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Abstract—We compare single user digital multi-carrier spread
spectrum (MC-SS) modulation with direct sequence (DS) SS
(with a modified implementation) in the presence of narrowband
interference (NBI) and multipath fading. We derive closed-form
expressions for the symbol error probability for both the linear
MMSE receiver as well as the conventional matched-filter receiver
under different scenarios: additive white Gaussian noise (AWGN)
channel with NBI, multipath channel with or without NBI. We
show that DS-SS can achieve the same performance as MC-SS if
the spreading code is carefully designed to have perfect periodic
autocorrelation function (PACF). On the other hand, MC-SS is
more robust to narrowband interference and multipath fading
than is DS-SS with the widely used spreading codes that do
not possess perfect PACF. Our analysis reveals that the perfor-
mance improvement of MC-SS is precisely due to the implicit
construction of an equivalent spreading code having nonconstant
amplitude but possessing perfect periodic autocorrelation.

Index Terms—Direct-sequence, frequency-selective fading,
multi-carrier, multipath, narrowband interference, periodic
autocorrelation function, spread spectrum.

I. INTRODUCTION

T HE increasing interest and applications of direct sequence
spread spectrum (DS-SS) technology stem from its robust-

ness to fading, its anti-interference capability, and the poten-
tial for (even uncoordinated) multiple access [29]. With a wide
bandwidth, and thus a short chip period, multiple paths can be
resolved with DS-SS transmissions and a RAKE receiver can be
used to mitigate fading and improve system performance [21].
De-spreading the received signal with the pre-determined code
sequence, attenuates the narrowband interference, which may be
due to intentional jamming or narrowband communication links
that co-exist with wide band transmissions [17]. The anti-inter-
ference capability is measured by the amount of attenuation, and
depends on the system’s processing gain [29].
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An alternative to DS-SS signaling, called frequency-diversity
spread spectrum (FD-SS), was recently proposed and shown to
be more resistant than DS-SS to narrowband and partial band
interference (NBI/PBI) [14]. FD-SS, with disjoint frequency
support for each subcarrier, is, in fact, the analog counterpart
of digital OFDM spread spectrum technique [23], [24] and the
underlying multicarrier spread spectrum (MC-SS) approach for
multicarrier (MC) CDMA with overlapping subcarriers [27]. By
exploiting multiple carriers and a narrowband DS waveform on
each subcarrier, it has been shown that multicarrier DS CDMA
outperforms single carrier CDMA for wideband transmissions
in the presence of narrowband interference [16]; results for par-
tial-time jamming may be found in [5].

Although most existing works rely on analog carrier
modulations, digital implementations through FFT’s are also
available [1], [14]. Thanks to the rapid development of digital
devices and digital signal processing (DSP) technologies, the
digital-to-analog (D/A) and analog-to-digital (A/D) converters
are being pushed closer to the transceiver’s end. A unifying
digital implementation framework of many existing schemes
has been developed [10], [26], which includes MC-CDMA [27]
and MC-DS-CDMA [16] as special cases.

In this paper, we focus on thesingle userscenario where the
narrowband signals are spread over a much wider bandwidth to
combat narrowband interference and multipath fading. Starting
from a discrete-time equivalent model, we investigate the
performance of digital MC-SS, and compare it with DS-SS. We
show that DS-SS can achieve the same performance as MC-SS,
if the spreading code is carefully designed with perfect periodic
autocorrelation function (PACF). On the other hand, MC-SS is
more robust to narrowband interference and multipath fading
than is DS-SS with commonly used spreading codes not having
perfect PACF. We show that the performance improvement
of MC-SS is precisely due to the implicit construction of an
equivalent spreading code having nonconstant amplitude but
possessing perfect periodic autocorrelation. The main contribu-
tions of this paper are the novel results on performance analysis
of digital MC-SS and DS-SS in the presence of jamming and
multipath.

The rest of this paper is organized as follows. The dis-
crete-time system model is introduced in Section II. MC-SS
and DS-SS are then compared under various conditions:
additive white Gaussian noise (AWGN) channels with narrow-
band and partial band interference (NBI/PBI) in Section III,
frequency-selective multipath channels in Section IV, and mul-
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Fig. 1. Discrete-time equivalent baseband model for MC-SS (upper part) and DS-SS (lower part).

tipath fading channels with NBI/PBI in Section V. Discussion
and conclusions are collected in Section VI.

II. UNIFYING DIGITAL MC-SSAND DS-SS MODELS

The diagram in the upper part of Fig. 1 describes the
discrete-time baseband equivalent model of an MC-SS
system, where signals, codes, and channels are represented
by samples of their complex envelopes taken at the chip
rate. The length- symbol periodic digital spreading code

spreads the th in-
formation symbol . We assume in this paper that the
spreading sequence has unit amplitude, e.g., taking binary

1 values, or any complex number on the unit circle. The
resulting vector is mapped into a vector,

as follows.
The length- IFFT of is evaluated, and the last
elements are replicated at the front to form the cyclic prefix
(CP) as in conventional OFDM [1].

