuesr ; ; [B (x)]. Thisnumber
isgiven by

[TITV(rai. d. D,(N)),

din i
d,1

whereV (D,(N), d, D,(N)) =1 and
V(I‘, d, DZ(N)) = 20rda(2)(D2(N)-r) _ 9ordy(2)(Do(N)-r-1)

for 0 E£r <D,(N). Thecyclelengths of these polynomials are determined as above
by the least common multiple of thepy ; .-

In the example N' = 30 discussed above, one finds that configurations on cycles
of length3have (ry 1, I's1, 151, 152) =(1,1,2,2)or (2,1, 2, 2),implying that 60
such configurations exist, in 20 distinct cycles.
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4. Generalizations
A. Enumeration of Additive Cellular Automata

We consider first one-dimensional additive cellular automata, whose configurations
may berepresented by univariate characteristic polynomials. We assumethat thetime
evolution of each site depends only on its own value and the value of itstwo nearest
neighbours, so that the time evolution dipolynomial O() is at most of degree two.
Cyclic boundary conditionson N sitesareimplemented by reducing the characteristic
polynomial at each time step modulo xV - 1 asin Eq. (2.2). There are taken to be
k possible values for each site. With no further constraints imposed, there are k®
possible O(x), and thus k* distinct cellular automaton rules. If the coefficients of x
and x™ 1 in O(x) both vanish, then the characteristic polynomial is at most multiplied
by an overall factor at each time step, and the behaviour of the cellular automaton
istrivial. Requiring nonzero coefficients for x and x * in O(x) reduces the number
of possible rules to k3 - 2k? + k. If the cellular automaton evolution is assumed
reflection symmetric, then O(x) = O(x 1), and only k? - k rules are possible. Further
characterisation of possible rules depends on the nature of k.

(a) k Prime. In this case, integer values 0, 1, ...,k - 1 a each site may be
combined by addition and multiplication modulo k to form afield (in which each
nonzero element has a unique multiplicative inverse) Uk For a symmetrical rule,
O() may always be written in the form

Ox)=x+s+x ! (4.1)

up to an overall multiplicative factor. For k = 2, the rule O(x) = x + x ~* was consid-
ered above; the additional rule O¢) = x + 1 +x ! isalso possible (and corresponds
to rule 150 of [1]).

(b) k Composite.

Lemma4.1. Fork =p3p% ..., withp, prime, thevalueal®! of asite obtained by
evolution of an additive cellular automaton from some initial configuration is given
uniquely in terms of the values alP*! attained by that site in the evolution of the set
of cellular automata obtained by reducing O() and all site values modulop .

This result follows from the Chinese remainder theorem for integers (e.g. [8,
Chap. 8]), which states that if k; and k, are relatively prime, then the values n; and
n, determine a unique value of n modulo k,k, suchthatn” n; modk; fori =1, 2.

Lemma 4.1 shows that results for any composite k may be obtained from those
for k a prime or a prime power.

When k is composite, the ring U, of integers modulo k no longer forms a field,
s0 that not all commutative rings U, are fields. Nevertheless, for k a prime power,
there exists a Galois field GF (k) of order k, unique up to isomorphism (e.g. [9,
Chap. 4]). For example, the field GF (4) may be taken to act on elements 0, 1, k, k?
with multiplication taken modulo the irreducible polynomial k? + k + 1. Time evo-
lution for a cellular automaton with site values in this Galois field can be reduced
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to that given by x +s +x"1, where s isany element of the field. The behaviour of
this subset of cellular automata with k composite is directly analogous to those over
U, for primep.

It has been assumed above that the value of asite at aparticular time step is deter-
mined solely by the values of its nearest neighbours on the previous time step. One
generalization allowsdependence on sitesout to adistancer > 1, sothat theevolution
of the cellular automaton corresponds to multiplication by afixed dipolynomial O(x)
of degree 2r. Most of the theorems to be derived below hold for any r.

B. Cellular Automata over ?, (p Prime)

Lemma4.2. The lengths of all cycles in any additive cellular automaton over
l.'Jp of size N divide the length C,, of the cycle obtained for an initial configuration
containing asingle site with value 1.

Thislemmaisastraightforward generalization of Lemma3.4, and followsdirectly
from the additivity assumed for the cellular automaton rules.

Lemma4.3. For N amultipleof p, C, | pC N/p for an additive cellular automaton
over U,.

Remark. For N amultipleof p, but not apower of p, it canbeshownthat C , = pC N/p
for an additive cellular automaton over U, with O) = x +x 1. Inaddition, C,; =1
in this case.

Theorem 4.1. For any N not a multiple of p, G, |G = po™® - 1, and
Cn |Gl = p™&® - 1if OK) is symmetric, for any additive cellular automaton
over U,.

The period C,, divides Cy if

[OE)]* " &)  mod(xN - 1). (4.2)
Taking
Ok) = ax?,

Eq. (A.3) yields

[O(x)] poN®) Z aixgipordN(P) " Z aixgi - O(X) mod (XN _ 1)’
i i

since a?' ” a mod p and p @®® " 1 mod N, and the first part of the theorem
follows. SincexP™™®  x=1 mod p, Eq. (4.2) holds for

(;;I :psordN(lD) -1

if O) is symmetric, so that O(x) = O " 1).
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This result generalizes Theorem 3.5 for the particular k = 2 cellular automaton
considered in Sect. 3.

Table 1 gives the values of C, for all non-trivial additive symmetrical cellular
automata over U, and U;. Just asin the example of Sect. 3 (given asthe first column
of Table 1), one finds that for many values of N not divisible by p

Gy =p&® - 1. (4.3)

When p = 2, all exceptions to (4.3) when O) = x +x " are also exceptions for
OK) = x+1+x"1[19]. Weoutlineaproof for the simplest case, when N isrelatively
prime to 6 (as well as 2). Let Gy (x +x°1) be the maximal period obtained with
OK) =x +x 1, equal to the minimum integer p for which

xN-1
x+1°

(x+1)®” xP  mod (4.4)

We now show that C,, (x +x 1) isamultiple of the maximum period G, (x +1+x"1)
obtained with O() =x + 1 +x 1. Since the mapping x ¢ x2 isahomomorphismin
the field of polynomials with coefficientsin GF (2), one has

xN -1

x+1

2+ x*®  mod

for any p such that Cy, (x +x"1) | p. Dividing by Eqg. (4.4), and using the fact that N
is odd to take square roots, yields
x3+1 P xN -1

" xP mod
x+1 x+1

(4.5)

for any p such that G, (x +x" 1) | p. Butsincex+1+x 1 =x'1 £*1 Eq. (4.5)isthe

x+1 !
analogue of Eq. (4.4) for O() = x + 1 +x "1, and the result follows.
More exceptions to Eq. (4.3) are found with p = 3 than withp = 2.

