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Abstract— Relative to a centralized operation, opportunistic
medium access capitalizing on decentralized multiuser diversity
in a channel-aware homogeneous slotted Aloha system with
analog-amplitude channels has been shown to incur only partial
loss in throughput due to contention. In this context, we provide
sufficient conditions for stability as well as upper bounds on
average queue sizes, and address three equally important ques-
tions. The first one is whether there exist decentralized scheduling
algorithms for homogeneous users with higher throughputs than
available ones. We prove that binary scheduling maximizes the
sum-throughput. The second issue pertains to heterogeneous
systems where users may have different channel statistics. Here
we establish that binary scheduling not only maximizes the sum
of the logs of the average throughputs, but also asymptotically
guarantees fairness among users. The last issue we address
is extending the results to finite state Markov chain (FSMC)
channels. We provide a convex formulation of the corresponding
throughput optimization problem, and derive a simple binary-
like access strategy.

Index Terms— slotted Aloha, decentralized multiuser diversity,
stability, maximum stable throughput, scheduling, fairness.

I. INTRODUCTION

IN THE traditional paradigm of wired networks, the
medium access control (MAC) and the physical as well as

higher layers are designed separately - an approach simplify-
ing protocol design and network maintenance. For wireless
networks however, this methodology needs to be revised
primarily because of the inherent time-varying fading behavior
of wireless links. Nowadays, cross layer designs are pursued to
improve the overall system performance of wireless networks.
In this new paradigm, knowledge of the physical channel, the
queue status and QoS requirements are shared across layers
and used jointly for scheduling purposes [6], [22].

Another traditional view is that channel fading impairs link
reliability and should be mitigated. However, in the context
of multiuser communications, this is not always the case.
One important example emerges with multiuser diversity in
a centralized downlink system, where the base station (BS)
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schedules the user with the best instantaneous channel to
transmit, and thereby increases the maximum sum-throughput
as the number of users increases [7], [8]. Such an approach
has been incorporated in the design of Qualcomm’s High
Data Rate (HDR) system (1xEV-DO) for downlink packet
scheduling [9].

In this paper, we consider a random access setup in the
uplink, where multiple users are communicating with a single
BS over flat fading channels and transmission time is slotted.
We assume that each user node has only available its own
uplink fading channel coefficient - what is often termed
decentralized channel state information (D-CSI). For such a
setting, multiuser diversity can be effected by jointly designing
the physical and MAC layers [1], [4]. Assuming that all users
always have data to transmit in a homogeneous slotted Aloha
system with D-CSI available (a.k.a. channel-aware Aloha),
a binary distributed scheduling scheme has been derived to
asymptotically achieve a fraction (1/e) of the centralized
system’s throughput [1]. Considering a n-user system with
randomly arriving packets and employing both transmission
probability control and adaptive rate transmission, a decen-
tralized protocol has also been developed to achieve a fraction
(1 − 1/n)n−1 of the centralized system’s throughput, where
(1−1/n)n−1 is a factor due to the inherent contention present
in any finite-user slotted Aloha protocol [4].

In this paper, we provide a general approach for decentral-
ized opportunistic medium access in a finite-user slotted Aloha
system with randomly arriving traffic, where transmissions
adapt to D-CSI by adjusting both rates and transmission prob-
abilities. We derive sufficient conditions for system stability
as well as upper bounds on average queue sizes using the
dominant system approach. We further address three important
open questions. The first one is whether there exist decen-
tralized scheduling algorithms with higher throughput than
[1], [4]. To this end, we prove that the binary scheduling
of [1] maximizes the sum-throughput when user links are
homogeneous; i.e., the corresponding channel statistics are
identical. Another issue pertains to heterogeneous systems,
where users may have different channel statistics. We show
that if users behave as if they were in a homogeneous system,
the binary scheduling algorithm maximizes the sum of the
logs of the average throughputs while asymptotically guar-
anteeing fairness among users - two desirable properties of
the centralized proportional fair (PF) scheduling algorithm [8].
The last issue we address is extending the results of analog-
amplitude channels to quantized-amplitude channels that are
typically modeled as a finite state Markov chain (FSMC) [21].
We provide a convex MAXDET formulation as well as a
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Linear Programming (LP) formulation of the corresponding
throughput-maximizing scheduler for FSMC channels, and
derive a simple binary-like access strategy.

There have been two more approaches taking advantage of
D-CSI. One aims for enhancing the capture effect by adjusting
transmission probabilities and power based on D-CSI [10],
[11], [12], [5]. It has been shown that use of population-
dependent transmission control improves throughput [10];
however, capture alone cannot stabilize slotted Aloha in a
population-independent network when the number of users is
very large [5]. The other approach to exploiting D-CSI relies
on splitting algorithms to resolve collisions over a sequence
of mini-slots, and determines the user with the best channel
to transmit [2], [3].

The rest of the paper is organized as follows. In Section
II, we introduce the system model. In Section III, we obtain
sufficient stability conditions and provide bounds on average
queue lengths. In Section IV, we consider fading channels
with gains assuming arbitrary values and prove the optimality
of binary scheduling in both homogeneous and heterogeneous
systems. In Section V, we develop a MAXDET formulation of
the throughput-maximizing problem for FSMC channels and
obtain an analytical solution. Numerical examples are given
in Section VI and conclusions are drawn in Section VII.

II. SYSTEM MODEL

We consider a discrete time slotted Aloha random access
system with a single BS and n users transmitting data to the
BS over flat fading channels. Time is slotted into intervals of
equal length T and the t-th slot refers to the time interval
[tT, (t+ 1)T ), where t = 0, 1, . . .; i.e., transmission attempts
are made at discrete time instances t. Each user has an infinite
buffer for storing incoming data. The arrival process Ak(t)
represents the number of bits that arrive during slot t of user
k and is assumed to be stationary and independent of Al(t)
for l �= k. If the first- and second-order moments of Ak(t) are
λk and A2

k, the total arrival rate for the system is
∑n

k=1 λk .
Throughout, we shall adopt a flat block fading model for the

uplink propagation between any user and the BS, where the
channel fading coefficient is invariant per slot but is allowed
to change from slot to slot. The channel magnitude-square
process γk(t) ∈ R

+ = [0,+∞) models user k’s link condition
as a function of time and is assumed stationary, has finite
mean, and is assumed independent of γl(t) for l �= k. Let the
function Fk(·) denote the cummulative distribution function
(CDF) of γk(t), k = 1, . . . , n. Further, we will assum that at
the beginning of each slot, each user node knows only its own
uplink channel.

