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Rate-Maximizing Power Allocation in OFDM Based
on Partial Channel Knowledge
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Abstract—Power loading algorithms improve the data rates
of orthogonal frequency division multiplexing (OFDM) systems.
However, they require the transmitter to have perfect channel
state information, which is impossible in most wireless systems.
We investigate the effects of imperfect (and thus partial) channel
feedback on the throughput of OFDM systems. Two channel
uncertainty models are studied: 1) the ergodic model, where
average rate is the figure of merit and 2) the quasi-static model,
where outage rate is relevant. Rate-power allocation algorithms
are developed. The throughput achieved by these algorithms and
the effects of channel multipath are investigated analytically and
with simulations.

Index Terms—Adaptive modulation, average rate, orthogonal
frequency division multiplexing (OFDM), outage rate, partial
channel state information (CSI).

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
provides a low-complexity means of combating inter-

symbol interference (ISI) that arises due to the delay spread of
communication channels. It has found applications in many dig-
ital communication systems, such as digital audio broadcasting
(DAB), digital video broadcasting (DVB), and wireless local
area networking (WLAN). In multipath channels, different
subcarriers of an OFDM transmission are generally received
with different channel gains. To maximize the information rate,
power- and bit-loading algorithms have been derived to adap-
tively adjust power and data rates across subcarriers according
to the channel’s condition [1]. These algorithms usually assume
perfect knowledge of the channel state information at the trans-
mitter (CSIT). While this assumption is reasonable in wireline
systems, where the channel remains typically invariant, wireless
channels are randomly varying over time, making it impossible
for the transmitter to acquire perfect CSIT.
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The problem of optimizing transmission strategies with
imperfect channel feedback has been addressed in a number of
recent publications in the context of single carrier multiple-an-
tenna transmissions over multi-input multi-output (MIMO)
channels [2]–[5]. Simulations indicate that substantial gain
is possible with partial channel knowledge. The impact of
imperfect channel information on multicarrier systems like
OFDM has also been studied recently. In [6], Leke and Cioffi
investigated the effects of the channel estimation error at the
receiver on the uncoded bit-error rate (BER) performance of
OFDM systems. In [7], Monte-Carlo simulations were con-
ducted to study how imperfect channel feedback affects the
rates achieved by the water-filling algorithm, and the successive
bit allocation algorithm [8]. Bit- and power-loading algorithms
were pursued in [9]–[11], where partial CSIT was utilized to
adapt the constellation size and/or the power, adhering to a
certain target BER per subcarrier.

In this paper, we investigate the fundamental limit imposed
on the information rate of an OFDM system with partial CSIT.
The system model and assumptions are presented in Section II.
In Section III, we study the case when the channel uncertainty
can be modeled as an ergodic process. A power loading algo-
rithm maximizing the average mutual information is derived,
and simulations comparing it to uniform power loading and
water-filling approaches are presented. For the channel feed-
back received by the transmitter to be useful, the channel should
not change much over the duration of the feedback delay, which
motivates well a block-fading channel model [12]. We adopt
such a channel model in Section IV, and study the impact of im-
perfect CSIT on the outage rate of OFDM systems. We show that
the channel information error may severely reduce the outage
rate of an OFDM system. Optimal and suboptimal schemes for
maximizing the outage rate are obtained. The effects of channel
multipath are discussed. Finally, we present our conclusions in
Section V.

Notational conventions are as follows: upper and lower case
bold symbols are used to denote matrices and vectors, respec-
tively; denotes an identity matrix; and and
denote matrix transpose and Hermitian transpose, respectively.

II. SYSTEM MODEL

Consider OFDM transmissions with block length , through
a frequency-selective multipath fading channel that in dis-
crete-time baseband equivalent form is described by the taps

. After removing the cyclic prefix and performing fast
Fourier transform (FFT) at the receiver, a received OFDM
block (symbol) can be written as

(1)
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where vectors and denote received and transmitted
blocks, respectively; the noise block is assumed to be a cir-
cularly symmetric complex Gaussian random vector with dis-
tribution ; and is a diagonal matrix
with diagonal elements1 , where

