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Abstract — Hard Sphere-Decoding (SD) has well appreci-
ated merits for near-optimal demodulation of multiuser, block
single-antenna, or, multi-antenna transmissions over multi-
input multi-output (MIMO) channels. At increased com-
plexity, a soft version of SD, so termed list SD (LSD), has
been recently applied to coded layered space-time (LST) sys-
tems enabling them to approach MIMO channel capacity. By
introducing a novel bit-level multi-stream LST transmitter
along with a soft-to-hard decoder conversion, we show how
to achieve the near-capacity performance of LSD at reduced
complexity, and even outperform it as the size of the block to
be decoded (M ) increases. Specifically, for binary real LST
codes we develop exact max-log based SD schemes with av-
erage complexity O(M4), and various approximate alterna-
tives trading-off performance for average complexity down to
O(M3). These schemes apply directly to the real and imag-
inary parts of QPSK signalling, and also to QAM signalling
after incorporating an appropriate interference estimation and
cancellation module. We corroborate our reduced-complexity
near-optimal soft SD algorithms with simulations.
Keywords: soft sphere decoding, iterative decoding, space-
time, MIMO channel capacity

I. INTRODUCTION

In wireless communications, quite often we wish to
estimate the M ×1 information bearing symbol vector s

from the N × 1 data vector y in the block coding model

y = Hs + n, (1)

where s has entries belonging to a finite alphabet S, H is
a known N×M real or complex matrix, and n is a N×1
Gaussian noise vector. This problem is encountered in
many applications including single-antenna block trans-
missions, space-time (ST) multi-antenna transmissions,
or, in multi-user detection of CDMA transmissions.
When s is drawn from QPSK or rectangular QAM con-
stellations, (1) can be easily transformed to a real model
where s, y, H and n all belong to the real field. The
transformation will be detailed in Section III. Since
in this paper we only focus on QPSK and rectangular
QAM signalling, we assume that (1) is a real model.
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When s is uncoded and n is white Gaussian, the op-
timal solution of (1) in the sense of minimizing the
symbol error rate (SER) is offered by the maximum
likelihood (ML) decoder which solves the integer least-
squares (ILS) problem:

ŝml = arg min
s∈SM

||y − Hs||2. (2)

Since the optimal block symbol decoding via exhaustive
search in (2) incurs complexity O(|S|M ) that is expo-
nential in M , a number of alternative algorithms have
been developed to achieve near-optimal performance
with polynomial complexity. Those include sphere de-
coding (SD) [1–3], semi-definite-programming (SDP)
[4], and the Probabilistic Data Association (PDA) [5].

However, when s in (1) is coded with some kind of
error control code (ECC), soft iterative (a.k.a. turbo)
detection is capable of approaching the ultimate perfor-
mance limit dictated by the capacity of the channel H

using maximum a posteriori (MAP) decoding. Such
an approach has been followed in [6], where a soft, so-
called List Sphere Decoding (LSD) algorithm, has been
derived to compute the extrinsic information based on
a list of candidates obtained inside a preset sphere. Al-
though the LSD scheme can approach the multi-input
multi-output (MIMO) capacity of layered space-time
(LST) systems, it comes with the limitation that the ra-
dius of the sphere can not be reduced during the search.
Another weak point is that LSD is not applicable when
all candidates in the list have only value +1 (or −1) for
a certain bit.

In this paper, we first derive a soft-to-hard transfor-
mation for binary constellations to convert the max-log
based MAP (max-MAP) decoding problem of real block
codes to a set of hard SD problems. In addition to pro-
viding an exact max-MAP decoder, we also derive ap-
proximate alternatives to further reduce complexity to
the order of a single hard SD. Applying our soft-to-hard
decoding schemes to a single-stream coded LST sys-
tem for QPSK signalling, and to a bit-level multi-stream
coded LST system for QAM signalling, we demonstrate
by simulations that MIMO channel capacity can be ap-
proached at reduced complexity.