Based on such D-CSI, we adopt a variation of the con-
ventional slotted Aloha protocol as in [1] and [10], where
each user has an intelligent scheduler taking into account the
available D-CSI. The general function of the scheduler is to
adapt rate and transmission probability to the corresponding
D-CSI in order to effect higher throughput. We denote the
rate control function as Rk(γ) and the probability control
function as sk(γ), where γ refers to the magnitude-square
channel realization over the current slot. The operation of
Rk(γ) in practice is implementation dependent. For example,

if the duration of a slot is long enough for the system to
afford sufficiently high encoding and decoding complexity,
it is possible to transmit at a rate approaching Shannon’s
capacity of the channel. In general, we assume that the rate
control function Rk(γ) of each user is fixed and continuously
increasing over [0,+∞). Note that our model is quite general,
since it includes the conventional slotted Aloha, the SNR
threshold model with fixed rate transmission [10], the fixed
power transmission model [4] and the power control model
[1].

In this paper, for simplicity we only consider a collision
model for multiple access, in which a packet is successfully
received if and only if there is one packet transmission.1

Due to the time-varying channel and the time-varying user
contention, the service process μk(t) (representing the number
of bits that can be served during slot t) is also time-varying:
μk(t) = R(γk(t))T , if no other user transmits; and μk(t) = 0,
otherwise.

III. STABILITY AND UPPER BOUNDS ON AVERAGE QUEUE

SIZES

In this section, we will derive sufficient conditions for the
stability of the system we outlined in the previous section.
Note that even for the conventional slotted Aloha it is difficult
to obtain the exact stability region except for homogeneous
users. To establish stability conditions as well as upper
bounds on average queue sizes, we will rely on the notion
of the dominant system and stochastic ordering arguments.
For clarity, we will first consider the simplest case where
Ak(t), μk(t), k = 1, . . . , n are independent and identically
distributed (i.i.d.), and later extend our results to more general
cases.

A. Stability

Let Uk(t) denote the number of unprocessed bits in user
k’s queue at the beginning of slot t. The time evolution of the
Markov chain {Uk(t)}∞t=0 corresponding to user k is given by

Uk(t+ 1) = [Uk(t) − μk(t)]+ + Ak(t), (1)

where [x]+ := max{x, 0}. We define the following overflow
function gk(V ):

gk(V ) : = lim sup
t→∞

E{1
t

∫ t

0

1[Uk(τ)>V ]dτ}

= lim sup
t→∞

1
t

∫ t

0

Pr[Uk(τ) > V ]dτ,
(2)

where the indicator function 1E = 1, whenever event E is
satisfied; and 1E = 0, otherwise.

Based on gk(V ), we can define stability as follows:
Definition 1 ([14], [15]): The system is stable if gk(V ) → 0
as V → ∞ for all k = 1, . . . , n.

1However, many ideas can be extended to the capture model, or more
generally, to the multi-packet reception model of [19].
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B. Stochastic Ordering and Dominant System

A tool frequently used in the paper is stochastic ordering,
which is defined below:
Definition 2 ([16]): Suppose F and G are two CDFs. We say
that F is strongly stochastically smaller than G, and write it
as F ≤st G, if their complementary CDFs satisfy F c(x) ≤
Gc(x) for all x ∈ R. Also for random variables (r.v.’s) X,Y
with distributions F and G respectively, we will write X ≤st
Y as synonym for F ≤st G.

It is apparent that F ≤st F . The following lemma charac-
terizes the stochastic ordering ≤st.
Lemma 1 ([16]): It holds that F ≤st G, if and only if∫ ∞

−∞
φ(x)dF (x) ≤

∫ ∞

−∞
φ(x)dG(x), (3)

for all increasing functions φ(·), for which the integrals exist.
Let us now introduce a dominant system corresponding to

the original system, which was implicitly used in [17] and
later explicitly exploited by [18]; see also [20]. The dominant
system behaves the same way as the original system except
that in every slot each user node transmits a dummy packet
using the same rate and transmission probability even when
its queue is empty. It can be proved that if both the dominant
and the original system start from the same initial state and
encounter the same arrivals and channels, then it holds that
2 Uk(t) ≤st Ũk(t), k = 1, . . . , n for t ≥ 0 [17], [18]. In
addition, if the dominant system is stable, the original system
is also stable.

Using a 1-step Lyapunov function analysis as in [15, Lemma
3], we can easily obtain a stability condition and an upper
bound on the queue size of the dominant system, which also
apply to the original system. With μk and μ2

k denoting the first-
and second-order moments of μ̃k(t) of the dominant system,
respectively, we find that

μk := E{μ̃k(t)} =
n∏

j=1,j �=k
[1 −

∫ ∞

0

sj(γ)dFj(γ)]

·
∫ ∞

0

sk(γ)Rk(γ)TdFk(γ).