A. Partial CSIT

We consider operations under partial (imperfect) CSIT, but
with full (perfect) CSI at the receiver. The transmitter acquires
channel knowledge either via a feedback channel, or, by channel
estimation in a time division duplex (TDD) operation. The par-
tial CSIT includes the channel feedback that is treated as
a deterministic2 mean (or “nominal” CSIT) plus a perturbation
(error) term with known probability density function (pdf)
to account for various sources of uncertainty, i.e.,

(2)

where . The CSIT error may arise due
to many different reasons, e.g., channel estimation error, and/or
feedback delay combined with Doppler spread and quantization
error [5]. While this model looks similar to the mean feedback
model adopted in many recent publications, a notable difference
is that, due to the structure of OFDM systems, the error covari-
ance matrix in general can not be assumed to be a scalar
multiple of the identity matrix. Later, we will see that this differ-
ence has important implications in OFDM systems’ resilience to
CSIT errors. However, for now, we compute in closed form the
error covariance matrix for an example which we will use
in Sections II and III.

We assume that the channel stays invariant over the duration
of an OFDM block. During the th block, it can be modeled
as an th-order finite impulse response (FIR) filter with coeffi-
cients ; while from block to block,

is slowly time-varying according to Jakes’ model [13]
, where

is the block duration, and is the Doppler spread. The am-
bient channel noise is independent identically distributed (i.i.d.)
Gaussian with variance . CSIT is updated every frame com-
prising OFDM blocks. For channel estimation purposes,
a block of training symbols is transmitted at the beginning of
every frame. Let us consider the minimum-mean-square-error
(MMSE) predictor of , , based on the
training blocks ,
where

(3)

with the diagonal matrix containing
the training symbols, and denoting the truncated unit-norm
FFT matrix of size , with entries

(4)

1Subscript f will denote frequency-domain quantities.
2Subscript 0 will be used throughout this paper to denote the realization of

the random quantity.

We will assume constant modulus training symbols, i.e.,
. Let denote the matrix

whose th entry is , and .
Computing the MMSE of estimating and ap-
plying the Fourier transform, we obtain the covariance matrix
of the error as follows (the details have been
omitted to save space):

(5)

The value of depends on the system parameters

(6)

where . In practical
OFDM systems, we always select . From (5), we can
verify that the channel estimation errors of different subcarriers
are correlated.

Remark: While we have assumed a uniform power delay
profile in the previous derivation, almost all the analytical re-
sults in the rest of this paper can be applied to nonuniform power
delay profiles such as exponential power delay profile.

B. Capacity of OFDM Systems

When the transmitter has deterministically perfect knowledge
of the channel, i.e., , it is well known that the max-
imum mutual information between the input and the output of
an OFDM system is attained when

, and is given by [14]

(7)

which is maximized when is diagonal, according to
Hadamard’s inequality [15].

With channel uncertainty at the transmitter, is random, and
our objective is to find the covariance matrix which maxi-
mizes the expected mutual information

(8)

or, maximizes the outage rate for a given outage probability

(9)

subject to a power constraint Trace . For each
of these two problems, we can always find a solution
which is diagonal: Suppose the matrix which maximizes
the outage rate is not diagonal. Construct a diagonal matrix

whose diagonal elements are the same as those of
. From Hadamard’s inequality, we can see that for any

realization of ,

. So also maximizes
the outage rate.3 Similar arguments hold for the maximiza-
tion of the expected mutual information. So, we can assume

3For random variablesX and Y , it holds thatX � Y a:s:) P (X < R) �
P (Y < R)



YAO AND GIANNAKIS: RATE-MAXIMIZING POWER ALLOCATION IN OFDM BASED ON PARTIAL CHANNEL KNOWLEDGE 1075

without loss of generality that is diagonal. Supposing that
, we have

(10)

Based on (10), we will next determine the loadings to
maximize the average and outage mutual information, starting
with the former.

Remark: While we will focus on OFDM in this paper, many
results herein can also be applied to single-carrier systems with
frequency-selective fading by using the framework provided by
Hirt and Massey [16].

III. MAXIMIZING AVERAGE RATE

In existing works relying on partial CSIT, the expected value
of the mutual information in (10) has been adopted as the per-
formance criterion [4]. One reason for the popularity of the re-
sulting average capacity is its relative simplicity (compared with
the outage capacity); another reason being that when the channel
information error is an ergodic process (more precisely, if
and are jointly asymptotically stationary and ergodic), the
maximum expected mutual information is the Shannon capacity
[17].