II. SOFT DECODING, COMPLEXITY AND
TRADE-OFFS

Suppose that each entry sm of the symbol vec-
tor s in (1) is obtained by mapping a Mc × 1
binary vector x(m) with ±1 entries, and let
x := [x(1)T

,x(2)T
, . . . ,x(M)T

]T , where T de-
notes transposition. The MAP decoder for obtain-
ing x from y minimizes the bit error rate (BER)
by evaluating the log-likelihood ratio (LLR)
of the a posteriori probability of each bit xk:
λD(xk) := ln[P (xk = +1|y)/P (xk = −1|y)].
With λA(xk) := ln[P (xk = +1)/P (xk = −1)]
denoting the a priori information of xk, de-
fine λA := [λA(x1), . . . , λA(xMMc

)]T , and let
λE(xk|y) := λD(xk|y) − λA(xk) stand for the
extrinsic information of xk. Bayes’ theorem and the
assumption that the entries of x are independent yield:

λD(xk|y) = λA(xk)+ln

∑

x∈Xk,+1

P (y|x)exp{ 1
2
xT

[k]λA,[k]}

∑

x∈Xk,−1

P (y|x)exp{ 1
2
xT

[k]λA,[k]}
,

where Xk,+1 := {x|xk = +1}, Xk,−1 := {x|xk =
−1}, x[k] is the sub-vector of x obtained by omitting its
kth element xk, and likewise λA,[k] is obtained from λA

by omitting its kth element λA(xk).
Since n is white Gaussian, using the max-log approx-

imation [7], we can approximate the extrinsic informa-
tion of xk as [6]

λE(xk|y) ≈(1/2) max
x∈Xk,+1

{−
1

σ2
||y − Hs||2 + x

T
[k]λA,[k]}

−(1/2) max
x∈Xk,−1

{−
1

σ2
||y − Hs||2 + x

T
[k]λA,[k]}.

(3)

Eq. (3) shows that carrying out the MAP soft decoding
of x from y reduces to solving two integer least-squares
problems with linear constraints for each k ∈ [1,M ].

A. Soft-to-hard conversion - Scheme 1
Our reduced complexity MAP decoder starts by ob-

serving that (3) can be rewritten as

λE(xk|y) =(1/2) max
x∈Xk,+1

{−
1

σ2
||y − Hs||2 + xT

λA}

−(1/2) max
x∈Xk,−1

{−
1

σ2
||y − Hs||2 + xT

λA}

−λA(xk). (4)

Since in randomly faded ST channels the matrix H has
full column rank almost surely, it follows that in the bi-
nary case (s = x), we can always find a vector ỹ satis-
fying

2HT ỹ = σ2
λA. (5)

Our key observation is that using (5) we can rewrite (4)
as

λE(xk|y) = −
1

2σ2
min

x∈Xk,+1

||y + ỹ − Hx||2

+
1

2σ2
min

x∈Xk,−1

||y + ỹ − Hx||2

− λA(xk). (6)

If x̂map = arg min
x∈X

||y + ỹ − Hx||2, then (6) can be

further simplified as

λE(xk|y) = −
x̂k,map

2σ2
||y + ỹ − Hx̂map||

2

+
x̂k,map

2σ2
min

x∈Xk,−x̂k,map

||y + ỹ − Hx||2

− λA(xk). (7)

Letting x̂k denote the “best vector” for which xk =
−x̂k,map, it follows that

x̂k = arg min
x∈Xk,−x̂k,map

||y + ỹ − Hx||2, k = 1, . . . ,M.

We can use hard SD to find x̂map and {x̂k}
M
k=1. Thus,

to obtain the extrinsic information for the entire vector
x we need one hard SD step with block size M to find
x̂map, and M hard SD steps with block size M − 1
to find {x̂k}

M
k=1. Notice that the extrinsic LLR values

we obtained are exact under the max-log approximation.
During each hard SD step, the initial radius can be cho-
sen effectively as in [2,3]. And once a point is found in-
side the sphere, the radius can be reduced to the current
point. The complexity of soft SD is thus reduced consid-
erably by radius initialization and reduction. Since the
average complexity of hard SD at high SNR with block
size M is O(M3) [3], the average complexity of our
soft-to-hard SD approach is O(M 3)+MO((M−1)3) ≈
O(M4).