(4)

Now we can summarize our result in the following theorem:

Theorem 1: If λk < μk, k = 1, . . . , n, then the original
system is stable and its average queue size is upper bounded
by

Uk ≤ μ2
k +A2

k

2(μk − λk)
. (5)

Remark 1: Theorem 1 can be extended to non-i.i.d. stationary
arrival and channel processes, as long as the arrival and
channel processes for different users are independent. Suppose
that the time average of the first- and second-order moments of
Ak(t) (μ̃k(t)) over K consecutive slots approximate closely
λk (μk) and A2

k (μ2
k). Then, by using a K-step Lyapunov

function analysis as in [15], we can prove that the sufficient
conditions for stability coincide with these in Theorem 1,
but the upper bound in (5) on the average queue sizes

2Hereafter, the tilde denotes quantities corresponding to the dominant
system.

increases by a multiplicative factor K . This is not surprising,
since K quantifies the memory effect of the channel. The
longer the channel memory is, the longer the backlog will
be. Nonetheless, the sufficient conditions for stability are the
same. The fact that the channel memory does not affect the
long-term throughput but the packet delay has been already
pointed out in [1, Sec. 5] for the power control model.
Remark 2: Another reason why channel memory does not
affect the MST is that users do not cooperate and each user
node makes its decision to transmit based on the expected
contention in the current slot not on previous channel history.
Consider the dominant system approach we used earlier. Since
users in the dominant system cannot inform each other about
their status, all queues are decoupled and can influence the
throughput of each other only through steady state statistics.
For this reason, a specific user node per slot faces on the
average the same contention effect from other users. Whether
its channel is “good” or “bad” in earlier slots is irrelevant to
the expected contention in the current slot.
Remark 3: Theorem 1 does not imply that we cannot take
advantage of the known channel memory. For example, in a
reservation-type protocol over a channel with a long memory,
once a user node is successful experiencing a good chan-
nel, it can reserve the channel for immediately following
slots until the channel becomes bad. Such a scheme reduces
collisions for users with good channel conditions, leading
to higher throughput. However, in this paper we do not
consider reservation-type protocols and only focus on Aloha-
type protocols. Nonetheless, the schemes developed in this
paper can be used for the channel reservation phase in any
reservation-type protocols.

IV. FADING CHANNELS WITH ANALOG AMPLITUDES

In this section, we consider user channels with gains as-
suming arbitrary values and assume that all the CDFs are
continuous, which we refer to as analog-amplitude channels.
We first focus on homogeneous systems, and then extend our
results to heterogeneous systems. In a homogenous system,
since all users have the same arrival rate λk = λ/n and
identical channel statistics Fk(·) = F (·), they adopt the same
scheduling policy sk(·) = s(·), ∀k. If for simplicity we omit
the user index k, it follows from (4) that

μ = T · [1 −
∫ ∞

0

s(γ)dF (γ)]n−1 ·
∫ ∞

0

s(γ)R(γ)dF (γ).

(6)

Theorem 1 implies that the system is stable if the system
throughput satisfies

λ < η := nμ = T · n[1 −
∫ ∞

0

s(γ)dF (γ)]n−1

·
∫ ∞

0

s(γ)R(γ)dF (γ).
(7)

We have not been able to prove, but we conjecture that the
system is unstable for λ > η, which holds at least for some
special cases [17]. Nevertheless, our goal is to maximize η
by judiciously selecting the scheduling function s(·). In the
following, we will first investigate a heuristic scheme we
introduced in [4] as well as the binary scheduling put forth
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by [1], and then prove that the latter is optimal in terms of
throughput for a more system model considered in Section II.
In the end of this section, we will revisit the throughput and
fairness issues for heterogeneous systems.

A. Multiuser Diversity

First, let us suppose that at the beginning of slot t, each user
has available full CSI; i.e., each user knows all {γk(t)}nk=1.
Then each user, say user k, knows the maximum of other
users’ CSI, which we define as

βk(t) := max{γj(t)}nj=1,j �=k. (8)

Based on βk(t), a simple binary transmission strategy for
each user k operates as follows: if γk(t) ≥ βk(t), transmit
with probability 1; if γk(t) < βk(t), do not transmit with
probability 1. This protocol amounts to having a centralized
scheduler which allows the user with the best channel to
transmit in every slot. The CDF of βk(t) is given by

Gβk(t)(β) = Pr{βk(t) ≤ β}

=
n−1∏

j=1,j �=k
Pr{γj(t) ≤ β} = Fn−1(β).

(9)

It is not to difficult to obtain the throughput of such a
centralized scheduling scheme:

ηcentral = n

∫ ∞

0

R(γ)TFn−1(γ)dF (γ)

= T · EFn(·){R(γ)}.
(10)

The second term in (10) is exactly the capacity of a centralized
multiuser diversity system, when there are n independent
homogeneous users and only the best user is allowed to
transmit in every slot. This can be seen from the fact that
Fn(γ) is the CDF of the maximum of n i.i.d. CSI variables
with distribution F (γ). Therefore, we expect that in fading
channels ηcentral increases as the number of users n increases,
which manifests the notion of multiuser diversity [8].

Let us now return to our original problem where each user
node knows only its own CSI. Even though the exact value of
βk(t) at the beginning of slot t is unknown, the distribution
of βk(t) is known, since we are considering a homogeneous
system and {γj(t)}nj=1,j �=k are i.i.d.. Relying on this D-CSI,
a heuristic choice for s(γ) is:

s(γk(t)) = Pr{γk(t) ≥ βk(t)|γk(t)}
= Fn−1(γk(t)).

(11)

Such a scheme results in average transmission probability
P :=

∫∞
0
s(γ)dF (γ) = 1/n. Substituting (11) into (7), we

obtain the throughput of this heuristic scheduler as

ηheur = T · (1 − 1
n

)n−1 ·
∫ ∞

0

R(γ)nFn−1(γ)dF (γ)

= T · (1 − 1
n

)n−1 · EFn(·){R(γ)}.
(12)

An immediate consequence of (12) is that ηheur = (1 −
1/n)n−1 · ηcentral. The only difference between ηheur and
ηcentral is the factor (1 − 1/n)n−1, which represents the
contention effect. This factor decreases as n increases and

converges to 1/e as n→ ∞. Except for this contention factor,
which is inherent to all slotted Aloha systems, ηheur shares
the same multiuser diversity as ηcentral, which we refer to as
decentralized multiuser diversity.

Note that our idea of decentralized opportunistic schedul-
ing is related to but constitutes an interesting extension of
centralized opportunistic scheduling [8]. One may expect that
this heuristic algorithm is optimal; however, we will prove in
the next subsection that it is suboptimal.