Let denote the last rows of the identity
matrix , and let be the FFT matrix with th

entry . Let de-

note the transmit-matrix, and denote the IFFT matrix,
where denotes Hermitian transpose. Cyclic prefix insertion on
a vector is accomplished by left multiplying it with , and the
IFFT is obtained through multiplication by . Hence, theth
transmitted block can be written as .

The block is converted from parallel to serial (P/S), and
the resulting sequence is pulse shaped to obtain the con-
tinuous time signal , where

is the chip period, and is the chip pulse. The subscript
in (and later in and ) is a mnemonic for con-

tinuous-time. The transmitted signal1 propagates through
a (possiblyunknown) dispersive channel , and is filtered
by the receive filter , that is matched to . We suppose
carrier synchronization has been performed with no errors. Let

denote the convolution of transmit- with receive-fil-
ters; by design, its spectrum has Nyquist characteristics, and
bandwidth . Let denote convolution. Then

is the equivalent discrete time channel impulse response which
includes frequency-selective multipath propagation as well
as transmit–receive filter effects. The channel order is, i.e.,

; is the maximum number of chips
affected by the multipath delay-spread (with denoting the
maximum delay spread, ; see [21, p. 797]).

1There is no carrier since we are dealing with the baseband equivalent model.

Usually, the spreading length and the channel ordersatisfy
(see also [16], [24], [27]). In the presence of additive

Gaussian noise (AGN) and NBI , the received signal,
sampled at the chip rate, can be written as

(1)

where , are
filtered AGN and NBI, respectively. Because has Nyquist
characteristics, if is white, so is .

To avoid intersymbol interference (ISI), the CP length
should be larger than the channel order: . To avoid
bandwidth overexpansion, we choose the smallest block length:
As0): The transmitted block length is .

To convert (1) from a serial to a convenient matrix-vector
form, we define the vector:

and likewise for and ; the
Toeplitz channel matrices , have th entries
and , respectively. Since

, and under As0), we can write (1) as

(2)

where the second term in the right hand side represents in-
terblock interference (IBI).

At the receiver end, the CP of length is removed
first, and an FFT is performed on the remaining vector.
In matrix form, this is accomplished with the receive-matrix

which removes the first en-
tries of a vector when the product is formed.
According to As0), indicating that IBI (and thus
ISI) is eliminated. For ease of notation, we define the truncated
composite noise vector as

(3)

IBI removal, together with (3), allows one to express the FFT
output of a digital multicarrier (mc) system as:

(4)

where is the overall channel matrix. We
verify by direct substitution that is an circulant
matrix with th entry given by . Be-
cause (I)FFT’s diagonalize circulant matrices, the circulant
matrix can be decomposed as , where
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with
entries the channel frequency response
evaluated at the subcarriers , and

denotes a diagonal matrix with the th
entry being theth element of the vector; further details may
be found in [26]. Therefore, we can rewrite (4) as

(5)

With the matrix , we verify that
, and rewrite (5) as

(6)

where is a Vandermonde matrix formed by the
first columns of , , and

represents a scalar FFT operation in matrix form.
Our primary goal is to compare the ability of MC-SS and

DS-SS to combat NBI/PBI and multipath fading; therefore, we
now describe the discrete time baseband model of DS-SS that is
depicted in the lower part of Fig. 1.

Without FFT and CP insertion at the transmitter, the
transmitted block in DS-SS is , where

is a vector
having the same block length as the MC-SS system (the upper
part of Fig. 1). Replacing in (2) by , and with
eliminating IBI as in (4), we arrive at (see Remark 1 for more
on this)

(7)

Because represents in matrix-vector form the linear con-
volution between and , we can commute and to ob-
tain , with denoting a Toeplitz
matrix with first column and first row . Let
us now define the truncated code vector for DS-SS as

. Multiplying with yields a truncated
Toeplitz matrix with first column and first

row . Therefore, we can rewrite (7) as:

(8)

Comparing (6) with (8), weunifyMC-SS and DS-SS in the fol-
lowing equivalent model:

(9)

where denotes the equivalent signature code vector
after channel convolution and receiver processing. For conve-
nience, we list the corresponding vectors in (9) for MC-SS as

(10)

and for DS-SS as

(11)

Relying on the unifying model (9), we will first find the linear
MMSE receiver in addition to the conventional matched filter
(MF), and then illustrate the differences between MC-SS and
DS-SS under different scenarios in Sections III–VI.

If the noise in (9) is white, the optimum (in the ML
sense) linear processor is the matched filter (or RAKE receiver)

that is given by . Define and
. The corresponding SNR at the MF

output is thus

(12)

Due to the presence of NBI/PBI, the noise is colored which
renders the MF suboptimal and motivates the use of minimum
mean-square error (MMSE) receivers. Based on (9), the linear
MMSE receiver is given by [15, p. 480]

(13)

where the matrix inversion lemma has been applied to estab-
lish the second equality. Since is a con-
stant scalar, the linear MMSE receiver is taken as

. In the white noise case, , and
, i.e., the MMSE receiver reduces to the MF,

as expected (note that multiplying by a constant does not
affect its performance).