With our exact max-log based MAP decoder as a
starting point, we can further reduce the average com-
plexity of soft SD down to O(M 3) after a few approxi-
mations that we detail in the ensuing subsections.

B. Approximation A
Let x̌k be the vector with identical entries as x̂map

except for the kth element that is sign reversed: x̌k =
−x̂k,map. Clearly, the probability that x̂k equals x̌k in-
creases as the SNR increases. This motivates us to ap-
proximate the extrinsic information of xk as

λE(xk|y) ≈−
x̂k,map

2σ2
||y + ỹ − Hx̂map||

2

+
x̂k,map

2σ2
||y + ỹ − Hx̌k||

2 − λA(xk).



Thus, to obtain the extrinsic information for the entire
vector x we need only one hard SD step with block size
M to find x̂map. The overall average decoding com-
plexity is now O(M3 + M) ≈ O(M3).

C. Approximation B

Let X̌ [2]
k denote the set of vectors that have one more

entry different from x̂map besides xk; i.e.,

X̌
[2]
k := {x|xk = −x̂k,map,

1

2

M
∑

i=1,i6=k

|xi−x̂i,map| = 1}.

The set X̌
[2]
k has M elements. Since at high SNR,

x̂k ∈ X̌
[2]
k with high probability, we can improve Ap-

proximation A as follows:

λE(xk|y)
.
= −

x̂k,map

2σ2
||y + ỹ − Hx̂map||

2

+
x̂k,map

2σ2
min

x∈X̌
[2]
k

||y + ỹ − Hx||2 − λA(xk).

To obtain the extrinsic information for the entire vector
x here, we need only one hard SD step with block size
M to find x̂map, and M searching steps for the “best
vectors” minimizing ||y + ỹ − Hx||2 respectively, in
the sets {X̌ [2]

k }M
k=1. The overall average decoding com-

plexity turns out to be O(M3 + M2) ≈ O(M3).

D. Approximation C

If higher accuracy is desired, then we can approx-
imate each x̂k with the “best vector” minimizing
||y + ỹ − Hx||2 in the set X̌

[3]
k := {x|xk =

−x̂k,map,
1
2

∑M
i=1,i6=k |xi − x̂i,map| = 1 or 2}. In this

case the overall average decoding complexity will be
O(M3 + M(M + (M − 1)(M − 2))) ≈ 2O(M 3).

III. APPROACHING MIMO CAPACITY

In this section we will show how to apply our re-
duced complexity soft SD schemes to a coded LST sys-
tem with the goal of approaching MIMO channel capac-
ity. We will first discuss the model for QPSK signalling
in subsection III-A, and then generalize it to a bit-level
multi-stream coded LST model applicable to QAM sig-
nalling in subsection III-B. At the receiver end of both
systems, the complex block model is always converted
to its real counterpart. Let Nt denote the number of
transmit antennas, Nr the number of receive antennas,
s0 the Nt × 1 transmitted vector, y0 the Nr × 1 re-
ceived vector, H0 the Nr × Nt MIMO channel coef-
ficient matrix, and n0 the Nr × 1 white Gaussian noise
vector. By separating the real and imaginary parts of
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Fig. 1. Real equivalent system model for QPSK signalling

each vector and matrix, we can transform the complex
model y0 = H0s0 + n0 to the real model:

y =

[

y0,r

y0,i

]

=

[

H0,r −H0,i

H0,i H0,r

] [

s0,r

s0,i

]

+

[

n0,r

n0,i

]

= Hs+n,

(8)
where subscripts r and i denote the real and imaginary

part. The block size is now M = 2Nt. To ensure that H
has full column rank, we clearly need Nr ≥ Nt. Here,
we take Nr = Nt for brevity.