B. Throughput-Optimality of Binary Scheduling

In this section we prove that a suitable binary scheduling is
throughput-optimal. Since P =

∫∞
0 s(γ)dF (γ) is each user’s

average transmission probability, we can rewrite η in (7) as

η = T · nP (1 − P )n−1 · 1
P

∫ ∞

0

s(γ)R(γ)dF (γ)

= T · nP (1 − P )n−1 · EG(·){R(γ)},
(13)

where G(γ) = (1/P )
∫ γ
0 s(γ)dF (γ) is a distribution function.

To find the optimal transmission control function that max-
imizes η, we first fix P and seek the optimal choice for s(·)
under the constraint P =

∫∞
0
s(γ)dF (γ), which amounts

to finding s(·) that maximizes EG(·){R(γ)} under the same
constraint. Since s(γ) ∈ [0, 1] for γ ∈ R

+, we have

Gc(γ) =
1
P

∫ ∞

γ

s(γ)dF (γ)

≤ 1
P

∫ ∞

γ

dF (γ)

= P−1F c(γ).

(14)

On the other hand, Gc(γ) cannot exceed 1, which implies that

Gc(γ) ≤ min{P−1F c(γ), 1}. (15)

Now consider the following binary scheduling function
(introduced by [1]):

sB(γ) =

{
1, γ ≥ γB

0, γ < γB
, (16)

where γB is the threshold determined by P =
∫∞
γB
dF (γ) =

F c(γB). The corresponding GcB(γ) is given by

GcB(γ) =

{
P−1F c(γ), γ ≥ γB

1, γ < γB

= min{P−1F c(γ), 1}.
(17)

Comparing (15) with (17), we deduce that Gc(γ) ≤ GcB(γ)
for ∀γ ∈ R

+; therefore, from Definition 2, we have G ≤st
GB . In addition, it follows from Lemma 2 that EG(·){R(γ)} ≤
EGB(·){R(γ)}, since R(γ) is an increasing function. So far,
we have proved that for a fixed P , sB(γ) maximizes η, and
the maximum equals

ηbinary = T · n[1 −
∫ ∞

γB

dF (γ)]n−1 ·
∫ ∞

γB

R(γ)dF (γ).

(18)
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To find the throughput-maximizing γB , we need to solve the
equation ∂ηbinary/∂γB = 0, yielding

(n− 1)
∫ ∞

γB

R(γ)dF (γ) = F (γB)R(γB). (19)

However, (19) may have no solution. Assume that both F (γ)
and R(γ) are continuous functions with

∫∞
0 R(γ)dF (γ) <∞

and define hmin := infγB∈[0,∞) h(γB), where

h(γB) :=
F (γB)R(γB)∫∞
γB
R(γ)dF (γ)

. (20)

It is apparent that h(γB) is a continuous and increasing
function over [hmin,∞). If n−1 ≥ hmin, the optimal threshold
can be obtained from (19), even though solving for γB may
be tedious; if n−1 ≥ hmin, it is not clear how to compute the
optimal threshold. Note that if R(0) = 0 as in most reasonable
models, then hmin = 0 and the condition n− 1 ≥ hmin will
always be satisfied. In practice, a suboptimal choice is to select
γB to satisfy PB = 1/n, which is asymptotically optimal for
the power control model considered in [1].

For notational brevity, we keep using γB to denote this
optimal threshold, and summarize our optimality claim in the
following theorem.

Theorem 2: If F (γ) is continuous and strictly increasing over
[0,∞], and R(γ) is continuous and increasing over [0,∞] with∫∞
0 R(γ)dF (γ) < ∞ and n − 1 ≥ hmin, then the scheme

maximizing throughput is the binary scheduling in (16) with
the optimal threshold γB chosen to satisfy (19).

Noting that
∫∞
γB
R(γ)dF (γ) ≥ R(γB)[1−F (γB)], we have

F (γB)R(γB) ≥ (n− 1)R(γB)[1 − F (γB)], which leads to:
Corollary 1: Under the same conditions as in Theorem 2, it
holds that PB :=

∫∞
γB
dF (γ) ≤ 1/n.

Although it has been shown in [1] that the binary scheduling
in (16) can exploit multiuser diversity and the average trans-
mission probability satisfies PB ≤ 1/n for the power control
model, we prove here that these claims are true for the more
general models mentioned in Section II, where F (γ) and R(γ)
do not have to take the specific forms in [1]. Compared with
the heuristic algorithm discussed in the previous subsection,
(16) requires a user node to stop competing for the channel
when its link condition is below a critical value γB , but allows
it to transmit deterministically when the channel condition
exceeds that threshold.

Also note that Theorem 2 does not apply to the classic
slotted Aloha over AWGN channels, where the optimal trans-
mission probability is always 1/n for an n-user system. The
reason is that we assume the channel CDF F (·) is continu-
ously increasing in Theorem 2, while an AWGN channel has
constant gain and thus adheres to a discrete distribution. We
will elaborate further on this issue in Corollary 3 of Section
V-B.

Finally, we consider a specific rate control function
R0(γ) = 1 for γ ≥ γ0 and R0(γ) = 0 for γ < γ0, which
is the SNR threshold model in [10, eq. (1)]. We observe that
if γB ≤ γ0, (18) can always be maximized by setting γB = γ0;
therefore, we deduce that γB ≥ γ0. Under γB ≥ γ0, (19) can

be rewritten as

ηbinary = T · n[1 −
∫ ∞

γB

dF (γ)]n−1 ·
∫ ∞

γB

dF (γ). (21)

Based on (21), we can readily deduce the following optimal
solution:
Corollary 2: For the SNR threshold model, γB = γ0 if
F c(γ0) ≤ 1/n, and γB = F−1(1 − 1/n) if F c(γ0) > 1/n.

Another optimal binary solution is given by [10, eq. (12)]:
s∗(γ) = 0 for γ < γ0, and s∗(γ) = min((nF c(γ0))−1, 1) for
γ ≥ γ0. It is not difficult to show that this scheduler attains
the same throughput as the binary one provided by Corollary
2.