With , the output SNR is obtained as

(14)

In this section, we developed an unifying framework which
describes both MS-SS and DS-SS; we then derived an expres-
sion for the SNR at the output of the MF and MMSE receivers.
In Section III, we will compare the two modulation schemes
in the presence of NBI. The differences are induced by the dif-
ferent equivalent signature vectorsin (10) and (11), which lead
to different output SNR’s as given by (12) and (14).

Remark 1: Notice that we adopted a modified implementa-
tion for DS-SS. We discarded chips to remove IBI and en-
able a simple block by block processing at the receiver. More
complex receivers can improve performance of DS-SS by uti-
lizing multiple blocks. Assuming all adjacent symbols are de-
tected perfectly by a genie decoder and their contributions are
subtracted from the received data corresponding to the current
symbol, the performance of DS-SS is lower-bounded by the
benchmark system assuming only one data symbol is trans-
mitted in DS-SS. In such case, we collect samples to
form .
Then can be written as , where

is Toeplitz with first column
and first row . Comparing this

benchmark system to the modified implementation of (11), the
only difference is that it uses the equivalent code with en-
ergy , rather than with energy . Therefore, this mod-
ified implementation differs from the benchmark system by a
power deficit of dB, which becomes small when

. The performance of complex receivers for DS-SS can
only approximate this benchmark system, and really depends
on the chosen receiver type; hence, for simplicity, we compare
MC-SS with this modified DS-SS. On the other hand, replacing
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Fig. 2. Signal and interference spectra: a simple example.

in (11) by , our theoretical analysis is valid and the
resulting closed-form symbol error probability of (47) still pro-
vides a lower bound for DS-SS with arbitrary receivers.

III. AWGN PLUS NARROW BAND INTERFERENCE

In this section, we focus on the ability of digital MC-SS and
DS-SS to suppress narrowband interference. We will assume the
channel is nonfading AWGN, i.e., , and .
This case was also considered in [14] to compare DS-SS with
FD-SS, which is the analog counterpart of the digital MC-SS
that we developed in Section II.

Due to the existence of NBI/PBI, the composite noise
in (3) is no longer white. We define its correlation ma-
trix as: . Since the entries of are
samples from a stationary Gaussian process, we can approxi-
mate its correlation matrix by a circulant matrix when the size

is large [2, pp. 73–74]. Therefore, we can approximately di-
agonalize the correlation matrix by (I)FFT matrices; we assume
that the diagonalization is perfect:
As1) , where is a diagonal matrix with
positive diagonal entries .

Because the FFT is asymptotically equivalent to the
Karhunen–Loève transform (KLT) [12, p. 461], the entries
of the FFT output are asymptotically uncorrelated
random variables [2]. Therefore, assumption As1) becomes
more and more accurate as the FFT sizeincreases (i.e., the
spreading code length increases). See Remark 2 when As1)
does not hold exactly.

For illustrative purposes, we construct a simple example,
where we assume that the jammer has the same power in every
subband where it is present; see Fig. 2 and also [14], [16] for
related examples. Thus, the diagonal matrix in As1)
has entries

if jammer is present in theth subband

if jammer is absent in theth subband
(15)

where is the power spectrum density (PSD) of the addi-
tive white noise , and is the PSD of the narrowband
jammer. Suppose that occupies bandwidth

, which implies that there are (we assume to be integer
for simplicity) subbands hit by jammers. We can then rewrite
as

(16)

where has unity entries on the diagonal (if NBI/PBI is
present in those subbands), and all other entries are zero.

We now evaluate the SNR and bit error rate (BER) for MC-SS
and DS-SS; for simplicity, we assume BPSK modulation in this
section. Given SNR, the BER or symbol error rate (SER) ex-
pression for other constellations can be similarly found [21].

A. MC-SS

Under As1), we obtain the noise correlation matrix for
MC-SS as

(17)

With , in (10), and
given by (17), we can simplify (12) and (14) for MC-SS as

(18)

where is the trace operator, and we relied on the fact that
the entries of have unit amplitude to obtain:

. Since the arithmetic mean cannot be smaller than
the harmonic mean, we have , so that

, as expected (see Appendix I). We infer
that the MMSE receiver outperforms the MF receiver, which, of
course, is suboptimal in the presence of colored noise.

In the special case of (16), we have
and , such

that (18) becomes

(19)

Define the bit energy , ,
and . Based on (19), the corre-
sponding closed-form BER expressions for BPSK can be found
as [21, p. 258]:

(20)

where denotes the -function. Parameters and
are both less than unity and indicate the SNR loss for

MC-SS relative to transmission over an AWGN channel with
. In order to achieve the same error probability

as in the unjammed AWGN case, bit energy must be
increased by a factor of or .

As increases, both and decrease and con-
sequently the BER performance degrades as confirmed by (20).
However, one can notice that the SNR degradation is unbounded
for the MF receiver, but is upper bounded for the MMSE re-
ceiver even when , since the power degradation

. To compare these two different receivers
more clearly, we define the SNR gain of MMSE over MF re-
ceiver as:

(21)



ZHOU et al.: MULTI-CARRIER SS VERSUS DS-SS 647

Fig. 3. SNR gain of MMSE over MF receiver as a function of interference
power to AWGN variance, with curves parameterized by�, the fractional
bandwidth of the interference.