Lemma 4.4. A configuration A(x) isreachable in the evolution of asize N addi-
tive cellular automaton over L'Jp, as described by O() if and only if A(x) isdivisible
by A, () = (x™ - 1, O)).

Appendix A.A gives conventions for the greatest common divisor (A(x), B(x)).
If A (x) can be reached, then

ADX) =O0AO)  mod(xN - 1)
for some AQ(x), so that
V- 1)1 ADE) - OpA V).
But A (x) | x" - 1and A,(x) | Ok), and henceif A M (x) is reachable,
AL 00 | ADX). (4.6)
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We now show by an explicit construction that all A®(x) satisfying (4.6) in fact have
predecessors A©)(x). Using Eq. (A.10), one may write

A1) =rx)OK) +x(x)(x ¥ ¢ 1)
for some dipolynomialsr(x) and x(x), so that
A" rx)O%  mod(x N - 1).

Thentaking A®(x) = A 1 (x)B (x), the configuration given by the polynomial obtained
by reducing the dipolynomial r (x)B (x) satisfies

OxrxB) " A,00Bx)” A®x)  mod(xN - 1)

and thus provides an explicit predecessor for A (x).

Corollary. A(x) is reachable in jj stepsiif and only if A;(x) = (xV - 1, &/ (x))
divides A(x).

Thisisastraightforward extension of the above lemma.

Theorem 4.2. The fraction of possible configurations which may be reached by
evolution of an additive cellular automaton over U, of size N is p~ &), where
A =(xN - 1, O)).

By Lemma 4.4, only configurations divisible by Al(x) may be reached. The
number of such configurations is pN-99A:®) while the total number of possible
configurationsisp™.

Let D, (N) be the maximum p¥ which divides N and let v; denotethe multiplicity
of the i irreducible factor of A, (x) in O*(x), where O*(x) = x"O(x) isa polynomial
with anonzero constant term. We further definec = miinvi ,sothat 0 £ ¢ £ D, (N).

Theorem 4.3. The state transition diagram for an additive cellular automaton of
size N over U, consists of aset of cycles at all nodes of which are rooted identical
pU9hi®)_ary trees. A fraction p-Pr(N)deghs(x) of the possible configurations appear
on cycles. For ¢ > 0, the height of the trees is (DP(N)/CL The trees are bal-
anced if and only if (a) v, % Dp(N) for all i, or (b) v, = v for dl i and jj, and
Vi |DP(N).

To determine the in-degrees of nodes in the trees, consider a configuration A(x)
with predecessors represented by the polynomials B, (x) and B ,(x), so that

Ax)” OB . (x)  mod(x"N - 1).
Then since

O (B, (x)- B,()” 0 mod(x" - 1),
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and A, (x) |xN - 1, it follows that

xN -1

Al(x) .

Since C(x) = (x" - 1)/Al(x) has a non-zero constant term, (B, (x) - B,(x))/C(x)
isan ordinary polynomial. The number of solutions to this congruence and thus the
number of predecessors B, (x) of A(x) isp (),

The proof of Lemma 3.3 demonstrates the identity of the trees. The properties
of the trees are established by considering the tree rooted on the null configuration.
A configuration A(x) evolves to the null configuration after jj stepsif Ox) V A(x) ”
0mod (xN - 1), so that

xN-1
A (x)

B,(x)- B,(x)” 0 mod

AX). 4.7)

Hence all configurations on the tree are divisible by (x" - 1) /A¥ (x), where A¥ (x) =
I!Br¥n Aj]. (x). All configurations in the tree evolve to the null configuration after at
i

most [D,(N)/c] steps, which is thus an upper bound on the height of the trees.
But since the configuration (xV - 1) /A¥ (x) evolves to the null configuration after
exactly [D,(N)/c] steps, this quantity gives the height of the trees. The tree of
configurations which evolve to the null configuration (and hence all other trees in
the state transition diagram) is balanced if and only if al unreachable (terminal)
configurations evolve to the null configuration after the same number of steps. First
suppose that neither condition (a) nor (b) istrue. One possibility is that some ir-
reducible factor s(x) of A,(x) satisfies s "(x)|A,(x) with n < D, (N) but n does
not divide D, (N). The configuration (x" - 1)/s P™)(x) reaches 0 in [D ,(N)/n]
steps whereas (xN - 1)/s Pr(MN*11(x) reaches 0 in one step fewer, yet both are un-
reachable, so that the tree cannot be balanced. The only other possibility is that
there exist two irreducible factors s ;(x) and s ,(x) of multiplicities n, and n,, re-
spectively, with n, and n, dividing DP(N) butn, , n,. Then (xV - 1)/s ?"(N)(x)
reaches O in DF,(N)/nl steps, whereas (xN - 1)/s ZD"(N)(x) reaches O in DW(N)/n2
steps.  Neither of these configurations is reachable, so again the trees cannot
be balanced. This establishes that in all cases either condition (a) or (b) must
hold. The sufficiency of condition (a) is evident. If the condition (b) is true,
then

A= [[Ts®]. A= [[Tsx

and Aj]. (x) = Aj{(x). Equation (4.7) shows that any configuration A(x) which evolves
to the null configuration after jj stepsis of the form
N
-1
AX) = X" ZRx),
AL(x)
where R(x) is some polynomial. The proof is completed by showing that all such

’

]Dp (N)
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configurations A(x) with jj < D p(N) /n are indeed reachable. To construct an ex-
plicit predecessor for A(x), define the dipolynomial S(x) by Ox) = A 1()S(x),
so that (S(x), xN - 1) = 1. Then there exist dipolynomials r(x) and x(x) such
that

r()Sx) +x)(x N - 1) = 1.
The configuration given by the dipolynomial

xN-1
B(x) = mr(x)R(x)

then provides a predecessor for A(x).

