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Summary

A full-diversity full-rate (FDFR) multi-antenna system was developed recently, enabling uncoded layered space-

time (LST) transmissions to achieve full-diversity (NtNr) and full-rate (Nt symbols per channel use) simulta-

neously, for any number of transmit antennas Nt and receive antennas Nr. In this paper, we investigate the

performance of a coded FDFR design obtained by concatenating an error control coding (ECC) module and FDFR

module with a random interleaver in between. Turbo decoding is performed at the receiver. With Rc denoting the

ECC rate, dmin the minimum Hamming distance of the ECC, and M the constellation size, an overall transfer rate of

RcNtlog2M bits per channel use and a full diversity order dminNtNr are achieved. Different ECC choices are

considered. Approximate analysis reveals that multi-stream ECC and single-stream ECC make no difference when

convolutional codes with long frame length and near-optimal MIMO decoding schemes are adopted. Without

sacrificing rate, the coded FDFR system improves error performance compared with coded V-BLAST, when

relatively weak codes are used. As Nr increases, even strong codes such as rate 1/2 turbo codes can benefit from

FDFR. Specifically, 1.5–2 dB gain over coded V-BLAST is obtained in a 2 � 2 antenna setup when convolutional

codes or rate 3/4 turbo codes are used; 0.5 dB gain is offered in a 2 � 5 setup when rate 1/2 turbo codes are used.

Coded FDFR also outperforms a 16-QAM Alamouti coded scheme by 1 dB when convolutional codes are used.

The price paid is increased complexity. Copyright # 2004 John Wiley & Sons, Ltd.
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1. Introduction

High transmission rate and low error rate are the

ultimate goals of modern wireless communication

modems, which are challenged by multiplicative

channel fading and additive Gaussian noise (AGN)

effects. Traditional error control coding (ECC) over

the Galois field (GF) deals with AGN and fading by

adding redundancy. Allowing for long block or large

interleaver sizes, thus assuming unconstrained encod-

ing and decoding complexity, low-density parity

check (LDPC) codes and turbo codes approach the

*Correspondence to: Georgios B. Giannakis, Department of Electrical and Computer Engineering, University of Minnesota,
200 Union Street SE, Minneapolis, MN 55455, U.S.A.
yE-mail: georgios@ece.umn.edu
zPart of the results in this paper was presented at IEEE International Symposium on Signal Processing and Information
Technology December 14–17, 2003, Darmstadt, Germany. Guest Editor: Dr. E.G. Larsson, email: egl@gwu.edu

Contract/grant sponsors: ARL/CTA; contract/grant number: DAAD 19-01-2-0011.

Copyright # 2004 John Wiley & Sons, Ltd.



bit error rate (BER) limit dictated by channel capacity

[1–3]. However, when delay or complexity is con-

strained, alternative low-complexity ECC options be-

come more practical, among which convolutional

codes (CC) are often preferable due to their simple

yet flexible structure and mature low-complexity

Viterbi decoding [4]. Although ECC is a well-

documented means of improving error performance,

it reduces spectral efficiency due to the redundancy

inserted. Bandwidth-efficient means of mitigating

channel fading by exploiting diversity flavors in other

dimensions are thus well motivated. Linear complex

field (LCF) coding and space-time (ST) coding are

two such flavors, in the precoded modulation and

spatial dimensions respectively. LCF coding (LCFC)

is the counterpart of GF coding. With each entry of the

generator matrix chosen from the complex field,

LCFC has been shown capable of enabling maximum

diversity with small or no rate loss; see for example

References [5–9] and references thereof. The princi-

ple is to construct a P� P encoder matrix which

produces codewords with any pairwise Hamming

distance equal to P. Relying on multiple (Nt) transmit

and multiple (Nr) receive antennas, multi-input multi-

output (MIMO) spatial wireless links are created. It

has been shown that the MIMO capacity of indepen-

dent Rayleigh fading ergodic channels increases ap-

proximately linearly with the minimum of (Nt, Nr),

implying that MIMO can potentially boost both diver-

sity and data rate [10]. There have been many ad-

vances in this field, which in general fall into two

classes: the first class aims at improving error perfor-

mance by exploiting spatial diversity, while the second

one targets high data rate. ST orthogonal designs

[11,12] and ST trellis codes [13] are two examples in

the first class. BLAST-type ST codes [14,15] and linear

dispersion (LD) codes [16] belong to the second class.

Although, it is still worthwhile to fully explore the

potential of each ST code design, jointly exploiting

merits from two or more designs often leads to more

desirable tradeoffs in rate-diversity-complexity. By

concatenating an LCF coder with a layered ST

(LST) mapper properly, the recently developed full-

diversity full rate (FDFR) design [17] enables an

uncoded LST system to have full diversity (NtNr)

and full-rate (Nt symbols per channel use) simulta-

neously (see also Ref. [18]). Joint consideration of

ECC and LCFC in ST setups was pursued also in

Reference [19]. Although the triangular ST mapper

developed in Reference [19] enables full diversity

order dminNtNr, where dmin is the minimum Hamming

distance or free distance of the ECC, the overall

transmission rate is only about half of the maximum

possible.