C. Heterogeneous Systems

In the previous section, we dealt with homogeneous users.
In practice however, users may have non-identical arrival
rates and channel statistics. At first sight, it seems diffi-
cult to generalize the homogeneous system analysis to a
heterogeneous setting, since heterogeneous users have no
prior knowledge of others users’ channel statistics. Another
challenge is maintaining fairness among users with different
channel statistics. As shown in a centralized system, simply
maximizing the total throughput would incur long delays for
users with poor channel statistics while overly favoring users
with better channel statistics.

Let us look closer at how fair scheduling is pursued in
a centralized system. An attractive approach, known as PF
scheduling [8], can harness channel variations to improve
throughput while at the same time maintaining fairness among
users. The basic idea is to schedule the user whose correspond-
ing instantaneous channel quality is the highest relative to
the average channel condition over a given time scale. Under
certain statistical assumptions, it has been established that with
infinitely large averaging time PF maximizes the sum of the
logs of the average throughputs of the various users [8, app.
A], while allocating each user roughly the same number of
time slots.

A revelation from the PF scheme in centralized operation
is that maximizing the sum of the logs (or equivalently, the
product) of throughputs results in multiuser diversity and in-
directly effects fairness among users. Notice that maximizing
the product-throughput in the homogeneous case reduces to
maximizing the sum-throughput. The reason behind maximiz-
ing the product in the heterogeneous case is that it prevents
users from having low throughputs; and thereby it mitigates
unfairness which could emerge when maximizing the sum-
throughput (recall that maximizing the sum-throughput is not
fair for users with “poor quality” channels). Motivated by
these considerations, we first seek a decentralized scheduler
that maximizes the product of users’ throughputs, and check
fairness issues afterwards. It follows from (4) that

n∏
k=1

μk =
n∏
k=1

n∏
j=1,j �=k

[1 −
∫ ∞

0

sj(γ)dFj(γ)]

·
∫ ∞

0

sk(γ)Rk(γ)TdFk(γ).

(22)
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Through combining identical terms, we have

n∏
k=1

μk = T n ·
n∏
k=1

[1 −
∫ ∞

0

sk(γ)dFk(γ)]n−1

·
∫ ∞

0

sk(γ)Rk(γ)dFk(γ).

(23)

It is clear that in order to maximize
∏n
k=1 μk, we

only need to maximize independently each individual factor,
[1−∫∞

0 sk(γ)dFk(γ)]n−1
∫∞
0 sk(γ)Rk(γ)dFk(γ), in the right

hand side of (23). This maximization can be carried out as in
Section IV-B, and its solution suggests selecting the following
transmission probabilities:

sB,k(γ) =

{
1, γ ≥ γB,k

0, γ < γB,k
, k = 1, . . . , n, (24)

where the thresholds γB,k are chosen to maximize [1 −∫∞
γB,k

dFk(γ)]n−1 · ∫∞
γB,k

Rk(γ)dFk(γ). For large n, they are
determined by

(n− 1)
∫ ∞

γB,k

Rk(γ)dFk(γ) = Fk(γB,k)Rk(γB,k), (25)

for k = 1, . . . , n. With regards to the optimality of (23), we
summarize our main result in the following theorem:

Theorem 3: The scheduling algorithm described by (24) max-
imizes

∑n
k=1 log(μk).

An interesting observation is that with this algorithm each
user node does not need to worry if the system is hetero-
geneous or not, and just acts as if it was in a homogeneous
system. This is intuitively justifiable since with each user node
having no a priori knowledge about others, the best thing is
to assume that all have identical channel statistics.

Let us now turn our attention to fairness issues. Given that
user k has a packet ready for transmission, the probability of
a successful transmission is

Psucc,k = [1 − Fk(γB,k)] ·
n∏

j=1,j �=k
Fj(γB,j). (26)

Therefore, each user will get some chance of successful
transmission. If we choose an suboptimal γB,k such that
PB,k := 1 − Fk(γB,k) = 1/n, then every user gets the same
chance of successful transmission, that is, with probability
PB,k = (1 − 1/n)n−1/n. The algorithm implied by (24)
not only maximizes the sum of the logs of the average
user throughputs, but also ensures fairness − the two main
advantages of the centralized PF scheduling. Further, (24) with
PB,k = 1/n achieves the following sum-throughput for large
n

η′binary =
n∑
k=1

T · 1
n

(1 − 1
n

)n−1 · EGB,k(·){R(γ)}

= T · (1 − 1
n

)n−1 · E 1
n

�n
k=1GB,k(·){R(γ)},

(27)

where (1/n)
∑n
k=1GB,k is a new CDF with GB,k(γ) :=

n
∫ γ
0 sB,k(γ)dFk(γ).

For comparison purposes, it is of interest to analyze the
throughput of the heuristic algorithm presented in Section IV-
A in the heterogeneous setting. It follows easily that

μk,heuris = T · (1 − 1
n

)n−1 ·
∫ ∞

0

{Fk(γ)}n−1R(γ)dFk(γ)

= T · (1 − 1
n

)n−1 · 1
n

E{Fk(·)}n{R(γ)},

η′heur =
n∑
k=1

μk,heuris = T · (1 − 1
n

)n−1

· E 1
n

�n
k=1{Fk(·)}n{R(γ)}.

(28)

V. FSMC CHANNELS

Until now, we have dealt with channels having analog
amplitudes which require knowledge of the channel CDF.
However, estimating the latter in practice is challenging.
Moreover, it is hard to continuously adapt the transmission rate
to each channel realization in practice. Therefore, the results
obtained so far offer analytical insights but fall short when it
comes to practical implementation.

Typically, a fading channel with analog amplitudes can be
approximated by a quantized one that can be modeled as a
finite-state Markov chain [21]. This requires quantizing the
received instantaneous SNR into a finite number of levels, with
each level representing a specific state of the channel. And
for each channel state, there is a corresponding steady-state
probability of being in this state, and a corresponding fixed
feasible transmission rate supported by this state. For the block
fading model considered in this paper, the channel remains in
the same state during a slot and the state transitions from
slot to slot are determined by the probability transition matrix
of the corresponding Markov chain. To maximize throughput,
it suffices to consider the case where channels are time-
independent (see also Remarks 1, 2 and 3 of Theorem 1).