Notice that whenever the balance condition fails, the set and measure entropies
of Egs. (3.11) and (3.12) obtained by evolution from an initial maximal entropy
ensembl e become unequal .

Theresults of Theorems 4.2 and 4.3 show that if degAl(x) = 0, thenthe evolution
of an additive cellular automaton is effectively reversible, since every configuration
has a unique predecessor.

In general,

degA(x) £ degO* (x),
so that for the one-dimensional additive cellular automata considered so far, the
maximum decrease in entropy starting from an initial equiprobable ensemble is
D, (N).

Notethat for acellular automaton over U, (p > 2) of length N with O) = x+x "™,
degA(x) = 2 if 4| N and degA(x) = O otherwise. Such cellular automata are thus
effectively reversible for p > 2 whenever N is not amultiple of 4.

Remark. A configuration A(x) lies on a cycle in the state transition diagram of an
additive cellular automaton if and only if A¥ () | AX).

This may be shown by the methods used in the proof of Theorem 4.3.

C. Cellular Automata over ?, (k Composite)

Theorem 4.4. For an additive cellular automaton over U,

(;N(Uk; Ok(x)) = |Cm(QN(U¢,’;‘1§ Opil (x)), CN(UPZZ; OPZZ(X))’ o)

wherek = p7'p3° ..., andin Q (x) all coefficients are reduced modulo jj.

Thisresult followsimmediately from Lemma 4.1.

Theorem 4.5. Gy (Upes; Qpaa(x)) isequal to either (8) pC y (Uya; O (X)) or (b)
(;N(Upa; (")pa(x)) for an additive cellular automaton.

First, it isclear that
Crn(Upas Gpa®) | Cp(Uprss Opans (x)).
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To complete the proof, one must show that in addition

(;N(Upa+l; Opaﬂ(x)) |pC N(Upa§ Opa(x))-

(;N(Upa; (")pa(x)) isthe smallest positive integer p for which a positiveinteger mand
dipolynomials U (x) and V (x) satisfying

06)™P = O™ + (x" - UX) +p?V (x) (4.8)

exist, where all dipolynomial coefficients (including those in O(x)) are taken as
ordinary integersin U, and irrelevant powers of x on both sides of the equation have
been dropped. Raising both sides of Eq. (4.8) to the power p, one obtains

O) ™% = (x" - YW(x) +(O%) ™ +p2V (x))P
=(x" - YW(x) + OK) ™ +p*Q(x).

Reducing modulo p2*! yields the required result.
For p =2 and a =1, it can be shown that case (a) of Theorem 4.5 always obtains
if O) =x+x "1, but case (b) can occur when Ox) =x+1+x 1.

Theorem 4.6. With k = kk, . .. (all k relatively prime), the number of config-
urations which can be reached by evolution of an additive cellular automaton over
U, isequal to the product of the numbers reached by evolution of cellular automata
with the same O(x) over each of the l.'J,Q . The state transition diagram for the cellular
automaton over U, consists of aset of identical treesrooted on cycles. Thein-degrees
of non-terminal nodes in the trees are the product of those for each of the U,Q cases.
The height of the treesis the maximum of the heights of trees for the U, cases, and
the trees are balanced only if all these heights are equal .

These results again follow directly from Lemma 4.1.

Theorem 4.6 gives a characterisation of the state transition diagram for additive
cellular automataover Uk whenkisaproduct of distinct primes. No general resultsare
available for the case of prime power k. However, for example, with O() = x +x 1,
one may obtain the fraction of reachable states by direct combinatorial methods. With
k = 22 onefindsin this case that the fractionis 1/2 for N odd, 1/4 for N " 2 mod 4,
and 222 for 4| N. Withk = p? (p, 2) the systemsarereversible (all configurations
reachable) unless 4| N, in which case afraction p~22 may be reached.

D. Multidimensional Cellular Automata

The cellular automata considered above consist of a sequence of sites on a line.
One generalization takes the sites instead to be arranged on a square lattice in two
dimensions. The evolution of a site may depend either on the values of its four
orthogonal neighbours (typel neighbourhood) or onthe valuesof all eight neighbours
including thosediagonally adjacent (type !l neighbourhood) (e.g.[1]). Configurations
of two-dimensional cellular automata may be represented by bivariate character-

96



1aT=X filename: Algebraic.tex (Paper: 1.2 [2]) 12:08p.m.  October 20, 1993

Algebraic Propetiesof Cellular Automata(1984)

istic polynomials A(x ,, x,). Time evolution for additive cellular automaton rules is
obtained by multiplication of these characteristic polynomials by a fixed bivariate
dipolynomial O, x,). For atype | neighbourhood, O, , x,) containsno x, X, cross-
terms; such terms may be present for a type Il neighbourhood. Periodic boundary
conditionswith periods N; and N, may beimplemented by reduction moduloxi‘rl -1
and modulo xg’z - 1 at each time step. Cellular automata may be generalized to an
arbitrary d-dimensional cubic or hypercubic lattice. A type | neighbourhood in d
dimensions contains 2d + 1 sites, while atype Il neighbourhood contains 39 sites. As
before, we consider cellular automata with k possible values for each site.

Theorem 4.7. For an additive cellular automaton over U, on ad-dimensional cu-
biclattice, withatypel or typell neighbourhood, and with periodicitiesN;,N,,. . . N,

.....

Cn (U0, ... 1%, 1,.... 1)) Gy, n, (U Oy, ... Xy) (4.9)

.....

foral i (suchthat 1 £i £ d). The right member of Eq. (4.9) isgiven by the smallest
integer p for which there exists a positive integer m such that

d
[O&y, -, X)IP™ =[Oy, ..., Xg)]™ + Z(xj]'f\ri - DU (g - - Xg) (4.10)
ji=1

for some dipolynomials U;. Taking x; = 1 with jj , i in Eq. (4.10), all termsin
the sum vanish except for the one associated with x;, and the resulting value of p
corresponds to the left member of Eq. (4.9).