The performance of uncoded FDFR and Reference

[19] motivate us to investigate the performance of a

joint ECC and FDFR system in this paper. We will

particularly consider relatively ‘weakly’ coded FDFR

architectures, which rely on the concatenation of

ECC, LCFC and ST multiplexing at the transmitter,

along with soft-to-hard sphere decoding (SHD-SD)

[20,21] with iterative detection at the receiver. After

developing the system model in Section 2, we will

analyze the diversity order of coded FDFR under the

assumptions of near-perfect interleaving and near-

optimal decoding. A few special cases, including

CC and turbo coding (TC), will be considered in

choosing a single-stream coding structure over its

multi-stream counterpart. We will use coded V-

BLAST as a reference in our performance compar-

isons. In Section 4, we will illustrate by simulations

that the FDFR design offers notable performance

improvement by enabling full spatial diversity without

sacrificing rate, when CC or high rate TC is used, at

the expense of increased complexity.

Notation: Upper (lower) bold face letters will be used

for matrices (column vectors). Superscript * will

denote Hermitian transpose and T indicates transpose.

We will use � to stand for the Kronecker product;

diag(v) will stand for a diagonal matrix with entries of

the vector v on its main diagonal.

2. System Model

As depicted in Figure 1, the coded FDFR system

concatenates an ECC module and an FDFR module

with a random interleaver in between. Soft turbo

decoding between the ECC decoding module and the

FDFR decoding module is performed at the receiver

end. Both MIMO channels and the FDFR code are

decoded at the same time. We will use the term ‘FDFR

block’ to denote an FDFR processing unit, ‘ECC

stream’ for an ECC encoder unit, and ‘frame’ for a

set of information bits that will be processed by the

ECC module, the interleaver, and the FDFR module

serially without dependence on another frame. We can

also think of a frame as the system’s processing unit.

2.1. The Transmitter and Equivalent
MIMO Channels

A frame of information bits b with length Kc is first

encoded by an ECC module to yield c, and then goes
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through a random interleaver P. The ECC module

with interleaver can implement either a single-stream

coding structure as depicted in Figure 2, where

information bits are processed serially by a single

encoder, or, they can implement a multi-stream cod-

ing structure as depicted in Figure 3(a), where infor-

mation bits are divided into n sub-streams and each

sub-stream is encoded independently. As a special

case of the multi-stream structure, the multi-steam per

layer transmission is depicted in Figure 3(b), where

instead of using one interleaver, the coded bits per

sub-stream are scrambled with a sub-interleaver ma-

trix Pi independently. In this case, the equivalent

overall interleaver matrix Po ¼ diagð½P1 . . .Pn�) is

no longer a random interleaver although each sub-

interleaver Pi can be random.

Interleaved bits ~cc are mapped to a frame of symbols

f with frame length Nc adhering to a certain constella-

tion; f is then fed to the FDFR module. Frame f is

divided first into FDFR blocks fsðkÞgKk¼1 with block

length N2
t symbols, where k indexes the FDFR block,

and K is the number of blocks. Let us temporarily

omit the block index k to explain the FDFR design.

We will come back to it in Section 3. Each FDFR

block s is then divided into Nt sub-blocks with sub-

block length equal to Nt. Let sg denote the gth Nt � 1

sub-block (g ¼ 1; . . . ;Nt), whose entries fsg;kgNt

k¼1 are

drawn from a complex finite alphabet set S. The sub-

block sg is first coded to obtain

ug ¼ Hgsg; g ¼ 1; . . . ;Nt ð1Þ

where fHg :¼ �g�1HgNt

g¼1 is the set of LCF encoders,

� is a scalar and H is chosen from the class of unitary

Vandermonde matrices:

H ¼ 1ffiffiffiffiffi
Nt

p F�
Nt

diag½1; �; . . . ; �Nt�1� ð2Þ

where FNt
is the Nt � Nt FFT matrix with

ðmþ 1; nþ 1Þst entry e�j2�mn=Nt, and � is a scalar.

Three design approaches for � and H (or equivalently

�) have been derived to enable full-diversity and full-

rate in Reference [17]. As an example, when Nt ¼ 2k,

with k being a natural number, design A selects � ¼
ej�=ð2NtÞ and �Nt ¼ ej�=ð4N

2
t Þ; design B selects

� ¼ ej�=N
3
t and �Nt ¼ �; and design C selects

� ¼ ej=2 and �Nt ¼ � or � as in the design A, but

with �Nt ¼ ej=2.

The LCF coded symbols fuggNt

g¼1 then go through

an LST mapper, and are transmitted through Nt

antennas as follows:

V ¼

u1;1 uNt;2 . . . u2;Nt

u2;1 u1;2 . . . u3;Nt

..

. ..
.

. . . ..
.

uNt;1 uNt�1;2 . . . u1;Nt

2
6664

3
7775 ! time

# space
ð3Þ

Fig. 1. The coded full-diversity full-rate (FDFR) system model.