From (21), we find that , with equality at
(no NBI) or (NBI occupies the full band); both of these
cases correspond to white noise. In Fig. 3, we plot the SNR gain
in (21) versus power density ratio , for different values of
the NBI parameter . Even for a mod-
erate power NBI, say with , and dB,
the gain is 5 dB, and increases withand . In the pres-
ence of colored noise, the linear MMSE receiver significantly
outperforms the MF receiver, especially as the power spectrum
density of NBI and the jammed bandwidth percentage increase.
For a fixed , the SNR gain peaks at which can
be inferred from (21). Given a fixed average jamming power

( denotes the system bandwidth), it has been
shown in [14] that the worst jammer for the MMSE receiver
spreads its power evenly over the entire signal bandwidth, i.e.,

; in this case, the MMSE receiver reduces to the conven-
tional MF receiver and thus the SNR gain becomes .

In this subsection, we showed that the MMSE receiver (which
has knowledge of which subbands are jammed, and the jammer
power to AWGN ratio) outperforms the MF receiver; the SNR
gain of the MMSE receiver with respect to the MF receiver,
of (21), increases as the jammer power or the bandwidth occu-
pied by the jammer increases. Further, a smart adversary spreads
its power evenly2 , so that the MF (equivalent to MMSE now)
is optimal. The SNR/BER performance is independent of the
spreading code.

B. DS-SS

For DS-SS, we have , in (11),
and as per As1); the SNR in (12)
and (14) can be simplified as

(22)

2A smart jammer could hop thus making it difficult to estimate the jammer
power; we do not consider this scenario in this paper.

Fig. 4. BER for DS-SS with different W–H codes of lengthP = 16. MF
receiver is used. The jammer has� = 3=16 and10 log (J =N ) = 10 dB.
This figure is to show the performance difference with different W–H codes.

We see from (22) that the SNR’s for DS-SS arecode
dependent, in contrast with the case for MC-SS in (18).
Thus, the BER performance will be different for differently
chosen spreading codes . We illustrate this in Fig. 4
where the BER performance of the MF receiver for DS-SS,

, is depicted for different

Walsh–Hadamard (W–H) codes of length in the pres-
ence of a jammer with and dB.
Intuitively speaking, the spectrum of any particular code vector,

, is generally not flat. When the jammer hits the subband
where the signal power is strong, the BER degradation be-
comes more pronounced, which leads to considerably different
performance for different codes as depicted in Fig. 4.

To avoid the code dependence and improve the performance
of DS-SS, two approaches can be taken. The first is to design a
spreading code with unit amplitude in both time and frequency,
i.e., with the entries of having unit amplitude. With such
codes, we obtain the same result as in (18), which implies that
DS-SS can have the same performance as MC-SS. Such a code
exists, as explained below.

Consider the periodic auto correlation function (PACF) of
an code defined as:

, . Let
denotes Kronecker’s delta, and assume that the following

condition holds true: , i.e., has a single
peak at , the code is said to have perfect PACF [6], [9],
[13]. To design a code with flat spectrum, it is necessary and
sufficient to design a code with perfect PACF, as asserted by the
following lemma.

Lemma 1: For any code vector , the following two
conditions are equivalent:

1) code has perfect PACF, i.e., ;
2) code has flat spectrum, i.e., the entries of are of unit

amplitude.
Proof: Define the cyclic shift matrix with output

, when operating on the
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vector . Consider now the circulant matrix circ
. Since is circulant, it is diagonalizable

by (I)FFT matrices (see e.g., [26] for details):

and

(23)

Condition 1 requires that , while condition 2
amounts to . Based on (23), it is clear
that these two conditions are equivalent:

(24)

In [22], the Frank and Zadoff PACF sequence of [9] was shown
to have flat spectrum. Here, we have provided a general proof
and established that conditions 1 and 2 are equivalent.

Therefore, if DS-SS employs any code with perfect PACF,
e.g., the constant amplitude zero autocorrelation (CAZAC) se-
quences of [6], [9], [13] (see also [18], [22] and references
therein), it has the same performance as MC-SS. Although per-
fect autocorrelation property is achieved for each CAZAC se-
quence, the cross-correlations between different CAZAC se-
quences might be large. For this reason, the CAZAC sequences
have gained their popularity in applications of synchronization
and channel estimation [13], [18], [22], but have limited usage
in spread spectrum systems that are designed to allow for mul-
tiple access. Next, we focus on commonly used spreading codes
that unfortunately do not possess perfect PACF.

To avoid the dependence of system performance on codes
not having perfect PACF, we may adopt either code hopping
(a scheme where each user in a short code system switches
among a predetermined set of code sequences [20]), or long
code spreading, where the code period is much larger than the
symbol period [20]. Let us suppose that there arecodes in a
code hopping system with codes . Let de-
note the output SNR resulting from theth code, obtained by
substituting in (22) with . Assuming that each code is
picked with equal probability, theaveragedSNR and BER (over
the code set) for the MF receiver are then given by

(25)

For long code spreading, we assume that the code period is suf-
ficiently long so that the chips can be thought of as being uncor-
related, i.e., . Then, we have

which results in an average SNR

(26)

Similarly, we can obtain
and

(27)

Fig. 5. MC-SS versus DS-SS, code hopping.