Theorem 4.8. For an additive cellular automaton over l.'Jp on a d-dimensiona
cubic lattice (type | or type Il neighbourhood) with periodicities N;, N, ..., Ny
none of which are multiples of p,

If Oy, ....X,) isSymmetrical, so that
Oy, - Xy o X)) = Oy, . XL L Xy)

for dl i, then

The ord, , (p) and sord, . (p) are multidimensional generalizations of the
multiplicative order and suborder functions, described in Appendix B.

Thistheorem is proved by straightforward extension of the one-dimensional The-
orem4.1.
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Using the result (B.13), onefinds for symmetrical rules

(;;[ N :plcm(sorle(p) ..... sordng (P)) 1
1 d

.....

The maximal cycle length is thus bounded by

.....

with the upper limits achieved only if all the N; are prime. (For example,
(;83,59 — 21189 f 10358

saturates the upper bound.)

Algebraic determination of the structure of state transition diagrams is more
complicated for multi-dimensional cellular automata than for the one dimensional
cellular automata considered above?. The generalization of Lemma 4.4 states that
aconfiguration A(x 4, . .., X,) is reachable only if A(z,, ..., z;) vanishes whenever
the z are simultaneousroots of O, ..., X,), xNt - 1,...,xN¢ - 1. Theroot sets z,
form an algebraic variety over U (cf. [9]).

E. Higher Order Cellular Automata

Therulesfor cellular automaton evol ution considered above took configurationsto be
determined solely from their immediate predecessors. One may in general consider
higher order cellular automaton rules, which allow dependence on say s preceding
configurations. Thetimeevolution for additive one-dimensional higher-order cellular
automata (with N sites and periodic boundary conditions) may be represented by the
order s recurrence relation

AW(x) = i(‘jy.(x)A“-V)(x) mod (x" - 1). (4.11)
j=1

This may be solved in analogy with order s difference equationsto yield

S

A(t)(x) = Z q](X)[UJ] (X)] t,

i=1

where the U; (x) are solutions to the equation

U] =D UG ().
j=1

and the q].(x) are analogous to “constants of integration” and are determined by
the initial configurations AQ(x), ..., A®D(x). The state of an order s cellular

2 In the specific case O, , x,) = X, +X;* +x, +X;*, onefindsthat the in-degrees Iy n, Of treesin the state transition
diagrams for afew Ny - N cellular automataare: 1,2 = 16,123 =4,124 =16, 125 =4,126 = 16,133 = 32,134 =4,
|3.5 = 2, |4.4 = 256.

98



1aT=X filename: Algebraic.tex (Paper: 1.2 [2]) 12:08p.m.  October 20, 1993

Algebraic Propetiesof Cellular Automata(1984)

automaton depends on the values of its N sites over a segquence of § time steps;
there are thus a total kN® possible states. The transition diagram for these states can
in principle be derived by algebraic methods starting from Eqg. (4.11). In practice,
however, the U;(x) are usually not polynomials, but elements of a more general
function field, leading to a somewhat involved analysis not performed here.

For first-order additive cellular automata, any configuration may be obtained by
superposition of the configuration 1 (or its translates x/). For higher-order cellular
automata, several “basis’ configurations must beincluded. For example, whens = 2,
{0, 1}, {1, 0}, and {xV, 1} areall basis configurations, wherein {AL(), A,(x)} AL (),
and A, (x) represent configurations at successive time steps.

As discussed in Sect. 4B, some first-order cellular automata over Up (p>2) are
effectively reversible for particular values of N, so that all states are on cycles. The
class of second-order cellular automata with O,(x) = - 1 is reversible for all N' and
k, and for any O, (x) [10]. In the simple case O,(x) = x +x "1, one finds U, (x) = x,
U,(x) = x"1. It then appears that

Cn =kN/2 (k even, N even)
=kN (otherwise).

(The proof isstraightforward whenk = 2.) Inthe case O, (x) = x +1+x ", the U; (x)
are no longer polynomials. For the case k = 2, the results for C,, with N between 3
and30are: 6, 6, 15, 12, 9, 12, 42, 30, 93, 24, 63, 18, 510, 24, 255, 84, 513, 60, 1170,
186, 6141, 48, 3075, 126, 3066, 36, 9831, 1020.

F Other Boundar y Conditions

The cellular automata discussed above were taken to consist of N indistinguishabl e
sites with periodic boundary conditions, as if arranged around a circle. This section
considers briefly cellular automata with other boundary conditions. The discussion
is restricted to the case of symmetric time evolution rules Ox) = O 1).

The periodic boundary conditions considered above are not the only possible
choice which preserve the trangdlation invariance of cellular automata (or the indis-
tinguishability of their sites)®. One-dimensional cellular automata may in general be
viewed as U, bundles over U,. Periodic boundary conditions correspond to trivial
bundles. Non-trivial bundles are associated with “twisted” boundary conditions.
Explicit realizations of such boundary conditions require a twist to be introduced
at a particular site. The evolution of particular configurations then depends on the
position of the twist, but the structure of the state transition diagram does not.

A twist of value R at positioni = s causessiteswithi 1 s to appear multiplied
by R in the time evolution of siteswith i < s, and correspondingly, for sites with
i < s to appear multiplied by R™* in the evolution of siteswith i + s. In the

3 We are grateful to L. Yaffe for emphasizing this point.
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presence of atwist taken at position s = 0, the time evolution formula (2.5) becomes
ADX) = OXA®TY(x) mod(xN - R). (4.12)

Multiple twists are irrelevant; only the product of their values R; is significant for
the structure of the state transition diagram. If U, = U, with p prime, then U, (with
the zero element removed) forms a multiplicative group, and twists with any value R
not equal to 0 or 1 yield equivalent results. When U, = U, with k composite, several
equivalence classes of R values may exist.