Fig. 2. The single-stream error control coding (ECC) model.
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where ug;i denotes the ith entry of vector ug.

Let s :¼ ½sT1 ; . . . ; sTNt
�T denote one FDFR block and

hTi denote the ith row of H. By defining the permuta-

tion matrix Pi and the diagonal matrix D�

respectively, as:

Pi :¼
0 Ii�1

INt�iþ1 0

� �
and D� :¼ diag½1; �; . . . ; �Nt�1�

we obtain the equivalent FDFR encoder for the entire

block s as

U :¼
ðP1D�Þ � hT1

..

.

ðPNt
D�Þ � hTNt

2
64

3
75 ð4Þ

and the FDFR output vector as x ¼ Us.

We use Hl to denote the Nr � Nt MIMO channel

coefficient matrix during the lth time slot that trans-

mitted vector Vl is facing, where vl denotes the lth

column of matrix v given as in Equation (3). Thus, the

channel matrix H for the transmitted vector

v :¼ ½vT1 . . . vTNt
�T can be written as:

H :¼

H1 0 . . . 0

0 H2 . . . 0

..

. ..
.

. . . ..
.

0 0 . . . HNt

2
6664

3
7775 ð5Þ

When MIMO channels are invariant over each FDFR

block, that is Hl ¼ H; l ¼ 1; . . .Nt, the resulting

‘FDFR-block-fading’ channel matrix can be written

in a simple form as H ¼ INt
�H with INt

denoting the

Nt � Nt identity matrix.

Let yl denote the lth Nr � 1 received vector,

y :¼ ½yT1 ; . . . ; yTNr
�T , nl denote the kth Nr � 1 noise

vector and n :¼ ½nT1 ; . . . ;nTNr
�T . The input-output re-

lationship is then [17]:

y ¼ HUsþ n ¼ Heqsþ n ð6Þ

where the equivalent channel matrix for the entire

FDFR block is Heq ¼ HU.

2.2. The Receiver With Turbo Decoding

At the receiver end, turbo decoding is carried out to

achieve an overall near-ML performance. Two mod-

ules, indexed by subscripts 1 and 2, perform soft

decoding of the FDFR-MIMO and ECC parts respec-

tively (see Figure 1). Extrinsic information about

c, denoted as kE, from one decoding module is

(de-)interleavered to yield a priori information about

c, denoted as kA, for the other module. After a certain

number of iterations or after a certain BER is

achieved, a hard decision b̂b is obtained based on the

a posteriori information about b, denoted as kD2, from

the ECC decoding module.

Inside each module, the optimal maximum a pos-

teriori (MAP) decoder, whether it operates over the

GF or over the real/complex field (RCF), requires

complexity that increases exponentially with the pro-

blem size in general (e.g. the memory length for CC or

the block size and the constellation size for RCF

code). Several near-optimal algorithms with polyno-

mial complexity have been developed for decoding

GF and RCF codes respectively. Those for decoding

over GF are well documented when CC or TC is used.

We adopt the so-called log-MAP algorithm to decode

CC and TC in Reference [22]. To decode RCF coded

transmissions over FDFR-MIMO channels, hard

sphere decoding (HD-SD) [23–25] and semi-definite

programming (SDP) [26] offer two well-known near-

ML schemes to generate hard decisions. Other sub-

optimal decoding schemes with lower complexity

Fig. 3. (a) The multi-stream ECC model; (b) the multi-stream per layer model.
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include zero-forcing (ZF), minimum mean-square

error (MMSE) and nulling-cancelling (NC) alterna-

tives [27]. Compared with hard decoding, the soft

decoding problem for the real/complex block model

has been looked upon only recently. A soft version

SD, known as list SD (LSD) [28] was recently

proposed to perform soft MIMO channel decoding

and was shown to enable MIMO capacity approaching

performance. A soft version SDP has also been

developed to this end [29]. Recent soft-to-hard SD

(SHD-SD) transformation schemes [20,21] achieve

comparable performance as LSD at reduced complex-

ity. In this paper, we will use the near-optimal SHD-

SD scheme 1 of Reference [20] to decode QPSK

modulated FDFR transmissions. Since SHD-SD

schemes only work for binary constellations, we will

not consider other constellations in this paper.

We now briefly explain the FDFR-MIMO decoding

process with SHD-SD schemes. First, by separating

the real and imaginary parts of the matrices and

vectors in Equation (6), we obtain a real equivalent

model as

~yy ¼ yr
yi

� �
¼ Heq;r �Heq;i

Heq;i Heq;r

� �
sr
si

� �
þ nr

ni

� �
¼ ~HH~ssþ ~nn

ð7Þ

Each entry of ~ss, ~ssk (k ¼ 1; . . . ; 2N2
t ), is equal to either

þ1 or �1. Define the a priori information, the a

posteriori information given ~yy, and the extrinsic

information of ~ssk respectively as:

�Að~sskÞ :¼ ln
Pð~ssk ¼ þ1Þ
Pð~ssk ¼ �1Þ ;