Although the average SNR’s for long-code DS-SS coincides
with those for MC-SS with symbol-periodic codes, the average
BERs

(28)

may differ, because in general

The latter implies that , and similarly

. Note that the SNR’s in (18) for MC-SS
do not change with different ’s while the SNR’s for DS-SS
fluctuate around their means given by (26) and (27), if codes
not having perfect PACF are used for DS-SS. Since is
convex in , we obtain

(29)

by applying the Jensen’s inequality for
a convex function [7, p. 25]. Equation (29) also verifies
the intuition that the average BER is dominated by worst cases.
However, the difference becomes small when the code period is
sufficiently long. In Fig. 5, we plot the average BER [cf. (25)] of
a code hopping system with codes selected from the set of W–H
codes of length 16. MC-SS has a 2 dB advantage over DS-SS at
BER of 10 if MF is used. In Fig. 6, the BER of a long code
spreading DS-SS system [cf. (28)] is depicted with period 1000
times the symbol period of chips. In both cases, the
jammer is the same as in Fig. 4. Comparing Fig. 5 with Fig. 6,
we see that as the randomness of the code increases (code period
increases), DS-SS performance approaches that of MC-SS.

Assuming long code spreading in DS-SS, the MF receiver and
the average SNR expression of (26) were also derived in [14].
By assuming tacitly
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Fig. 6. MC-SS versus DS-SS, long codes.

and thus , it was asserted in [14] that

(30)

with the SNR gain of MC-SS over DS-SS equal to that given in
(21).

The motivation behind adopting the MMSE receiver for
FD-SS (MC-SS) and the MF receiver for DS-SS in [14]
is implementation complexity. It turns out that the MMSE
receiver is easy to build for analog MC-SS while it is difficult
for DS-SS [14]. In contrast, with our digital transceivers,
implementing MF or MMSE receivers for both MC-SS and
DS-SS entails comparable complexity. The MMSE receiver
can be constructed after estimating the interference color by
training or via blind adaptive algorithms. With the same kind
of receivers for both systems, the DS-SS can have the same
performance as MC-SS, unlike the analog implementations
in [14] where MC-SS and DS-SS employ different receivers,
if a CAZAC sequence is employed for DS-SS. For widely
used spreading sequences with imperfect PACF, although the
conclusion that MC-SS is more robust to NBI than DS-SS has
been reached here, we see that the differences are much less
pronounced.

Remark 2: If As1) does not hold exactly for the MC-SS, we
can express , where is a perturba-
tion matrix having entries with small amplitudes. For MC-SS,

. Now,
the SNR’s in (12) and (14) for MC-SS also depend on the choice
of the spreading code (in contrast with the case where ,
leading to (18)). If we use code hopping or long code spreading,
we can obtain the average SNR’s following the same approach
as that for the DS-SS

(31)

(32)

Although the average SNR is the same, we expect that the
average BER is somewhat lower for MC-SS than for DS-SS
equipped with codes having imperfect PACF, because the

SNR for MC-SS has smaller fluctuations due to the fact that
the perturbation matrix is negligible, i.e., As1) is basically
satisfied.

In this subsection, we showed that the performance of DS-SS
is code dependent; in order to eliminate this code dependence,
we either need to construct spreading codes with perfect PACF,
or hop among codes, or use long codes. If codes with perfect
PACF are used, the performance of DS-SS coincides with that of
MC-SS. For widely used spreading codes with imperfect PACF,
MC-SS outperforms DS-SS in general, while the performance
difference decreases as the period of the (long) code increases.
The performance of MC-SS also becomes code dependent if the
noise is nonstationary; code hopping is useful in this case. Recall
that in this section, we assumed that the degradation is only due
to AWGN and NBI/PBI.

IV. RANDOM MULTIPATH FADING CHANNELS

In this section, we focus on multipath fading channels and
assume that NBI is absent and the additive noise is white, i.e.,

. In this case, the MMSE receiver
and the MF receiver achieve the same

performance, and the output SNR becomes ,
where is defined in (10) for MC-SS and in (11) for DS-SS.

Recall that for MC-SS and for
DS-SS. For spreading codes and with unit amplitude
entries, the corresponding SNR’s for a given channelare

(33)

(34)

Equation (33) clearly shows that the SNR, and thus the BER,
in MC-SS do not depend on the code choices while they do in
DS-SS. In [16] it is assumed that the self-interference due to
multipath isnegligible, i.e., the shifts of the spreading code are
nearly orthogonal to itself so that . Under
this assumption, we have that , which in-
dicates that MC-SS and DS-SS exhibit the same ability in re-
sisting multipath effects, which agrees with the results in [16].
In general, the Toeplitz matrix does not have orthogonal
columns. The columns of can be approximately orthog-
onal (thus self-interference is negligible) only when the code
length is sufficiently large relative to the channel order
and the code is well constructed. Unlike [16], where focus is
placed on multiuser interference and narrowband interference
but the multipath-induced self-interference is ignored, here, we
explicitly consider this self-interference effect and compare the
multipath resistance of DS-SS with that of MC-SS. We study
two scenarios: one with , and the other with