Using Eg. (4.12) one may obtain general results for twisted boundary condi-
tions anal ogous to those derived above for the case of periodic boundary conditions
(corresponding to R = 1). When U, = l.'Jp (p prime), one finds for example,

R, 1 R=1]
Che Y I Gy
An dternative class of boundary conditions introduces fixed values at particular
cellular automaton sites. One may consider cellular automata consisting of N sites
withvaluesa,, .. ., ay arranged asif along aline, bounded by sites with fixed values

a, and ay,,. Maximal periods obtained with such boundary conditions will be
denoted (;[(,30’““*1). Thecasea, = ay,; = 0Oissimplest. In this case, configurations

N
AX) =Y ax
i=1
of the length N' system with fixed boundary conditions may be embedded in config-
urations
~ N . N .
AX)= ) ax' +y (k- ay, X" (4.13)
i=1 i=1

of alength N = 2N + 2 system with periodic boundary conditions. The condition
a, = ay,, = 0ispreserved by time evolution, so that one must have

N1 Conaz:
The periods are equal if the configurations obtained by evolution from a single
nonzeroinitial sitehavethe symmetry of Eq. (4.13). (Thesimplest cellular automaton
defined in Sect. 3A satisfies this condition.)
Fixed boundary conditions a, = r, a,,, = 0, may be treated by constructing
configurations A(x) of the form (4.13), with periodic boundary conditions, but now
with time evolution

AYX) " [OE) A D) +r(1- ag)]  mod (x" - 1),

where O(x) is taken of theform x +a, +x"1. Iteration generates a geometric series
in O(x), which may be summed to yield a rational function of x. Fork =2, r =1,
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one may then show that with Ox) = x +1+x 1, G0V = G, ,,, whilewith O) =
x +x1 (the case of Sect. 3A), Y| Capn+2y

5. Non-Additive Cellular Automata

Equation (2.3) defines the time evolution for a specia class of “additive” cellular
automata, in which the value of a site is given by a linear combination (in Uk) of
the values of its neighbours on the previous time step. In this section we discuss
“non-additive” cellular automata, which evolve according to

a® = 0p’". &'V, &y, (5.)

whereUR ., a,, a,,] isanarbitrary function over U, not reducibletolinear form. The
absence of additivity in general prevents use of the algebraic techniques devel oped
for additive cellular automata in Sects. 3 and 4. The difficulties in the analysis of
non-additive cellular automata are analogous to those encountered in the analysis
of non-linear feedback shift registers (cf. [11]). In fact, the possibility of universal
computation with sufficiently complex non-additive cellular automata demonstrates
that a complete analysis of these systems is fundamentally impossible. Some results
are nevertheless available (cf. [12]). This section illustrates some methods which
may be applied to the analysis of non-additive cellular automata, and some of the
results which may be obtained.

Asin[1], most of the discussion in this section will be for the case k = 2. In this
case, there are 32 possible functions Usatisfying the symmetry condition

Ul ,, a, a,,] =UR,;, ay, a ]
and the quiescence condition
Up, 0,0] =0.

Reference [1] showed the existence of two classes of these “legal” cellular automata.
The “simple” class evolved to fixed points or short cycles after a small number of
time steps. The “complex” class (which included the additive rules discussed above)
exhibited more complicated behaviour.
We consider as an example the complex non-additive k = 2 rule defined by
) U[L, 0,0 =Up,0,1] = 1j (52)
Ua. ,.a,a,]=0 otherwise,

andreferredtoasrule18in[1]. Thisfunctionyieldsatimeevolution ruleequivalent to
al(l) ” (1 + al(t' l))(a|(-t_]_l) + 31(511)) mOd 2 (53)
The rule does not in general satisfy any superposition principle. However, for the

special class of configurations with ay; = 0 or ay;,; = 0, Eq. (5.3) implies that
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the evolution of even (odd) sites on even (odd) time steps is given simply by the
rule defined in Sect. 3A. Any configuration may be considered as a sequence of
“domains’ in which all even (or odd) sites have value zero, separated by “domain
walls’ or “kinks’ [13]. In the course of time the kinks annihilate in pairs. If sitesare
nonzero only in somefiniteregion, then at sufficiently largetimesin aninfinitecellular
automaton, all kinks (except perhaps one) will have annihilated, and an effectively
additive system will result. However, out of all 2V possible initial configurations
for acellular automaton with N sites and periodic boundary conditions, only asmall
fraction are found to evolve to this form before a cycle is reached: in most cases,
“kinks’ are frozen into cycles, and contribute to global behaviour in an essential
fashion.

Typical examples of the state transition diagrams obtained with the rule (5.3) are
shown in Fig. 5. They are seen to be much less regular than those for additive rules
illustrated in Fig. 2. In particular, not all transient trees are identical, and few of the
trees are balanced. Just as for the additive rules discussed in Sects. 3 and 4, only
afraction of the 2V possible configurations may be reached by evolution according
to Eq. (5.3); the rest are unreachable and appear as nodes with zero in-degree on
the periphery of the state transition diagram of Fig. 5. An explicit characterization
of these unreachable configurations may be found by lengthy but straightforward
analysis.

Figure 5. Globa state transition diagramsfor atypical finite non-additive cellular automaton discussed in
Sect. 5.
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Lemma5.1. A configurationisunreachable by cellular automaton time evolution
according to Eq. (5.3) if and only if one of the following conditions holds:

(8) The sequence of site values 111 appears.
(b) No sequence 11 appears, but the total number of 1 sitesis odd.

(c) A sequence 1la,a, . ..a,11 appears, with an odd number of the a; having
value 1. Thetwo 11 sequences may be cyclically identified.