Similar to channels with analog amplitudes, our results for
homogeneous users with FSMC channels can be extended to
the heterogeneous case too. For this reason, we will focus
only on homogeneous users supposing that each user’s channel
states take values from a common finite state space {1, . . . , J}.
Let pj denote the stationary probability that the channel is in
state j. Note that it is much easier to obtain {pj}Jj=1 than the
CDF in practice. For each channel state j, the feasible rate
is Rj . Further, we assume that the feasible rates are strictly
ordered: 0 < R1 < R2 < . . . < RJ . Under these assumptions,
arguing as in Section IV we can prove that the throughput is
given by

η = T · n[1 −
J∑
j=1

pjsj ]n−1 · [
J∑
j=1

pjRjsj ], (29)

where 0 ≤ sj ≤ 1 is the transmission probability when the
channel is in state j = 1, . . . , J . Notice that the summation
here replaces the integral in (7). Now, our goal is to find
transmission probabilities {sj}Jj=1 that maximize η in (29),
either numerically or analytically. Since η is generally not
concave over its arguments sj , j = 1, . . . , J , maximizing the
throughput is not a convex optimization problem; therefore,



YU and GIANNAKIS: OPPORTUNISTIC MEDIUM ACCESS FOR WIRELESS NETWORKING ADAPTED TO DECENTRALIZED CSI 1451

existing efficient algorithms for convex optimization cannot
be used directly [23], [27].

A simple observation is that the term Pavg :=
∑J
j=1 pjsj

in (29) is actually the average transmission probability. Recall
that with analog-amplitude channels the average transmission
probability approaches 1/n when the number of users grows
large. This suggests a suboptimal algorithm for FSMC chan-
nels that maximizes T ·n(1− 1

n )n−1 · (∑J
j=1 pjRjsj) subject

to the constraint
∑J

j=1 pjsj = 1/n. It turns out that this
is a linear programming (LP) problem, which can be solved
efficiently by existing software [24].

A better formulation than LP is possible if we take a (− log)
transform of η. This results in the following optimization setup
3 (after omitting the constant term − log(nT ))

minimize − log[(1 −
J∑
j=1

pjsj)n−1] − log(
J∑
j=1

pjRjsj)

subject to 0 ≤ sj ≤ 1, j = 1, . . . , J,
(30)

which is a convex program since the objective in − log form
is now a convex function of {sj}Jj=1.

A. Structure of the Optimal Solution

To identify the structure of the optimal solution, let us
consider the Lagrangian of (30)

L(s, λ, μ) = − log(1 −
J∑
j=1

pjsj)n−1 − log(
J∑
j=1

pjRjsj)

+
J∑
j=1

λj(sj − 1) +
J∑
j=1

μj(−sj),

(31)

where {λj}Jj=1 and {μj}Jj=1 are the Lagrange multipliers. Let
the optimal primal solution be {s∗j}Jj=1 , and the optimal dual
solution be ({λ∗j}Jj=1, {μ∗

j}Jj=1). Since (30) is a convex opti-
mization program, the Karush-Kuhn-Tucker (KKT) conditions
which are both sufficient and necessary for optimality [27], are
given by:

λ∗j ≥ 0, (32)

μ∗
j ≥ 0, (33)

λ∗j (s
∗
j − 1) = 0, (34)

μ∗
j (−s∗j ) = 0, (35)

(n− 1)pj
1 −∑J

j=1 pjs
∗
j

− pjRj∑J
j=1 pjRjs

∗
j

+ λ∗j − μ∗
j = 0, (36)

for all j = 1, . . . , J . From (32)-(36), we will be able to iden-
tify the structure of the optimal scheme. We will distinguish
among three cases depending on s∗j :

3Upon constructing a diagonal n × n matrix A = diag{1 −�J
j=1 pjsj , . . . , 1 − �J

j=1 pjsj ,
�J

j=1 pjRjsj}, the objective func-
tion becomes log det A−1, which is exactly a determinant maximization
(MAXDET) problem [25], and can be solved efficiently; e.g., using a software
tool called sdpsol [26].

Case 1 (s∗j = 0): Condition (34) requires λ∗j = 0. Using the
fact that μ∗

j ≥ 0 and λ∗j = 0, it follows from (36) that

(n− 1)pj
1 −∑J

j=1 pjs
∗
j

≥ pjRj∑J
j=1 pjRjs

∗
j

. (37)

Since pj > 0, after straightforward manipulations we obtain

Rj ≤
(n− 1)

∑J
j=1 pjRjs

∗
j

1 −∑J
j=1 pjs

∗
j

. (38)

Case 2 (s∗j = 1): Condition (35) implies that μ∗
j = 0. Using

the fact that λ∗j ≥ 0 and μ∗
j = 0, similar to Case 1 it follows

from (36) that

Rj ≥
(n− 1)

∑J
j=1 pjRjs

∗
j

1 −∑J
j=1 pjs

∗
j

. (39)

Case 3 (0 < s∗j < 1): From conditions (34) and (35), we ob-
tain that λ∗j = μ∗

j = 0, which leads to

Rj =
(n− 1)

∑J
j=1 pjRjs

∗
j

1 −∑J
j=1 pjs

∗
j

. (40)

We can draw two conclusions here. One is that the right
hand side of (38), (39) and (40) are identical and independent
of the index j. The other is that there exists at least one j for
which either (39) or (40) holds, because there exists at least
one j such that s∗j > 0. Therefore, there exists a k so that

k : = min{j : Rj ≥
(n− 1)

∑J
j=1 pjRjs

∗
j

1 −∑J
j=1 pjs

∗
j

, 1 ≤ j ≤ J}

= min{j : s∗j > 0, 1 ≤ j ≤ J}.
(41)

Since the feasible rates are strictly ordered as 0 < R1 <
R2 < . . . < RJ , the optimal solution should have a binary-
like structure as shown in the proposition next:
Proposition 1: The optimal solution to (29) has a binary-like
structure as follows:

s∗j =
{

0, if j < k,
1, if j > k.