A. QPSK signalling
The real equivalent LST system model for QPSK sig-

nalling is depicted in Figure 1. The information bits b

are first encoded by an ECC module to yield c, and then
go through a random interleaver Π. Interleaved bits x

are mapped to QPSK symbols. QPSK symbol vectors
s0 are transmitted using the parallel LST scheme known
as V-BLAST [8]. At the receiver end, soft iterations
between the MIMO channel decoding module and the
ECC decoding module are used. In the MIMO channel
decoding module, a complex-to-real conversion is per-
formed as in (8), and s is subsequently replaced by the
binary vector x. Our soft-to-hard SD scheme is then ap-
plied to compute the extrinsic information of x. The ex-
trinsic information is exchanged between two decoding
modules through the interleaver/deinterleaver modules
denoted as Π/Π−1 in Fig. 1.

One advantage of applying our soft SD scheme in the
iterative decoding process is that the extrinsic informa-
tion from the ECC decoding module at the last iteration
can be used to generate initial estimates of x̂k,map and
{x̂k}

M
k=1. These initial estimates will provide tight ini-

tial radii for the hard SD steps. The complexity of each
hard SD is thus further reduced.

B. QAM signalling
The soft-to-hard SD schemes we developed in Sec-

tion II are only applicable when s = x in (3). For QAM
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signalling, after the complex-to-real conversion in (8), s
is a 2Nt × 1 vector composed of PAM symbols. If Mb

denotes the number of bit levels in a PAM symbol, then
sk can be expressed as a linear combination of Mb bits
{xi,k}

Mb

i=1; i.e. sk =
∑Mb

i=1 2i−1xi,k. Hence, the PAM
vector s can be expressed using a linear combination
of Mb binary vectors {xi}

Mb

i=1 as: s =
∑Mb

i=1 2i−1xi,
where xi is the binary vector in the ith bit level. Let x

denote the entire binary vector [xT
1 , . . . ,xT

Mb
]T , and let

Heq stand for the equivalent block coding matrix for x

given by Heq = [H, 2H, . . . , 2Mb−1H]. Eq. (1) can
now be rewritten as y = Heqx + n. However, we can-
not find a vector ỹ satisfying 2HT

eqỹ = σ2
λA, because

Heq is rank deficient. Therefore, the soft SD scheme we
developed for the binary case cannot be applied directly
to QAM signalling.

Because different xi,k bits in sk will be received with
generally different SNRs, we adopt a bit-level multi-
stream coded LST transmission for QAM signalling as
depicted in Figure 2. At the transmitter, the stream of
information bits b is first divided into Mb substreams:
{bi}

Mb

i=1. Each substream is coded with an ECC and
scrambled through a random interleaver. From each
substream, we take one interleaved bit to form a PAM
symbol consisting of Mb bits. Two PAM symbols are
further combined to form a QAM symbol. The QAM
symbol vectors are then transmitted using V-BLAST. At
the receiver end, the iterative decoding scheme is per-
formed in a layered fashion per bit level. In the MIMO
channel decoding module, the complex MIMO block
model is first converted to the real block model as in

(8). When decoding one bit level, the interference from
other bit levels will be treated as Gaussian noise, and
based on the a priori information the mean and covari-
ance matrix of the equivalent noise will be estimated as
in [5, 9]. This reduces the decoding of each bit level
to an equivalent QPSK decoding problem in the pres-
ence of colored Gaussian noise. After prewhitening the
noise, our soft SD scheme can be readily applied with
the extrinsic information exchanged through the inter-
leaver/deinterleaver between the ECC decoding module
and the MIMO channel decoding module, as before.

We now discuss the decoding process in detail. When
decoding the jth bit level, we rewrite (1) as

y =Hs + n

=2j−1Hxj +

Mb
∑

i=1,i6=j

2i−1Hxi + n

=Hjxj + nj , (9)

where Hj := 2j−1H is the equivalent block coding ma-
trix for the jth bit level, and nj =

∑Mb

i=1,i6=j 2i−1Hxi +
n is the equivalent noise encompassing both interfer-
ence, and the actual noise.

Let pi denote the probability vector of the binary vec-
tor xi with each entry pi,k := P (xi,k = +1). Given
λA,i, the a priori information vector for xi, we obtain

pi = 1/2 + (1/2)tanh(λA,i/2).