The number of reachable configurations may now be found by enumerating the
configurations defined by Lemma5.1. This problem is analogousto the enumeration
of legal sentences in a formal language. As a simple example of the techniques
required (e.g. [14]), consider the enumeration of strings of N symbols 0 or 1 in
which no sequence 111 appears (no periodicity isassumed). Let the number of such
strings be a. In addition, let b, be the number of length N' strings containing no 111
sequencesin their first N - 1 positions, but terminating with the sequence 111. Then

by=b,=b,=0, by=1 a,=1 a, =2 (5.43)
and

2ay =ayy tbyyy  (NF0), (5.4b)

ay =bysy +byip+bys (N £0). (5.40)

The recurrence relations (5.4) may be solved by a generating function technique.
With

¥ ¥
AZ)=)> a", B@=) bz" (5.59)
n=0 n=0

Eq. (5.4) may bewritten as
2A(z) =2’ Y(A@Z) - 1) +z" 'B(2),
A(z) =2 °B(2) +7%B(2) + 7 1B(2).
Solving these equations yields the result
1+z+27?
Results for specific N are obtained as the coefficients of zV in a series expansion of
A(z). Taking

Ax(2)
Ap ()

Eq. (5.58) may be inverted to yield

_ -An(z) N
aN_Z ;Ab(;)(l/z N, (5.5¢)

AiZ) = (5.5b)

AlZ) =
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where the z, are the roots of A (z) (all assumed distinct), and prime denotes differ-
entiation. Thisyieldsfinally

ay f 1.14(1.84)N +0.283(0.737)" cos(2.176N +2.078). (5.6)

The behaviour of the coefficientsfor large N isdominated by thefirst term, associated
with the smallest root of Ay (N). Thefirst ten values of ay are 1, 2, 4,7, 13, 24, 44,
81, 149, 274, 504.

A lengthy calculation shows that the number of possible strings of length N
which do not satisfy the conditionsin Lemma 5.1, and may therefore be reached by
evolution of the cellular automaton defined by Eq. (5.3), is given as the coefficient
of zV in the expansion of the generating function

z- 322+62°- 828 +4z°- 7'
1-4z+6722- 523+224+2°- 28+7'
_ 3-4zvz2  2-z . 2-z
1-2z+72- 282 2(1-z+z%) 2(-1+z+7?)
Inverting according to Eg. (5.5¢), the number of reachable configurations of length
N isgiven by

P(z) =

(5.7)

ry =KV - (N +(H) "Ny~ cos(Np/3) +2nY cos(Nq), (5.8)

where k f 1.7548 isthe rea root of z°- z22+2z- 1 =0,f = (1++/5)/2=1.6182,
andmf 0.754, g f 1.408. Thefirsttenvaluesof r arel, 1,4, 7, 11, 19, 36, 67, 121,
216. For large N, r ...kN. Equation (5.8) showsthat corrections decrease rapidly
and smoothly with N'. Thisbehaviour isto be contrasted with the irregular behaviour
as afunction of N found for additive cellular automatain Theorems 3.1 and 4.2.

Equation (5.8) shows that the fraction of all 2N possible configurations which are
reachable after one time step in the evolution of the cellular automaton of Eq. (5.2)
is approximately (k/2)N f 0.92V. Thus, starting from an initial maximal entropy
ensemble with s = 1, evolution for one time step according to Eq. (5.2) yields a set
entropy

s(t = 1) f log,k f 0.88. (5.9)

Theirregularity of the transient trees illustrated in Fig. 5 implies a measure entropy
$,<S.

The result (5.9) becomes exact inthe limit N ¢ ¥ . A direct derivation in this
limitisgivenin[17, 18], whereit is aso shown that the set of infinite configurations
generated forms a regular formal language. The set continues to contract with time,
so that the set entropy decreases below the value given by Eq. (5.9) [18].

Techniques similar to those used in the derivation of Eq. (5.5) may in principle
be used to deduce the number of configurations reached after any given number of
steps in the evolution of the cellular automaton (5.2). The fraction of configurations
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N o
4 0.3125
5 0.3438
6 0.1094
7 0.0078
8 0.1133 Table 3. Fraction of configurations appearing in cycles for the non-additive
9 0.1426 cellular automaton of Eg. (5.2).
10 0.0791
11 0.0435
12 0.0466
13 0.0350
14 0.0163
15 0.00308
16 0.00850
17 0.00857

which appear in cyclesis an irregular function of N'; some results for small N are
givenin Table 3.

6. Discussion

The analysis of additive cellular automata in Sects. 3 and 4 yielded results on the
global behaviour of additive cellular automata more complete than those available
for most other dynamical systems. The extensive analysis was made possible by
the discrete nature of cellular automata, and by the additivity property which led to
the algebraic approach developed in Sect. 3. Similar algebraic techniques should be
applicable to some other discrete dynamical systems.

The analysis of global properties of cellular automata made in this paper comp-
lements the analysis of local properties of ref. [1].

One feature of the results on additive cellular automatafound in Sects. 3 and 4, is
the dependence of global quantities not only on the magnitude of the size parameter
N, but also on its number theoretical properties. This behaviour is shared by many
dynamical systems, both discrete and continuous. It leads to the irregular variation
of quantities such as cycle lengths with N, illustrated in Table 1 and Fig. 3. In
physical realizations of cellular automatawith large size N, an averageis presumably
performed over arange of N values, and irregular dependence on N is effectively
smoothed out. A similar irregular dependence is found on the number k of possible
valuesfor each site: simple results are found only when k is prime.

Despite such detailed dependence on N, results such as Theorems 4.1—4.3 show
that global propertiesof additive cellular automataexhibit aconsiderable universality,
and independence of detailed aspects of their construction. This property is again
shared by many other dynamical systems. It potentially allows for generic results,
valid both in the simple cases which may easily be analysed, and in the presumably
complicated cases which occur in real physical systems.
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The discrete nature of cellular automata makes possible an explicit analysis of
their global behaviour in terms of transitions in the discrete phase space of their
configurations. The results of Sect. 4 provide a rather complete characterization
of the structure of the state transition diagrams for additive cellular automata. The
state transition diagrams consist of trees corresponding to irreversible “transients’,
leading to “attractors’ in the form of distinct finite cycles. The irreversibility of
the cellular automata is explicitly manifest in the convergence of severa distinct
configurations to single configurations through motion towards the roots of the trees.
This irreversibility leads to a decrease in the entropy of an initially equiprobable
ensemble of cellular automaton configurations; the results of Sect. 4 show that in
most cases the entropy decreases by a fixed amount at each time step, reflecting
the balanced nature of the trees. Theorem 4.3 gives an algebraic characterization
of the magnitude of the irreversibility, in terms of the in-degrees of nodes in the
trees. The length of the transients during which the entropy decreases is given by
the height of the trees in Theorem 4.3, and is found always to be lessthan N. After
these transients, any initial configurations evolve to configurations on attractors or
cycles. Theorem 4.3 gives the total number of configurations on cycles in terms of
N and algebraic properties of the cellular automaton time evolution polynomial. At
one extreme, al configurations may be on cycles, while at the other extreme, al
initial configurations may evolve to a single limit point consisting smply of the null
configuration.