(42)

B. Analytical Solution

Once the structure of the optimal solution is known, we
can find an analytical form for it. To verify this, let us first
compute s∗k. There are two cases: If 0 < s∗k < 1, it follows
from (40) and Proposition 1 that

Rk =
(n− 1)(pkRks∗k +

∑J
j=k+1 pjRj)

1 − pks∗k −
∑J

j=k+1 pj
, (43)

which reduces to

s∗k = tk :=
(
∑k

j=1 pj)Rk − (n− 1)
∑J
j=k+1 pjRj

npkRk
. (44)

On the other hand, if s∗k = 1, it follows from (39) and
Proposition 1 that

Rk ≥ (n− 1)(pkRks∗k +
∑J

j=k+1 pjRj)

1 − pks∗k −
∑J

j=k+1 pj
, (45)



1452 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 6, JUNE 2006

0 10 20 30 40 50 60 70 80 90 100
100

200

300

400

500

600

700

800

900

1000

1100

number of users

th
ro

ug
hp

ut
 (b

ps
)

η
binary

η
heuristic

η
awgn

η
adapt

η
conv

Fig. 1. Homogeneous system: Throughput vs. Number of users, SNR=0dB,
Rayleigh fading channel

which leads to s∗k ≤ tk. Combing the two, we have

s∗k = min{tk, 1}. (46)

Note that s∗k is uniquely determined by tk. We can gener-
alize this result to arbitrary j, by defining tj similar to tk:

tj :=
(
∑j

i=1 pi)Rj − (n− 1)
∑J

i=j+1 piRi

npjRj
. (47)

We maintain that tj uniquely determines s∗j . To prove that, we
first look at the properties of tj .
Proposition 2: It holds that tj < 0 for 1 ≤ j < k, and tj > 1
for k < j ≤ J .

Proof: See Appendix I.
Combining (46) and Proposition 2, we obtain the following

theorem:

Theorem 4: The optimal solution to (30) is given by

s∗j =

⎧⎨
⎩

0, if tj ≤ 0,
tj , if 0 < tj < 1,
1, if tj ≥ 1.

(48)

For the special case when there is only one channel state
J = 1, we have tj = 1/n. From Theorem 4 we can easily
prove the following result, which is consistent with that of the
conventional slotted Aloha over AWGN channels.
Corollary 3: If J = 1, it holds that s∗1 = 1/n, and the MST
is η = (1 − 1/n)n−1 · R1.

Except for tJ , it follows from (47) that the numerator in
tj decreases as n increases. Therefore, for large n, all tj ≤ 0
except for tJ = (npJ)−1, which indicates that a user node
will have a positive transmission probability min(1, (npJ)−1)
only when its channel is in the “best condition”, namely, in
state J . It is now easy to prove the following result:
Corollary 4: If n ≥ 1+(1−pJ)RJ−1/(pJRJ), we have s∗J =
min(1, (npJ)−1), while s∗j = 0 for 1 ≤ j ≤ J − 1.

VI. NUMERICAL RESULTS

In this section we will test the performance of our schedul-
ing schemes through numerical examples.
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Fig. 2. Homogeneous system: Throughput vs. Number of users, SNR=16dB,
Rayleigh fading channel

0 10 20 30 40 50 60
1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

number of users

th
ro

ug
hp

ut
 (b

ps
)

η
binary

η
heuristic

η
awgn

η
adapt

η
conv

Fig. 3. Heterogeneous system: Throughput vs. Number of users, SNR range:
0 ∼ 30dB, Rayleigh fading channel

Analog-amplitude Channels: Throughout, we assume that
users have independent Rayleigh fading channels. We take the
slot duration T = 1, bandwidth W = 1KHz and Rk(γ) =
W log(1 + P0γ

N0W
). Figs. 1 and 2 compare throughput versus

the number of homogeneous users for SNR values 0 dB and
16 dB, respectively. We see that ηbinary is always higher than
ηheur , and both increase as the number of users increases when
n ≥ 5. The difference between the two becomes smaller as the
number of users grows. On the other hand, ηawgn, ηadapt and
ηconv (the subscripts refer to the AWGN channel, Aloha with
adaptive rate transmission but without probability control and
the conventional Aloha in fading channels, respectively) all
decrease as the number of users increases. Notice that ηadapt
is higher than ηconv, since it takes advantage of adaptive rate
transmission; however, it is still smaller than ηawgn, which is
a result of the fact that Shannon capacity of a block fading
channel is always smaller than that of an AWGN channel for
the same SNR. By taking advantage of decentralized multiuser
diversity, both ηbinary and ηheur outperform ηawgn.

For the heterogeneous system, we choose six SNR values
evenly spaced over the SNR range 0dB − 30dB. For each
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Fig. 4. Homogeneous system: Throughput vs. Number of users, FSMC
channel (see Table I)

SNR value, we vary the number of users from n = 1 to
n = 10 simultaneously, so that the total number of users
varies from 6 to 60. Fig. 3 compares throughput versus the
number of heterogeneous users for several scheduling policies.
Here we observe a behavior similar to the homogeneous case.
Furthermore, Fig. 3 illustrates that η′binary and η′heur take
advantage of decentralized multiuser diversity, while η′adapt
and η′conv do not.
FSMC Channels: Table I gives the channel parameters. With
T = 1, we vary the number of users from 1 to 50 and run
simulations using the suboptimal LP program, the optimal
MAXDET program, and compare the results with the optimal
analytical solution in (48). Fig. 4 shows throughput versus
the number of homogeneous users. Observe that the optimal
MAXDET program and the analytical solution in (48) yield
identical results as expected; but the computational complexity
of the latter is much lower than that of the former. Fig. 4
further illustrates that the suboptimal LP program is optimal
when the number of users exceeds 25. We also notice that
the throughput curves become flat when n is large, which is
reasonable since an FSMC channel can only provide finite
amount of multiuser diversity. This behavior is quite different
from that of, e.g., a Rayleigh channel, where the throughput
increases without bound as the number of users increases.
Table II shows the results obtained by (48) with n = 1 − 30.
We observe that as the number of users grows, the number of
states having positive transmission probabilities drops quickly
to 1 starting from n = 19.