�Dð~sskj~yyÞ :¼ ln
Pð~ssk ¼ þ1j~yyÞ
Pð~ssk ¼ �1j~yyÞ ;

�Eð~sskj~yyÞ :¼ �Dð~sskj~yyÞ � �Að~sskÞ

Let kA :¼ ½�Að~ss1Þ; . . . ; �Að~ss2N2
t
Þ�T denote the a priori

vector of ~ss. With the AWGN assumption and the max-

log approximation [22], we can approximate the

extrinsic information of ~ssk as [21,28]:

�Eð~sskj~yyÞ ¼
1

2
max

x2Xk;þ1

� 1

�2
jj~yy� ~HHxjj2 þ xTkA

� �

� 1

2
max

x2Xk;�1

� 1

�2
jj~yy� ~HHxjj2 þ xTkA

� �
� �Að~sskÞ

where x is the candidate of ~ss, Xk;þ1 :¼ fxjxk ¼ þ1g
and Xk;�1 :¼ fxjxk ¼ �1g.

Relying on the spatially independent channel as-

sumption, ~HH has full column rank almost surely.

Therefore, we can find a vector yA satisfying

2~HHTyA ¼ �2kA ð8Þ

Using Equation (8), we can rewrite the extrinsic

information of ~ssk as:

�Eð~sskj~yyÞ ¼ � 1

2�2
min

x2Xk;þ1

jj~yyþ yA � ~HHxjj2

þ 1

2�2
min

x2Xk;�1

jj~yyþ yA � ~HHxjj2 � �Að~sskÞ ð9Þ

Let X denote the union of Xk;�1 and Xk;þ1. If

ŝsmap :¼ arg min
x2X

jj~yyþ yA � ~HHxjj2, and ŝsk :¼ arg min
x2Xk;�ŝsk;map

jj~yyþ yA � ~HHxjj2 for k ¼ 1; . . . ; 2N2
t , then Equation

(9) can be further simplified as

�Eð~sskj~yyÞ ¼ � ŝsk;map

2�2
jj~yyþ yA � ~HHŝsmapjj2

þ ŝsk;map

2�2
jj~yyþ yA � ~HHŝskjj2 � �Að~sskÞ ð10Þ

Hard sphere decoding (SD) can be used to find ŝsmap

and fŝskg2N2
t

k¼1. The soft max-MAP decoding problem is

thus converted to a set of hard SD problems. Based on

this max-MAP decoder, so termed SHD-SD Scheme 1

in Reference [20], additional approximate schemes

have been developed in Reference [20] to trade-off

error performance with complexity.

3. Performance Analysis

In this section, we will analyze the error performance

of coded FDFR, and show it is capable of enabling a

multiplicative diversity effect; namely that the diver-

sity order of coded FDFR is the product of that

enabled by ECC and by FDFR respectively. We will

also compare the two ECC structures: single-stream

CC versus multi-stream CC. The comparison will

suggest a single-stream structure that we will further

test with simulations presented in the next section.

3.1. Diversity Order

We here resort to a pairwise error probability (PEP)

approach to analyze the performance of coded FDFR.

Let us assume for now that the MIMO channel

remains constant over an entire FDFR block but is
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allowed to vary independently from block to block.

Consider two different information bit frames bh1i and

bh2i, each with length Kc. They yield two codewords

ch1i and ch2i with length Nc after ECC, with either a

single-stream or a multi-stream structure. These two

codewords differ from each other in d positions and so

do the interleaved codewords. Although, it is possible

that these d positions could be in close proximity for a

certain interleaver and a certain pair of codewords,

considering the fact that the interleaver P is random

with a different realization per frame, these d posi-

tions will most likely be sufficiently far apart provided

that the interleaver size is sufficiently long. Under this

assumption, we can henceforth consider that after

constellation mapping, the two symbol sequences

fh1i and fh2i still have d different symbols, and in

any FDFR block the vectors sðkÞh1i and sðkÞh2i differ

in at most one symbol, where k 2 ½1;K� indexes the

FDFR block and K is the number of FDFR blocks.

After LCF coding, LST mapping and propagation

through the channel HðkÞ, the equivalent channel

matrix for the kth FDFR block is HeqðkÞ. The resulting

symbol vectors are fzðkÞh1i ¼ HeqðkÞsðkÞh1igKk¼1 and

fzðkÞh2i ¼ HeqðkÞsðkÞh2igKk¼1. Out of K blocks, only d

of them are different. Without causing confusion, we

will use fzðiÞh1igdi¼1 and fzðiÞh2igdi¼1 to denote them.