Since the entries of {xi}
Mb

i=1 are assumed independent,
we can estimate the mean and the covariance matrix of
nj using pi. However, if soft information from lower
power bit levels is used to decode a certain bit level,
we have observed that the decoding error probability
becomes worse in our simulations. In fact, as itera-
tions increase at high SNR, the number of errors actu-
ally blows up. In a 64-QAM test using turbo ECC with
frame length 9000 in a 4 × 4 transmit/receive antenna
setup, at SNR=13dB, the number of errors per iteration
we counted in one frame was (0, 2554, 2310, 3398) for
4 iterations.

This “error-blow-up” problem disappears if we mod-
ify the estimation method in the following way: when
decoding the jth bit level with transmit power 22(j−1),
we use only the soft information pi from the bit levels
with higher power (i = j + 1, . . . ,Mb), and we assume
pi,k = 0.5 (∀k, i = 1, . . . , j − 1) for the bit levels with
lower power, as if we had no a priori information about



these levels. Specifically, we use

n̄j := E(nj) =

Mb
∑

i=1,i6=j

Hix̄i =

Mb
∑

i=j+1

Hi(2pi − 1) (10)

Cj := Cov(nj) = Cov(n) +

Mb
∑

i=1,i6=j

HiCov(xi)H
T
i

= diag(σ2
1) +

Mb
∑

i=j+1

Hidiag[4pi.(1 − pi)]H
T
i

+

j−1
∑

i=1

Hidiag[1]HT
i , (11)

where diag(·) denotes a diagonal matrix with a vector in
parentheses as its diagonal, and 1 stands for the vector
with all entries equal to 1.

Before applying our soft SD scheme to the jth bit
level, by subtracting n̄j from both sides of (9) and left-
multiplying them with C

−1/2
j , we obtain the equivalent

zero-mean white Gaussian noise model:

ỹj = H̃jxj + ñj , (12)

where ỹj := C
−1/2
j (y − n̄j), H̃j := C

−1/2
j Hj , and

ñj := C
−1/2
j (nj − n̄j). With the noise block ñj being

zero-mean white Gaussian with identity covariance ma-
trix, our soft SD scheme can then be applied to compute
the extrinsic information of xj .

Let the superscript (t) index time, T denote the num-
ber of received vectors in a coded frame, and subscripts
1 and 2 denote the index of the MIMO decoding module
and the ECC decoding module, respectively. The steps
of the iterative decoding process are as follows:

1) Initialization: p
(t)
j = 0.51 and λ

(t)
A,j = 0, j =

1, . . . ,Mb, t = 1, . . . , T .
2) One iteration:

a) j = Mb.
b) In the MIMO channel decoding module:

i) t = 1.
ii) Convert the QAM model (1) to the QPSK

model as (9), and estimate n̄
(t)
j and C

(t)
j ac-

cording to (10) and (11).
iii) Prewhiten the noise n

(t)
j as in (12) and de-

code x
(t)
j with soft SD scheme and output

extrinsic information vector λ
(t)
E1,j .

iv) t = t + 1; if t ≤ T , return to (ii).
c) Deinterleave λ

(t)
E1,j , t = 1, . . . , T to obtain the a

priori information λA2,j for the ECC decoding
module.

d) In the ECC decoding module: use a soft decod-
ing scheme depending on the ECC used. Output
the extrinsic information λE2,j .

e) Interleave λE2,j to obtain the a priori informa-
tion λ

(t)
A1,j and p

(t)
j , t = 1, . . . , T for the MIMO

channel decoding module.
f) j = j − 1; if j ≥ 1, return to (b).

3) Return to (2) until a desired performance is
achieved, or, the number of iterations reaches a
certain number.