With perfect CSIT, the optimal power allocation has been
shown to be water-filling; see e.g., [18]

(11)

where and is determined by the power
constraint .

When only partial CSIT is available, we want to find the set
of that maximizes the expected mutual information

(12)

subject to the constraint . Using the stan-
dard Lagrange multiplier method, we can obtain that the set of

maximizing (12) should satisfy

(13)

where is determined by the power constraint, and in order to
arrive at (13), we have used the fact that differentiation with
respect to and expectation in the right-hand side (r.h.s.) of
(12) are interchangeable since
is continuous both in and in . There is no closed form
solution to this problem, but it can be easily solved numerically
if the pdf of is known; e.g., if in the partial CSIT model (2),

is complex normal, then is Ricean. Noticing that the
left-hand side of (13) decreases monotonically as increases,

while the total transmit power decreases monotoni-
cally as increases, we can find and satisfying (13)
by one-dimensional (1–D) search.

1) Given an estimate of , find
that satisfy (13).
2) If is larger (smaller) than

, increase (decrease) by a certain
amount.
3) Repeat steps 1 and 2 until the algo-
rithm converges.

Example 1: Consider , perceived

as Ricean at the transmitter, where is a channel with zeros
at 0.8, and . The number of subcarriers is
set to 16 in all our simulations. The transmitter has only knowl-
edge of the nominal channel , and the perturbation variance

. Note that we can assume without loss of generality that
the CSIT error distribution across different subcarriers is inde-
pendent because according to (12), the expected mutual infor-
mation depends only on the marginal distribution of the CSIT
error on each subcarrier. When the signal-to-noise ratio (SNR)
is dB, the optimal power allocation for different
values of is depicted in Fig. 1. We observe that when is
small, the optimal allocation is water-filling according to .
As grows larger, the optimal power allocation comes closer
to a uniform allocation over all subcarriers. The expected mu-
tual information attained by different power allocation strategies
is plotted in Fig. 2 for . For comparison, we also plot
the rate achieved by water-filling under perfect CSIT (according
to each realization of ). We observe that water-filling under
partial CSIT performs well only when the SNR is small, while
the converse is true for the uniform power allocation scheme.
The optimal power allocation found by solving (13) numeri-
cally achieves higher rate than both water-filling (according to
the nominal ), and uniform allocation across the SNR range,
and suffers only negligible SNR loss compared with the perfect
CSIT benchmark.

Example 2: Now, consider a channel with
taps. The filter coefficients are i.i.d. complex circularly
symmetric Gaussian random variables with zero mean and
variance . An estimate of the channel is sent
to the transmitter through a feedback channel. Unlike Ex-
ample 1, where the nominal channel is deterministic, here,
the nominal channel is a random variable depending on the
channel realization. The channel estimation/prediction error is

. The expected mutual informa-
tion of different power allocation methods is plotted in Fig. 3
for . Again, we use water-filling with perfect CSIT
for comparison. We infer that the water-filling (with imperfect
CSIT), and the optimal power allocation achieve almost iden-
tical information rates. Simulation results in [18] confirmed that
for an i.i.d. Rayleigh-flat-fading channel, channel information
at the transmitter brings only minimal gain in ergodic capacity.
In our case, the fading of different subcarriers is correlated, but
the gap between the optimal power allocation and the uniform
power allocation is also very small. This can be explained as
follows. Consider the ideal case where we have perfect CSIT,
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Fig. 1. Optimal power allocation under variable channel uncertainty at the transmitter (N = 16 and L = 5).

Fig. 2. Expected mutual information (N = 16, L = 5, and � = 0:1).

and suppose the channel taps experience independent
(not necessarily identical) Rayleigh fading. It follows that all
subcarriers experience identical (not necessarily independent)
Rayleigh fading, and the ergodic capacity can be written as

(14)

where is the set of power allocations satisfying
for any and is the set of power

allocations satisfying . If the

power allocation maximizes the r.h.s. of (14),

Fig. 3. Expected mutual information (N = 16, L = 1, and � = 0:001).

then is also optimal,
because

(15)

and

(16)
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Fig. 4. Expected mutual information (N = 16, L = 1, and � = 0:5).

So, we need only to consider power allocation schemes such that
only depends on for each . From (14), we have

(17)

where , and
the last equality comes from the symmetry between sub-
carriers. The r.h.s. of (17) is maximized by time-domain
water-filling, and as shown in [18], is only slightly larger than

, unless the SNR is very
low.