.
With carefully constructed codes satisfying

, the self interference in DS-SS is eliminated deter-
ministically. Thus DS-SS achieves the same performance
as MC-SS. Such codes exist. The following is one way to
construct the vector . We start from the vector

and form . The latter amounts to a cyclic
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prefixed transmission in DS-SS; the difference with MC-SS is
that the spreading code here is not processed by IFFT at the
transmitter. It can then be verified that each column of
is a cyclic shift of , and
is the first columns of the circulant matrix
constructed as .
We reiterate that for codes with perfect PACF, such as those
in [6], [9], [13], [18], we have , and thus

. Other classes of codes are also possible. To
guarantee , it is not necessary to use codes
with perfect PACF. It is evident that we only need
for . The general class of spreading se-
quences with zero correlation zone (ZCZ), i.e., ,

and , are investigated in e.g., [4], [8], where
denotes the zone length. If the codes with are

applied in DS-SS, then is satisfied; hence,
DS-SS can achieve the same performance as MC-SS.

For widely used codes with , we next
show that the performance of DS-SS degrades relative to that
of MC-SS.

For random channels, with zero mean and covariance ma-
trix , the BER for BPSK can be expressed in
terms of the output SNR as

(35)

It is computationally intensive to evaluate (35) by averaging
over the statistics of the fading amplitude random variables di-
rectly [25], since it entails calculation of -dimensional in-
finite integrals. However, by using an alternative representation
of , a closed-form symbol error rate (SER) expression for
a diversity system with multiple flat-faded channels (its system
input–output relationship can be described by (38) in our no-
tation) and maximum ratio combining (MRC) at the receiver
has been obtained in [25]. Establishing as an equivalent
MRC combiner and using the result of [25], we will first de-
rive a general SER expression for MC-SS and DS-SS, and then
compare their capabilities in resisting multipath. The channel
estimates at the receiver are assumed to be error-free.

We first diagonalize using its spectral decomposition

(36)

where is unitary and is the th eigenvalue of .
Similarly, we decompose the signature code covariance ma-

trix as:

(37)

where is a matrix with orthonormal columns
and is a diagonal matrix with entries . The
matrix has only nonzero eigenvalues because
is of size . When is diagonal and has
orthonormal columns, we have .

Pre-multiplying in (9) with yields

(38)

where and denote, respec-
tively, equivalent channel and noise vectors. Because

, the entries of are uncorrelated, while
is still white since . The MRC based

symbol estimate equals the output of the
MMSE or the MF receiver in this white noise case. As a re-
sult, a closed form SER expression for MPSK (constellation
points) signals can be obtained by direct substitution from [25,
eq. (44)]:

(39)

where , and is the mo-
ment of the probability density function of evaluated at

(see [25, eq. (24)]). For example, if is
Rayleigh distributed, we have

(40)

The moment for other distributions such as
Ricean, Nakagami, and the resulting SER for different constel-
lations (e.g., QAM) can be found in [25]. Note that because

is obtained from by linear transformations, the moment
for may not be easily tractable for arbitrary

distributed . However, when is Gaussian distributed or
has uncorrelated taps with known distribution listed in [25] and

has orthogonal columns (e.g., MC-SS), in which caseis
proportional to , (39) provides a closed-form expression that
can be easily evaluated.

To establish the optimality of MC-SS, let us consider the
generic model of [11]

(41)

where is white and is an arbitrary matrix
obeying the power constraint: , prescribed by
the transmit-power budget.

Starting with the generic model (41), it is possible to choose
the precoder according to the optimality criterion specified in
the following theorem.

Theorem 1 [11]: If and in (41) are uncorrelated and
is white, the optimum precoding matrix is given by:

, where is defined in (36); diagonal ma-
trix is the optimal power loading matrix selected as in [11,
eqs. (17) and (18)], and an arbitrary matrix
with orthonormal columns. Optimality of pertains to ei-
ther minimizing the error in estimating the random channel,

, or, maximizing the conditional mutual informa-
tion if is complex Gaussian distributed.

If the entries of are independent and identically distributed
(i.i.d.), i.e., with , then the optimal
power loading matrix , where

[11]. In this case, the optimal precoder should
have orthogonal columns. Because the matrix has or-
thogonal columns while the Toeplitz matrix in general does
not, MC-SS is optimal in this setting and it thus outperforms
DS-SS with codes not having PACF.

The optimality in Theorem 1 amounts to minimizing the
mean-square channel estimation error, which implies that
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channel estimation accuracy dictates the overall BER perfor-
mance. However, for special cases, it is possible to have the
power loading of Theorem 1 optimize the overall BER directly
(see, e.g., [3] for differential BPSK constellations which lead
to a simple closed-form BER expression).