When sðiÞh1i and sðiÞh2i are different in the mth

symbol, the Euclidean distance between zðiÞh1i and

zðiÞh2i is:

jjzðiÞh1i � zðiÞh2ijj2 ¼ jjheq;mðiÞjj2j�smðiÞj2 ð11Þ

where heq;mðiÞ is the mth column of the equivalent

channel matrix HeqðiÞ, and j�smðiÞj2 is the Euclidean

distance between the two different symbols smðiÞh1i
and smðiÞh2i. With �2 standing for the minimum Eu-

clidean distance between two symbols, we have that

j�smðiÞj2 � �2 ð12Þ

Since Heq ¼ HU, by the definitions of H in Equa-

tion (5) and U in Equation (4), if the mth symbol is in

the gth FDFR sub-block, we then have

jjheq;mðiÞjj2 ¼ jjHðiÞ�mjj2 ¼
XNr

l¼1

XNt

j¼1

jhl; jðiÞj2j�g;ð j;mÞj2

¼ 1

Nt

XNr

l¼1

XNt

j¼1

jhl; jðiÞj2

ð13Þ

where �m is the mth column of U, �g;ð j;mÞ is the

ðj;mNtÞth entry of Hg, hl; jðiÞ is the ðl; jÞth entry of

Nr � Nt channel matrix HðiÞ and HðiÞ ¼ INt
�HðiÞ.

Equation (13) is true because all entries of Hg have

equal norm 1=
ffiffiffiffiffi
Nt

p
.

From Equation (11), (12) and (13), the overall

Euclidean distance of these two sequences obeys

d2
1;2 ¼

Xd
i¼1

jjzh1iðiÞ � zh2iðiÞjj2

� �2

Nt

Xd
i¼1

XNr

l¼1

XNt

j¼1

jhl; jðiÞj2 ð14Þ

The PEP for a given channel realization,

P1;2jfHg :¼ Pðch1i ! ch2ijfHðkÞgÞ, can be upper

bounded as:

P1;2jfHg � Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=Nt

Pd
i¼1

PNr

l¼1

PNt

j¼1 jhl; jðiÞj
2

2N0

s0
@

1
A

where QðxÞ :¼ ð1=
ffiffiffiffiffiffi
2�

p
Þ
Ð1
x

expð��2=2Þd�. Using

the Chernoff bound QðxÞ � ð1=2Þexpð�x2=2Þ and

averaging over all h’s, we obtain the average PEP as:

P1;2 � 1

2

ð
exp � �2

4NtN0

�2=2

� �
f ð�Þd�

� �dNtNr

where f ð�Þ is the probability density function (PDF)

of the channel amplitude � ¼ jhl; jj between each

transmit/receive antenna pair ðl; jÞ, which is assumed

to be spatially independent and identically distributed

(i.i.d.). In the case of Rayleigh fading, the average

PEP is obtained as:

P1;2 � 1

2
1 þ �2

4NtN0

� ��dNtNr

ð15Þ

Equation (15) shows that the PEP exhibits diversity

order dNtNr. After applying the union bound to all

error events, we can upper-bound the average BER of

coded FDFR as [30]

PF
b � 1

2

XNc

d¼dmin

Bd 1 þ �2

4NtN0

� ��dNtNr

ð16Þ

where dmin is the minimum Hamming distance of the

block ECC, or the free distance of the CC, and Bd is
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the average number of bit errors associated with error

events of distance d. By definition, we have

Bd ¼
XKc

w¼1

w

Kc

Aw;d ð17Þ

where Aw;d denotes the number of error events with

input sequence weight w and output sequence weight

d, and Kc is the number of information bits per input

frame (cf. Subsection 2.1). Equation (16) shows that a

maximum diversity order dminNtNr is possible with

coded FDFR.

Although we assume that MIMO channels remain

constant over an FDFR block, this is not necessary.

When MIMO channels are both spatially and tempo-

rally independent, with slight modifications, it can be

easily shown that the diversity order dminNtNr still

holds for coded FDFR. In the case of temporally

correlated time-varying MIMO channels, a second

interleaver Pð2Þ must be appended after the FDFR

module and before transmission to decorrelate the

MIMO channels. If the channels change fast enough

or the frame size is large enough, then the equivalent

channels can still be treated as independent. However,

if the channels change very slowly, the full diversity

provided by channels is less than dminNtNr. In the

extreme case when the MIMO channels remain in-

variant over the entire frame but vary independently

from frame to frame, the overall diversity order is only

that enabled by the FDFR space-time codes; namely

NtNr for uncoded FDFR. No extra diversity is

gained with ECC. This is because Equation (14)

now becomes

d2
1;2 ¼

Xd
i¼1

jjzh1iðiÞ � zh2iðiÞjj2 � d�2

Nt

XNr

l¼1

XNt

j¼1

jhl; jðiÞj2

ð18Þ

The average BER of coded FDFR over Rayleigh

frame-fading channels is thus

PF
b � 1

2

XNc

d¼dmin

Bd 1 þ d�2

4NtN0

� ��NtNr

� 1

2
1 þ dmin�

2

4NtN0

� ��NtNr XNc

d¼dmin

Bd ð19Þ

Clearly, the diversity order is NtNr, which is the

diversity enabled by uncoded FDFR [17]. Different

choices of ECC will affect Bd in Equation (16) and

therefore ECC will enhance error performance only

through the coding gain. When the MIMO channels

are block-fading with L independent realizations per

frame, then the diversity order of coded FDFR is at

most minðL; dminÞNtNr. Note that the term ‘block’ in

‘block-fading’ refers to the channel coherence time.