Theorem 4.1 gives a rather general result on the lengths of cycles in additive
cellular automata. The maximum possible cycle length is found to be of order
the square root of the total number of possible configurations. Rather long cycles
are therefore possible. No simple results on the total number of distinct cycles or
attractors were found; however, empirical results suggest that most cycles have a
length equal to the maximal length for a particular cellular automaton.

Theglobal propertiesof additive cellular automatamay be compared with those of
other mathematical systems. One closely related class of systems are linear feedback
shift registers. Most results in this case concentrate on analogues of the cellular
automaton discussed in Sect. 3, but with the values at aparticular time step in general
depending on those of a few far-distant sites. The boundary conditions assumed
for feedback shift registers are typically more complicated than the periodic ones
assumed for cellular automatain Sect. 3 and most of Sect. 4. The lack of symmetry
in these boundary conditions allows for maximal length shift register sequences, in
which all 2V - 1 possible configurations occur on asingle cycle [2, 3].

A second mathematical system potentially analogous to cellular automata is a
random mapping [15]. While the average cycle length for random mappings is
comparable to the maximal cycle length for cellular automata, the probability for
a node in the state transition diagram of a random mapping to have in-degree d is
..1/d!, and is much more sharply peaked at low values than for a cellular automaton,
leading to many differencesin global properties.
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Non-additive cellular automata are not amenable to the algebraic techniques used
in Sects. 3 and 4 for the additive case. Section 5 nevertheless discussed some prop-
erties of non-additive cellular automata, concentrating on a simple one-dimensional
examplewith two possible values at each site. Figure 5 indicates that the state transi-
tion diagrams for such non-additive cellular automata are less regular than those for
additive cellular automata. Combinatorial methods were neverthel ess used to derive
the fraction of configurations with no predecessors in these diagrams, giving the
irreversibility and thus entropy decrease associated with one time step in the cellular
automaton evolution. Unlike the case of additive cellular automata, the result was
found to be a smooth function of N

Appendix A:
Notations and Elementar y Results on Finite Fields

Detailed discussion of the material in this appendix may be found in [8].

A. Basic Notations

a mod b denotes a reduced modulo b, or the remainder of a after division by b.

(a, b) or gcd(a, b) denotes the greatest common divisor of a and b. When a and
b are polynomials, the result is taken to be a polynomial with unit leading coefficient
(monic).

a| b represents the statement that a divides b (with no remainder).

a"||b indicates that a" is the highest power of a which dividesb.

Exponentiation is assumed right associative, so that a®* denotes a®” not (a®)°.

p usually denotes aprime integer.

Uk denotes an arbitrary commutative ring of k elements.

Uk denotes the ring of integers modulo k.

degP (x) denotes the highest power of x which appearsin P (x).

B. Finite Fields

There exists a finite field unique up to isomorphism with any size p2 (p prime),
denoted GF(p?). p istermed the characteristic of the field.

Thering Uk of integers modulo k forms afield only when k is prime, since only
in this case do unique inverses under multiplication modulo k exist for al nonzero
elements. (For example, in U,, 2 has no inverse.) GF(p) is therefore isomorphic
toU,.

Thefield GF(p?@) is conveniently represented by the set of polynomials of degree
lessthan a with coefficientsin Up, with all polynomial operations performed modulo
a fixed irreducible polynomial of degree a over GF(p). For example, GF(4) may
be represented by elements O, 1, k, k + 1 with operations performed modulo 2 and
modulo k? + k + 1. In this case for examplek - k” k+ 1. Notice that, as mentioned
in Sect. A.C below, polynomials over afield form a unique factorization domain.
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Any field of size g yields a group of size g - 1 under multiplication if the zero
element isremoved. Thusfor any element of GF(g),

x9 =x, (A.D
and x4 1 =1forx, 0. Noticethat if x | GF(p @) and xP" =x, thenx , GF(p ?).

C. Polynomials over Finite Fields

Polynomialsin any number of variableswith coefficientsin GF(g) form aunique fac-
torization domain. For such polynomials, therefore, A(x)B (x) ” A(x)C(x) mod P (x)
impliesB(x) " C(x) mod P (x) if (A(x), P(x)) = 1.

For any polynomials A(x) and B (x) with coefficients in GF(g), there exist poly-
nomials a(x) and b(x) such that

C(x) = (A(x). B(x)) = a(x)A(x) +b(x)B (). (A.2)

There are exactly g™ univariate polynomials over GF(g) with degree less than n.
With a polynomial Q(x) of degree m, the number of polynomials P (x) with degree
not exceeding n for which Q(x) | P(x) isg ™™ for m £ n.

For any primep, and for elements a; of GF(p®),

. p? L
dlax' T =) (@x)P. (A3)
Thus for example,
x> +1)" (x+1)  mod2, (A.4)

aresult used extensively in Sect. 3.
If P(x) | Q(x), then every root of P(x) must bearoot of Q(x). If | ¥ 2and

[PX)]' QX (A5)
then
P(X)|Q'(x), (A.6)

where Q’(x) istheformal derivative of Q (x), obtained by differentiation of eachterm
in the polynomial. [Note that integration isnot defined for polynomials over GF(q).]
The number of roots (not necessarily distinct) of apolynomial over GF(g) isequal
to the degree of the polynomial. The roots may lie in an extension of GF(g).
Over thefield GF(p),

xN - 1= (x"- 1)PeM), (A7)
where N = Dp(N)n, with Dp(N) defined in Sects. 3 and 4 as the maximum power of
p which dividesN'. The polynomial x™ - 1 with n not amultiple of p then factorizes
over GF(p) according to

f(d)
ordg (p)

x*-1=x- D] [] Cai™- (A.8)
dn i=1
d,1
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where the C; ; (x) are irreducible cyclotomic polynomials of degree ord,(p). Note
that the multiplicity of any irreducible factor of xN - 1 is exactly D,(N), and that

Cyi(0)[x%- 1. (A.9)

D. Dipolynomials over Finite Fields

A dipolynomial A(x) istaken to divideadipolynomial B (x) if thereexistsadipolyno-
mial C(x) suchthat B (x) = A(x)C(x). Henceif A(x) and B (x) are polynomials, with
A(0) ,, 0, and if A(x) | B(x) are dipolynomials, then A(x) | B (x) are polynomials.