VII. CONCLUSIONS

In this paper, we considered homogeneous as well as hetero-
geneous channel-aware slotted Aloha systems with decentral-
ized CSI for channels with analog and quantized amplitudes.
For channels with analog amplitudes, we proved that binary
scheduling maximizes sum-throughput for homogeneous sys-
tems, and maximizes the sum of the logs of the average
throughputs for heterogeneous systems. For channels with
quantized amplitudes, which are widely accepted in practice,
we have provided an optimal convex MAXDET formulation

as well as a suboptimal LP formulation for the corresponding
throughput-maximization problem, and developed a simple
analytical solution exhibiting a binary-like structure similar
to that we found optimal for analog-amplitude channels. In
our future work, we will investigate delay aspects. Although
the upper bounds on average queue sizes we derived here can
be used to calculate upper bounds on the average delays, it
will be nice to develop tighter delay bounds.4

APPENDIX I
PROOF OF PROPOSITION 2

Proof: We will show first that for j �= k, it holds that tj /∈
(0, 1). The proof proceeds via a contradiction argument based
on the fact that the KKT conditions for a convex program
are sufficient and necessary, and a feasible convex program
has one and only one optimal solution. If there exists one
tj ∈ (0, 1), j �= k, then we can construct a new solution as
follows

s′i =

⎧⎨
⎩

0, i < j,
tj , i = j,
1, i > j.

(49)

It is not difficult to check that this solution satisfies conditions
(38), (39) and (40); therefore, we can find suitable λ′i, μ

′
i, i =

1, . . . , J such that the KKT conditions (32)−(36) are all
satisfied, resulting in another optimal solution. This contradicts
that a feasible convex program has one and only one optimal
solution. Therefore, it must be true that tj /∈ (0, 1) for j �= k.

Next, notice that the variable xj := (
∑j

i=1 pi)Rj − (n −
1)
∑J

i=j+1 piRi is increasing as j increases. Since xk = tk ·
npjRj > 0, we have xj ≥ xk > 0 for j > k, leading to
tj > 1, since tj /∈ (0, 1).

Finally, we assert that tj ≤ 0 for 1 ≤ j < k. If k = 1, then
the assertion is trivial. Suppose that k > 1. Since s∗k−1 = 0,
it follows from (38) that

Rk−1 ≤ (n− 1)(pkRks∗k +
∑J
i=k+1 piRi)

1 − pks∗k −
∑J
i=k+1 pi

, (50)

which yields

(
k∑
i=1

pi)Rk−1 ≤ Rk−1pks
∗
k + (n− 1)(pkRks∗k +

J∑
i=k+1

piRi)

≤ Rk−1pk + (n− 1)
J∑
i=k

piRi.

(51)

Therefore, we have xk−1 = (
∑k−1

i=1 pi)Rk−1 − (n −
1)
∑J

i=k piRi ≤ 0. Since xj is increasing with j, it is also
true that xj ≤ 0 for j ≤ k − 1, which implies that tj ≤ 0
for j ≤ k − 1. Because tj /∈ (0, 1), we have that tj ≤ 0 for
1 ≤ j < k, which completes the proof.

4The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.
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TABLE I

FSMC CHANNEL PARAMETERS

Channel State j 1 2 3 4 5 6 7 8 9 10

Rate(kbps) R 76.8 102.6 153.6 204.8 307.2 614.4 921.6 1228.8 1843.2 2457.6

Probability p 0.01 0.04 0.08 0.15 0.24 0.18 0.09 0.12 0.05 0.04

TABLE II

OPTIMAL SOLUTIONS FOR THE FSMC CHANNEL OF TABLE I

n η∗ P ∗
avg 1/n s∗1 s∗2 s∗3 s∗4 s∗5 s∗6 s∗7 s∗8 s∗9 s∗10

1 653.06 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 589.28 0.3075 0.5000 0.0417 1.0000 1.0000 1.0000 1.0000
3 633.85 0.2289 0.3333 0.2099 1.0000 1.0000 1.0000
4 666.90 0.2012 0.2500 0.9271 1.0000 1.0000
5 689.59 0.1480 0.2000 0.4833 1.0000 1.0000
6 720.56 0.1125 0.1667 0.1875 1.0000 1.0000
7 757.11 0.0900 0.1429 1.0000 1.0000
8 787.39 0.0900 0.1250 1.0000 1.0000
9 806.10 0.0900 0.1111 1.0000 1.0000

10 815.23 0.0880 0.1000 0.9600 1.0000
11 822.09 0.0788 0.0909 0.7758 1.0000
12 829.71 0.0711 0.0833 0.6222 1.0000
13 837.93 0.0646 0.0769 0.4923 1.0000
14 846.65 0.0590 0.0714 0.3810 1.0000
15 855.80 0.0542 0.0667 0.2844 1.0000
16 865.32 0.0500 0.0625 0.2000 1.0000
17 875.18 0.0463 0.0588 0.1255 1.0000
18 885.35 0.0430 0.0556 0.0593 1.0000
19 895.79 0.0400 0.0526 1.0000
20 905.22 0.0400 0.0500 1.0000
21 912.46 0.0400 0.0476 1.0000
22 917.68 0.0400 0.0455 1.0000
23 921.01 0.0400 0.0435 1.0000
24 922.62 0.0400 0.0417 1.0000
25 922.62 0.0400 0.0400 1.0000
26 921.89 0.0385 0.0385 0.9615
27 921.21 0.0370 0.0370 0.9259
28 920.59 0.0357 0.0357 0.8929
29 920.01 0.0345 0.0345 0.8621
30 919.47 0.0333 0.0333 0.8333
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