When the entries of are i.i.d. with Gaussian distribution
and covariance matrix , we next establish the op-
timality of MC-SS based on the SER expression in (39). Be-
cause , we have in (37) for MC-SS as:

. Therefore, for MC-SS has equal
diagonal entries, which is not the case for DS-SS because
for DS-SS in (37) does not have orthogonal columns in general.
However, the total transmitted power is the same because

(42)

Let us denote the th diagonal element of by
and of by . We then have

. Applying the inequality:

, , we ob-
tain ,
and after taking into account (40), we arrive at the following
inequality:

(43)

Substituting (43) back into (39), we thus obtain

(44)

where equality is achieved when the Toeplitz matrix for
DS-SS has orthogonal columns, i.e., when self-interference
is zero. Inequality (43) implies that equal power loading
optimizes SER for i.i.d. Gaussian channels. By distributing its
power evenly across all subbands, MC-SS provides maximum
protection against random frequency-selective multipath fading
in this case.

If is non i.i.d., equipower loading turns out to
be near optimal at high SNR [11]. The selected precoder matrix

has orthogonal columns, which corroborates the
near-optimality of MC-SS at high SNR.

To shed further light on the performance of digital MC-SS
relative to DS-SS and to study the code dependence of DS-SS,
we consider the following scenarios.

We construct three channel models, assuming that the
channel is Gaussian distributed of order .
Channel 1 is i.i.d. with ; channel
2 has , i.e., the first path
shows a 3-dB gain over the second and 10-dB gain over
the third path; and channel 3 is adopted from [3] with

, i.e., the first path has a
13 dB gain over the second and 20 dB gain over the third path.

Fig. 7. DS-SS with different W–H codes of lengthP = 16. The channel has
orderL = 2, with i.i.d taps. This figure is to show the performance difference
with different W–H codes.

Although we only illustrate channels with uncorrelated taps
here, results can be easily extended to channels with correlated
taps by decorrelating the channels first. Actually, channel 3
corresponds to a correlated channel with the same variance on
each tap and correlation coefficients , and

[3].
With channel 1, Fig. 7 demonstrates the strong dependence of

DS-SS on the code choices where different Walsh–Hadamard
(W–H) codes of length are used.3 To avoid the code
dependence, we again resort to code-hopping or long code
spreading; the latter corresponds to using random spreading
codes. For W–H codes, we discard the two bad codes which
correspond to the first and second columns of a Hadamard
matrix, because they lead to poor performance under multipath
fading as confirmed by Fig. 7. It is known that W–H codes have
poor autocorrelation properties. Therefore, we also employ
Gold codes, which have better autocorrelation properties [21].
We adopt BPSK constellation. In Figs. 8–10, we compare the
BER of MC-SS with the average BER of DS-SS with W–H
codes and random codes of length , 16, 32, and with
Gold codes of length , 15, 31, respectively. First, we see
that MC-SS outperforms DS-SS with W–H codes considerably
because the multipath induced self-interference of W–H codes
is large. When Gold sequences or random codes are em-
ployed, we observe that the BER of DS-SS approaches that of
MC-SS when the code length increases, as the self-interference
becomes relatively smaller and smaller. In Fig. 8, note that
MC-SS offers a 3–4-dB advantage over DS-SS at BER of 10.
Since Gold sequences and random codes offer almost the same
performance, we omit the performance for random codes in the
following.

With colored channels, we observe similar results as those
in Figs. 8–10 for i.i.d channels. We compare in Fig. 11 MC-SS
against DS-SS with code length 16 for both channels 2 and 3.
Although MC-SS is not optimum (near optimum at high SNR)

3In Fig. 7 and thereafter, we defineE = N� rather thanP� by ignoring
L guard chips. The power penalty10 log(P=N) is negligible ifN � L.
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Fig. 8. MC-SS versus DS-SS withP = 8.

Fig. 9. MC-SS versus DS-SS withP = 16.

in these two channel settings, we clearly see that MC-SS outper-
forms DS-SS alternatives, especially when the spreading codes
for DS-SS are not well constructed.

In this section, we focused on multipath effects, which de-
stroy the orthogonality of codes. We used results from [11] for
the optimal coding matrix, and showed that in the case of uncor-
related and equal power paths, the optimal code leads to MC-SS.
If the codes in DS-SS are designed to have perfect PACF or have
zero correlation zone with , DS-SS achieves the same
performance as MC-SS. However, with widely used spreading
codes, MC-SS outperforms DS-SS; with increasing spreading
gain, the differences become less pronounced. In the case of
colored channels (correlated paths and/or paths with unequal
powers), MC-SS outperforms DS-SS in general, especially for
short spreading lengths.

V. MULTIPATH AND NBI/PBI

In this section, we consider the general case where NBI/PBI is
present and the channel is frequency selective. Starting from the

Fig. 10. MC-SS versus DS-SS withP = 32.

Fig. 11. MC-SS versus DS-SS, different multipath channels.

general model (9), we assume thatand are random vectors
with covariance matrices and , respectively. We then
define

(45)

where is white with identity covariance
matrix.

The MMSE estimator is:
, which coincides with the MRC output

operating on . Defining the equivalent code vector
as , we reduce this colored problem to the
white noise case discussed in Section IV. We can thus obtain
closed-form SER expressions for this general case, by fol-
lowing similar steps.

Specifically, we decompose the equivalent covariance matrix
as

(46)

where is unitary and is a diagonal matrix
with diagonal entries . The SER can
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Fig. 12. MC-SS versus DS-SS, multipath plus NBI.

now be found from (39) after substituting by and setting
, i.e.,

(47)

Note that this procedure is applicable to any type of interference
provided that the covariance matrix (or a consistent esti-
mate of it) is available.