Congruence in the ring of dipolynomialsisdefined asfollows: A(x) ” B (x) mod
C(x) for dipolynomials A(x), B (x), and C(x) if C(x) | A(X) - B(x).

The greatest common divisor of two nonzero dipolynomials A, (x) and A ,(x) is
defined asthe ordinary polynomial (A} (x), A3(x)), where Af(x) =x™ A, (x) andm, is
chosento make A’ (x) apolynomial with nonzero constant term. Notethat by analogy
with Eq. (A.2), for any dipolynomials A,(x) and A ,(x), there exist dipolynomials
a,(x) and a,(x) such that

(A1(x), A,(x)) = a; (X)A 1 (x) +a,(X)A (x). (A.10)

Appendix B:
Proper ties and Values of Some Number
Theoretical Functions

A. Euler Totient Function @ &

f( N) is defined as the number of integers less than N which are relatively prime to
N [7]. f( N) isamultiplicative function, so that

f( pan) = f( m)f( n), (m, n) = 1. (B.2)
For p prime,
f(p®) =p**(p- 1) (B.2)
Hence
f(n) = 1‘H[ p*Hp- 1), (B.3)
p2(n

providing a formula by which f( N) may be computed. Some values of f( N') are
givenin Table 4.
f( N) isbounded (for N > 1) by

eN/loglogN £f(N)£N - 1, (B.4)

where ¢ is some positive constant, and the upper bound is achieved if and only if N
isprime. For large N, f( N') /N tends on average to a constant value.
f( n) satisfies the Euler-Fermat theorem

kKW=1 modn  (k,n)=1. (B.5)
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B. Multiplicative Order Function ord y% &

The multiplicative order function ord,, (k) is defined as the minimum positive integer
j for which [8]

ki =1 modN. (B.6)

This condition can only be satisfied if (k, N) = 1.
By the Euler-Fermat theorem (B.5),

ordy (k) | f( N) (B.7)
In addition, ord,,, (k) = lcm(ord,(k), ord,,(k)), (n, k) = (m, k) = (n, m) = 1. Some
special cases are

ord,._,(k) = a,

0rdy.., (k) = 2a.

A rigorous bound on ordy (k) is

log, (N) £ ordy (k) EN - 1, (B.8)

where the upper bound is attained only if N is prime. It can be shown that on
average, for large N, ord,, (k) Y/N’; the actual average is presumably closer to N.
Nevertheless, for large N, ord, (k)/N tends to zero on average.

Some values of the multiplicative order function are given in Table 4.

.....

function isdefined asthe minimum positiveinteger jj for whichk/ = 1 simultaneously
modulo N;, N, ..., and Nj. It isclear that

ordy,  w,(K) =lcm(ordy, (k), ..., ordy, (K)) = ordcpy, ) (K),
k,N)= ... =(k,Ny) =1. (B.9)

C. Multiplicative Suborder Function sord y% &

The multiplicative suborder function is defined as the minimum jj for which

k/ =—1mod N, (B.10)
again assuming (k, N) = 1. Comparison with (B.6) yields

sordy (k) = ordy (k), (B.114)
or

sordy (k) = %ordw(k). (B.11b)

The second case becomes comparatively rarefor large N'; the fraction of integersless
than X for which it is realised may be shown to be asymptotic to e/[log X]' [16],
wheree and | are constants determined by k.
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N k=2 k=3 k=4 k=5 f(N)
1 1
2 1 1 1 1 1
3 2 1 1 1 2 1 2
4 2 1 1 1 2
5 4 2 4 2 2 1 4
6 2 1 2
7 3 3 6 3 3 3 6 3 6
8 2 2 2 2 4
9 6 3 3 3 6 3 6

10 4 2 4
11 10 5 5 5 5 5 5 5 10
12 2 2 4
13 12 6 3 3 6 3 4 2 12
14 6 3 6 3 6
15 4 4 2 2 8
16 4 4 4 4 8
17 8 4 16 8 4 2 16 8 16
18 6 3 6
19 18 9 18 9 9 9 9 9 18
20 4 4 8
21 6 6 3 3 6 3 12
22 5 5 5 5 10
23 11 11 11 11 11 11 22 11 22
24 2 2 8
25 20 10 20 10 10 5 20
26 3 3 4 2 12
27 18 9 9 9 18 9 18
28 6 3 6 6 12
29 28 14 28 14 14 7 14 7 28
30 8
31 5 5 30 15 5 5 3 3 30
32 8 8 8 8 16
33 10 5 5 5 10 10 20
34 16 8 16 8 16
35 12 12 12 12 6 6 24
36 6 6 12
37 36 18 18 9 18 9 36 18 36
38 18 9 9 9 18
39 12 12 6 6 4 4 24
40 4 4 16

Table 4. Values of the multiplicative order ordy(k) and suborder sordy (k) functions defined in
Egs. (B.6) and (B.10), respectively, together with values of the Euler totient function f(N). Each column
gives values of the pair ordy (k), sordy (k).
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In general,
log, (N) £ sordy (k) £ (N - 1)/2, (B.12)

the upper limit again being achieved only if N isprime. For largeN, sordy (k)/N ¢ O
on average.

Themultidimensional generalization sordy, (k) of themultiplicative suborder
function is defined as the minimum positive integer jj for which k/ = —1 simultane-
ously modulo N, ..., Ny, with +1 and - 1 perhaps taken variously for the different
N;. The analogue of Eq. (B.9) for thisfunctionis

sordy, (k) =lcm(sordy, (k), . .., sordy, (K)), (B.13q)
and

lem(sordy, (k), . ..., sordy, (k)) = sord, ., g (K), (B.13b)
or

lem(sordy, (K), . - ., sordy, (k)) = %sordlcm(w1 _____ Na) (K)- (B.13c)
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