3.2. Multi-Stream CC versus Single-Stream CC

We now consider the structure of the ECC module and

delineate trade-offs between the single-stream ECC of

Figure 2 and the multi-stream ECC of Figure 3(a). In

general, it is hard to establish analytically which

encoding structure is better. As it will be shown later

in next section, our coded FDFR offers good perfor-

mance improvement over coded V-BLAST only when

weak codes are used. For this reason, we will focus on

the special case of multi-stream terminated-CC versus

single-stream terminated-CC.

When the same CC generating function is used, the

free distances of single-stream and multi-stream struc-

tures are identical. It follows from Equation (16) that

BER performance depends on fBdgNc

d¼dmin
. For simpli-

city, let us consider that: (i) the overall length of the

output sequence is Nc for both structures; (ii) there are

only two sub-streams in the multi-stream structure

and (iii) the same CC generator with memory m and

rate Rc is used per encoder. Then the single-stream

structure has input sequences with length NcRc � m

and the encoding process is terminated at the stage

NcRc � m. Each sub-encoder in the two-stream struc-

ture has input sequences with length NcRc=2 � m and

the encoding process is terminated at the stage

NcRc=2 � m. Without loss of generality, the two-

stream structure is equivalent to the single-stream

structure with m zeros inserted between the

ðNcRc=2 � mÞth bit and the ðNcRc=2 � mþ 1Þst bit,

as depicted in Figure 4.

We now compare Bs
d and B2

d for the single-stream

and the two-stream structures respectively. Since the

two structures use the same trellis, for any given d and

w, all error events with input sequence weight w and

output sequence weight d that are counted in A2
w;d for

the two-stream structure will also be counted in As
w;d

for the single-stream structure. However, As
w;d also

includes those error events with one or more out of w

non-zero bits falling between NcRc=2 � m and

Fig. 4. The equivalent single-stream CC model of the multi-
stream CC.
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NcRc=2. For the two-stream structure, those error

events will never happen, since zeros have been

inserted at those positions. Therefore, we have

As
w;d � A2

w;d for any w and d, which implies that

Bs
d � B2

d according to Equation (17). Hence, the

two-stream CC structure offers better BER perfor-

mance than the single-stream CC one. This conclusion

is reasonable because in the two-stream structure, the

m zeros in the middle of the input sequence are

known. In the Viterbi decoding process, these known

zeros help paths converge in the trellis. If the BER of

the two-stream CC is Pb, then the BER for the single-

stream CC can be roughly approximated as

ð1 þ m=ðNcRc � mÞÞPb. It should be pointed out that

by inserting m zeros, the two-stream CC sacrifices

data rate. When Rc is fixed, for large Nc, both the rate

loss of the two-stream CC and the error performance

loss of the single-stream CC are negligible. Therefore,

the two are expected to exhibit comparable perfor-

mance. This argument for the 2-stream CC can be

easily extended to a general multi-stream CC. There-

fore, the multi-stream and the single-stream CC have

no big difference when the frame length is large.

The reason behind this is because CC is a highly-

structured ECC. Things could be different when a

further randomized ECC, such as LDPC or turbo

codes, is used. Quantitative comparison between the

multi-stream and single-stream structures for LDPC

and TC is interesting but will not be pursued in this

paper.

3.3. Comparison With Coded V-BLAST

Since V-BLAST is the simplest LST code achieving

full rate and coded V-BLAST has been shown to be

capacity approaching [21,28], which means it is

asymptotically optimal, we will use coded V-BLAST

as a benchmark. The latter can be obtained by simply

replacing the FDFR design module in Figure 1 with a

serial to parallel converter. Both coded FDFR and

coded V-BLAST have the same transfer rate

RcNtlog2M bits per channel use, for a given ECC

rate Rc and constellation size M. When fading chan-

nels are both spatially and temporally i.i.d., the

average BER for coded V-BLAST can be similarly

upper-bounded by:

PV
b �

XNc

d¼dmin

Bd

2
1 þ �2

4N0

� ��dNr

ð20Þ

The diversity order of coded V-BLAST is thus dminNr;