IV. SIMULATIONS

In this section, we present simulations using a paral-
lel concatenated (turbo) ECC with rate R = 1/2, as in
[6]. Each constituent convolutional code has memory
2, feedback polynomial Gr(D) = 1 + D + D2, and
feedforward polynomial G(D) = 1 + D2. To maintain
comparable decoding complexity with [6], for QPSK
signalling, we choose the interleaver size to be 9000,
and the number of inner iterations for the ECC decod-
ing module to be 10. For 16-QAM signalling, we choose
the interleaver size of each bit level to be 4500, and the
number of inner iterations for the ECC decoding module
of bit level 2 and bit level 1 to be 5 and 15, respectively.
For 64-QAM signalling, we choose the interleaver size
of each bit level to be 3000, and the number of inner iter-
ations for the ECC decoding module of bit level 3, 2 and
1 to be 4, 8 and 18, respectively. As in [6], we gener-
ate independent Rayleigh flat fading channels between
transmit/receive antennas and assume perfect channel
estimation at the receiver end.
Simulation 1: Figure 3(a) depicts average BER perfor-
mance in a 8 × 8 transmit/receive antennas setup when
using our soft-to-hard SD Scheme 1. We also tested 2×2
and 4× 4 configurations with results almost identical to
8 × 8 ( they are omitted here due to space limitation).
We performed 3 outer iterations between the ECC de-
coding module and the MIMO channel decoding mod-
ule. Increasing the number of outer iterations further,
did not improve performance. Let (Eb/N0)min denote
the SNR required to reach BER=10−5. An interesting
observation is that (Eb/N0)min does not change with
Nt for any constellation used in our system.

Compared with [6], our system achieves almost iden-
tical performance for QPSK signalling, at reduced com-
plexity. For 16-QAM and 64-QAM, [6] performs better
in 2×2 and 4×4 setups, but our scheme outperforms [6]
in the 8×8 setup by about 0.5dB. Since our (Eb/N0)min

does not change with Nt, while (Eb/N0)min increases
as Nt increases in [6], we expect our gain to increase as
Nt increases.

The reason that our system yields to the system in [6]
for 16-QAM and 64-QAM signalling in the 2 × 2 and
4×4 configurations is because we use the same ECC for
different bit levels even though there is 6dB difference
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Fig. 3. (a) Soft-to-hard Scheme 1 in a 8 × 8 setup; (b) Approximate
Scheme B in a 8 × 8 setup

between the powers of adjacent bit levels. As a result,
the actual SNR for the lowest power level is much lower
than other levels. For example, at average SNR=6dB in
a 16-QAM system, the SNR for the lowest power level is
only 2dB, even if perfect interference cancellation is as-
sumed. However, for QPSK signalling, (Eb/N0)min is
about 2.6dB. So, to have 2.6dB SNR at the lowest power
level, the average SNR for 16-QAM is about 6.6dB and
11.2dB for 64-QAM, which matches well with the sim-
ulation results.
Simulation 2: Figure 3(b) depicts average BER with
the same parameters as Simulation 1, except that we use
our approximate scheme B in the MIMO channel de-
coding module. Although with this approximate scheme
we have about 0.5 dB loss relative to scheme 1, we can
still achieve the same performance as [6] for 16-QAM
and 64-QAM. However, since the complexity of approx-

imate scheme B is comparable with that of hard SD, our
decoding complexity is much less than that of [6].

V. CONCLUSIONS

In this paper, we derived a near-optimal soft sphere
decoding scheme for binary real block codes by con-
verting soft decoding to a set of hard sphere decod-
ing problems. In addition to an exact max-log based
MAP decoder enjoying average complexity O(M 4), we
developed approximate alternatives to reduce average
complexity down to O(M3), where M is the decod-
ing block size. Applying our decoding schemes to a
bit-level multi-stream coded LST system, we demon-
strated that error performance can approach that dictated
by MIMO channel capacity for both QPSK and rectan-
gle QAM signalling. With 16-QAM and 64-QAM our
soft SD scheme 1 outperforms the LSD system in [6]
when the number of transmit/receive antennas is large.
Even our approximate decoding scheme B having aver-
age complexity as low as O(M 3) can achieve the same
performance as LSD for 16-QAM and 64-QAM as the
number of transmit/receive antennas increases.
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