Given the channel and noise covariance matrices and
, we can find for

DS-SS and
for MC-SS. Recall that if As1) holds in MC-SS, then

has the
same eigenvalues as , since they are
similar matrices. Therefore, the SER for MC-SS does not
depend on code choices even in the joint presence ofboth
multipath and NBI/PBI. The same argument holds true for
cyclic prefixed transmission of DS-SS with CAZAC sequences,
applying the same processing at the receiver.

Having compared DS-SS with MC-SS under NBI/PBI and
multipath separately in Sections III and IV, we now test their
performance in the joint presence of multipath and NBI/PBI via
a simulation study. We use the same parameters as those leading
to the results shown in Fig. 9 (i.i.d. channel 1 with Gold codes of
length 15). Narrowband interference is now present in addition
to multipath fading. We set the relative bandwidth of the NBI to

, and the PSD ratio relative to the background noise
as dB. Fig. 12 shows that the BER for
MC-SS is lower than the average BER of DS-SS with Gold se-
quences. Relative to the case without NBI/PBI, the gap between
MC-SS and DS-SS increases when NBI/PBI is present as shown
in Fig. 12, which corroborates the robustness of MC-SS (relative
to DS-SS) with respect to frequency-selective multipath fading
and narrow (or partial) band interference.

In this section, we compared MC-SS with DS-SS in the pres-
ence of both NBI/PBI and multipath fading. A closed-form ex-
pression for the SER was derived; it was seen that the SER for
MC-SS is independent of the code in this case as well. Again,

DS-SS can have the same performance as MC-SS with codes
having perfect PACF. We showed via simulations that MC-SS
outperforms DS-SS when degradations occur due to both mul-
tipath fading and NBI/PBI, if the codes in DS-SS do not possess
perfect PACF.

VI. DISCUSSION ANDCONCLUSIONS

Our previous observations illustrate that: in order to improve
the system performance, DS-SS systems need to adopt codes
with flat spectra to cope with NBI, and with good autocor-
relation properties to cope with multipath. It is established in
Lemma 1 that a code with flat spectrum has perfect PACF, and
vice versa. Relaxing the constraint that the spreading codes in
DS-SS should have unit amplitude, we can actually view MC-SS
as a cyclic prefixed transmission of DS-SS, but with an equiv-
alent nonconstant-amplitude spreading code .
Since has unit-amplitude entries, this equiv-
alent code has flat spectrum. Using Lemma 1, thus
has perfect PACF (notice that Lemma 1 applies to any code
sequence). Therefore, the improvement of MC-SS over DS-SS
with conventional constant-amplitude spreading codes is pre-
cisely due to an underlying construction of an equivalent code
having nonconstant amplitude but possessing perfect PACF. In-
stead of redesigning new spreading codes with both constant
amplitude and perfect PACF, MC-SS simply constructs equiva-
lent codes by taking the IFFT of conventional spreading codes.
The price paid is certainly nonconstant modulus transmissions,
which limits the power-efficiency of the amplifier.

Our focus in this paper was on the single user case. In mul-
tiuser systems, our conclusions hold trueonly if multiuser in-
terference (MUI) can be modeled as additive Gaussian noise,
e.g., in a moderate to high loaded asynchronous CDMA system
with long (random) code spreading (see also [16] and [19] for
the Gaussian approximation). The practical cases, where the
number of users is not large and Gaussian modeling becomes in-
appropriate, need further investigation. Nevertheless, the single
user performance can serve as a bound for multiuser systems as-
suming that the contribution of MUI can be perfectly estimated
and subtracted. On the other hand, since MUI is eliminated de-
terministically rather than statistically, generalized multi-carrier
CDMA appropriate for the multiple access scenario can be de-
veloped, and will be reported elsewhere (some preliminary re-
sults may be found in [28]).

In a nutshell, we developed closed-form expressions for the
symbol error rate (SER) of digital multi-carrier spread-spec-
trum (MC-SS) modulation; we then compared MC-SS with
direct-sequence spread spectrum (DS-SS) under different sce-
narios: AWGN channel with narrow/partial band interference
(NBI/PBI), and frequency-selective multipaths with or without
NBI/PBI. The performance of MC-SS does not depend upon
the spreading code; in contrast, the performance of DS-SS
does depend upon the spreading code. For carefully designed
spreading codes with perfect periodic auto correlation function
(PACF), DS-SS (with cyclic prefixed transmission) achieves
the same performance as MC-SS. For widely used spreading
sequences that do not have perfect PACF, we showed that
MC-SS with symbol periodic codes outperforms DS-SS with
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long codes or code hopping, while the performance difference
decreases as the spreading gain increases. The improvement of
MC-SS over DS-SS stems precisely from the underlying step
relaxing the constant amplitude requirement on the DS-SS code
to construct an equivalent nonconstant-amplitude code with
perfect periodic autocorrelation. The extension to multiuser
systems is under current investigation.

APPENDIX

PROOF OF

Because is a diagonal matrix, we have
and . Since , we
can apply the inequalities

to obtain .
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