i.e. 1=Nt that of coded FDFR. To achieve identical

BER performance, let the SNR needed for coded

V-BLAST be 	v ¼ �2
v=ð2N0Þ and the SNR needed

for coded FDFR 	f ¼ �2
f =ð2N0Þ. Comparing

Equation (15) with Equation (20), it follows that the

SNR gain of coded FDFR over coded V-BLAST is

approximately

G :¼ 	v
	f

¼ 	v

2Nt½ð1 þ 	v=2Þ1=Nt � 1�
�!Nt!1 	v=2

lnð1 þ 	v=2Þ
ð21Þ

Equation (21) is very similar to the gain that ECC with

unitary precoding (ECC-UP) offers over ECC without

precoding (ECC-only) with Nt viewed as the LCF size

M in Reference [31]. This similarity is quite reason-

able, since from Equation (13) we deduce that the

diversity factor Nt relies on an LCF encoder with size

Nt. From Equation (21), we also infer that increasing

Nt will increase the diversity gain. However, this gain

increment decreases as Nt increases. Considering the

complexity increment as Nt increases, FDFR is more

useful when Nt is small, for example Nt ¼ 2. When

MIMO channels are frame-fading, it is easy to see

from Equation (19) that in order to achieve the same

BER performance, the SNR gain that coded FDFR

enjoys over coded V-BLAST is now

G :¼ 	v
	f

¼ dmin	v

2Nt½ð1 þ dmin	v=2Þ1=Nt � 1�

�!Nt!1 dmin	v=2

lnð1 þ dmin	v=2Þ ð22Þ

Comparing Equation (21) with Equation (22), we

notice that for a given 	v, coded FDFR exhibits larger

gain over coded V-BLAST in frame-fading rather than

fast fading channels. However, the union bound ana-

lysis implies that this is valid only at high SNR, i.e.

	 � 	th, where 	th is the minimum SNR needed to

achieve a certain BER, for example Pb ¼ 10�4. Since

the diversity order over frame-fading channels is dmin

times less than that over i.i.d. channels, we expect that

	th over frame-fading channels is larger than that over

i.i.d. channels. We will corroborate this later on with

simulations.

4. Simulations

We carry out simulations with different ECCs for

QPSK modulated MIMO transmissions to compare

BER of coded V-BLAST and FDFR systems. Except
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for Simulation 4, both systems use the single-stream

ECC structure. We use the SHD-SD scheme 1 for both

systems in Reference [20]. The interleaver size is cho-

sen to be 210. Apart from Simulation 3, the spatially

i.i.d. channels remain invariant on a per FDFR block

basis but change independently from FDFR block to

block. In each figure, curves with the same marker

correspond to BER for the same system (either coded

V-BLAST or coded FDFR) at different iterations.

Notice that the equivalent channel matrix Heq in

Equation (6) is an N2
t � N2

r complex matrix, which

implies a considerable increase in decoding complex-

ity relative to V-BLAST with block size Nt for the

same antenna setup.

4.1. Simulation 1

Figures 5 and 6 depict BER performance comparisons

between coded V-BLAST and coded FDFR, when

relatively weak codes (CC and high rate TC) are

used as ECC in a 2 � 2 antenna setup. BER curves

with three iterations are shown in Figure 5. We

observe that with rate 1/2 CC the performance gain

after the 2nd iteration is negligible. The same beha-

vior has been observed with rate 3/4 TC during the

simulation process, although the BER curve of the 3rd

iteration is not shown in Figure 6. Therefore, we will

only show BER curves of two iterations for these

codes in the rest of this paper. We use rate 1/2 CC with

memory 2, feedback polynomial GrðDÞ ¼ 1 þ Dþ
D2, and feedforward polynomial GðDÞ ¼ 1 þ D2.

About 1.5 dB gain at BER¼ 10�4 is offered by the

FDFR design when CC is used. We also use rate 3/4

parallel concatenated convolutional codes (PCCC) in

Figure 6, composed of two CC modules parameter-

ized as before. The puncturing pattern used retains all

systematic bits and takes one bit every 6 bits from

each coded stream. Five iterations are performed

inside the decoding module for rate 3/4 turbo codes.

Two outer iterations are performed between the two

decoding modules. Figure 6 shows the BER compar-

ison for rate 3/4 turbo codes in a 2 � 2 setup. In this

case, coded FDFR outperforms coded V-BLAST by

about 2 dB.

4.2. Simulation 2

In this simulation, we use a rate 1/2 PCCC constructed

as the rate 3=4 PCCC except for the puncturing

pattern. Here we keep all the systematic bits and every

other bit from each coded stream. Figure 7 depicts the

comparison in a 2 � 2 setup with three outer itera-

tions. Five iterations are performed inside the decod-

ing module for rate 1/2 TC. We see no performance

improvement with FDFR, which is reasonable when

such a strong code is used with Nr ¼ Nt. Thanks to the

larger diversity order, uncoded FDFR outperforms

uncoded V-BLAST at high SNR noticeably [17].

Fig. 5. 1/2 CC with FDFR vs. 1/2 CC with V-BLAST in a 2� 2 setup.
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However, when we use strong codes such as rate 1/2

TC, the diversity gains are already high at low SNR

(i.e. the slope of the BER curve is already very steep).

In this case, the larger diversity order enabled by

FDFR brings no advantage.

Figure 8 shows the same comparison in a 2 � 5

setup. By increasing Nr, both coded FDFR and coded

V-BLAST benefit from the extra energy collected and

the extra diversity provided by Nr receive antennas.

But the turbo gain between iterations becomes smal-

ler. We further observe that in the 2 � 5 case, even the

coded LST system with rate 1/2 TC can benefit from

the FDFR design by about 0.5 dB over the coded V-

BLAST system.

Fig. 6. 3/4 turbo codes with FDFR versus 3/4 turbo codes with V-BLAST in a 2� 2 setup.

Fig. 7. 1/2 turbo codes with FDFR versus 1/2 turbo codes with V-BLAST in a 2� 2 setup.
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4.3. Simulation 3

We now assume that the MIMO channel is fading on a

frame by frame basis; that is, our MIMO channel

remains invariant over the entire ECC frame but fades

independently across ECC frames. Figure 9 compares

coded FDFR with coded V-BLAST in a 2 � 2 setup,

when a rate 1/2 CC is used. Compared with Figure 5 of

Simulation 1, the diversity order and the iterative gain

decreases for both coded FDFR and coded V-BLAST.

Besides, coded FDFR now has about 2 dB gain over

coded V-BLAST. Relative to i.i.d. channels, about 6 dB

Fig. 8. 1/2 turbo codes with FDFR versus 1/2 turbo codes with V-BLAST in a 2� 5 setup.

Fig. 9. Bit error rate (BER) performance of 1/2 CC with FDFR versus that of 1/2 CC with V-BLAST in a 2� 2 frame-fading
setup.
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extra SNR is required to achieve BER¼ 10�4 in frame-

by-frame-fading channels. This observation matches

our analysis in Section 3. The frame error rate (FER)

curves of the same simulations are shown in Figure 10.

4.4. Simulation 4

The performance comparison between single-stream

versus multi-stream coded structures with CC as an

encoder in coded FDFR is depicted in Figure 11. There

are two sub-streams in the multi-stream structure. Each

sub-stream has input length 29. We can see that the two

structures exhibit basically identical BER performance.

4.5. Simulation 5

We have used the SHD-SD Scheme 1 of Reference

[20] to decode MIMO channels for both FDFR system

Fig. 10. Frame error rate (FER) performance of 1/2 CC with FDFR versus that of 1/2 CC with V-BLAST in a 2� 2 frame-fading
setup.

Fig. 11. 1/2 multi-stream CC with FDFR versus 1/2 single-stream CC with FDFR in a 2� 2 setup.
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and V-BLAST system. In this simulation, we will

measure the performance loss with the max-log ap-

proximation. Figure 12 shows the BER curves of

convolutional coded V-BLAST system with SHD-

SD Scheme 1, brute-force max-MAP decoding, and

brute-force-MAP decoding respectively. As we can

see, the performance difference between different

decoding schemes is negligible, which verifies that

our SHD-SD Scheme 1 is near-optimal.

4.6. Simulation 6

It is well known that Alamouti’s 2 � 2 scheme also

achieves full diversity with low complexity. Although

throughout this paper, we have used coded V-BLAST

as our reference, it will be interesting to compare our

coded FDFR system with coded Alamouti as well. In a

coded Alamouti system after the information bits are

ECC coded and interleaved, coded bits are mapped to

16-QAM symbols to achieve the same transmission

rate as its coded FDFR counterpart. Those 16-QAM

symbols are then transmitted with the Alamouti

scheme. Soft brute-force-MAP MIMO-decoding/

demapping is used at the receiver. Figure 13 depicts

the comparison of CC coded FDFR with CC coded

Alamouti in a 2 � 2 setup. From the figure we can see

that coded Alamouti has better performance than

coded FDFR in the first iteration. A possible reason

for this is that being an orthogonal design, Alamouti’s

scheme converts the MIMO channels to a set of SISO

channels, thereby avoiding interference among differ-

ent symbols. However, about 1 dB gain is offered by

FDFR at the second iteration. Another interesting

observation is that there is almost no iterative gain

for coded Alamouti, which is consistent with the

assertion in Reference [32].

Remark: From Figures 5 to 13, we observe an evident

iterative gain for both coded V-BLAST and coded

FDFR. This observation is different from the conclusion

in Reference [32], where it is claimed that no improve-

ment is brought by performing outer iterations between

the space-time decoding module and the decoding

module for the outer code. This is because the assertion

in Reference [32] has been established only for space-

time orthogonal designs, where the equivalent channel

is diagonal and thus the a priori information from other

symbols provides no extra information for the current

symbol. This conclusion agrees with Simulation 6,

where almost no improvement is brought by increasing

the number of outer-iterations between MIMO decod-

ing/demappping and ECC decoding. However, the

assertion in Reference [32] clearly does not hold for

FDFR and V-BLAST.

Fig. 12. CC coded V-BLAST with SHD-SD Scheme 1, max-MAP and MAP decoding in a 2� 2 setup.
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5. Conclusions

In this paper, we improved the performance of a coded

FDFR multi-antenna system using turbo decoding.

For Nt transmit and Nr receive antennas, rate Rc

error-control coding and constellation size M, high

rate (RcNtlog2M information bits per channel use) and

high diversity order (up to dminNtNr) are achieved.

Compared with its coded V-BLAST counterpart,

coded FDFR improves performance without sacrifi-

cing rate when weak ECC is used. The price paid is an

increase in complexity. Deriving a soft FDFR decoder

with low complexity is an issue worth pursuing in

future research.
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