In Fig. 4, we plot the performance of different power allo-
cation schemes when the CSIT error is large . As
expected, the average capacity of the uniform power alloca-
tion is higher than that of water-filling according to the nominal
channel, and is almost identical to the optimal scheme. Surpris-
ingly, even with such a large CSIT error, the gap between the
water-filling (with imperfect CSIT), and the optimal scheme re-
mains small.

Remark: While in Example 1, the optimal power loading
brings substantial gain over both water-filling and uniform al-
location, in Example 2, the channel feedback to the transmitter
seems to have very little impact. An important question is when
to apply power loading, and when not to. It appears that utilizing
CSIT will pay off if the probability distributions of different sub-
carriers are sufficiently different from each other, as in Example
1. When the pdfs of different subcarriers are identical, as in Ex-
ample 2, the cost of the optimal power loading algorithm out-
weighs its gain.

IV. MAXIMIZING OUTAGE RATE

When the channel uncertainty can be described as an ergodic
process, the expected mutual information described in the pre-
vious section closely bounds the rate of an OFDM system. In
most wireless communication systems, however, the channel is
slowly varying over time, and the channel estimation/prediction

error in general can not be modeled as an ergodic process. This
is especially relevant for systems relying on partial CSIT, where
the transmitter can not obtain perfect channel estimates due to
the delay of the feedback channel. Block-fading additive white
Gaussian noise (BF-AWGN) channel models are, thus, more
pragmatic, and using outage rate (instead of average mutual in-
formation) as a figure of merit, is more appropriate [12].

The problem of selecting power loading coefficients to min-
imize the outage probability given a target data rate is studied
in [19], where perfect channel information is available to both
transmitter and receiver. Minimization of the outage probability
using dynamic programming is pursued in [20]. In this section,
we will develop loading algorithms for an OFDM system with
imperfect CSIT in order to maximize system throughput given a
target outage probability. Note that, unlike [12] and [19], where
outage is caused by channel-induced fading, here the outage is
caused by overly aggressive rate-power allocation due to CSIT
errors. We will study two approaches: 1) independent loading
for different subcarriers and 2) joint loading across all subcar-
riers.

A. Independent Loading

We will first focus on the data rate supportable by one sub-
channel, namely the one corresponding to subcarrier . Assume
that the power assigned to this subcarrier is . Given the imper-
fect CSIT , the mutual information

is a random variable. Since the
loading algorithm must assure that the rate on this subband sat-
isfies , we need to express
first the outage rate in terms of the partial CSIT . For no-
tational brevity, we will drop the subcarrier index when this
will not cause confusion.

Since , follows a noncentral chi-
square distribution

(18)
where is the zeroth-order modified Bessel function of
the first kind. With a transformation of random variables, it is
straightforward to obtain the pdf of
as

(19)

where and . Our objective is to
find such that

(20)

If is not very large, (20) can be computed using the following
series expansion [21]:
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Fig. 5. PDF of I(x; yjĥ = ĥ ) (a = 100).

(21)

If is large, then the series expansion in (21) will converge
very slowly. However, we notice that for large ,
in (19) can be well approximated by a Gaussian pdf with the
same mean and covariance. In Fig. 5, we compare the exact

with its Gaussian approximation for ,
and , 1, 10, and 100. We verify that the Gaussian ap-
proximation is accurate for a wide range of values. This can
be explained using the following arguments: When is large,

is nonzero only in a small interval around .
Let us set , and examine the behavior of

when is small

(22)

where . The next lemma follows readily
from (22).

Lemma 1: When is large, the probability distribution of the
mutual information per subcarrier can be approximated by the
Gaussian distribution

(23)

From the definition of in (20) and Lemma 1, we obtain

(24)

where is the complementary Gaussian cumulative distri-
bution function.

To gain insight on how partial CSIT affects the average rate on
subcarrier , and also to check how accurate the approximation
given by (24) is, let us examine a Rayleigh flat-fading channel.
Supposing that the channel estimation error for the th subcarrier
is , and it is independent
of (which is satisfied when using the MMSE estimator),
then the channel estimator satisfies .
The average throughput of subcarrier given the outage proba-
bility is

(25)

where is the exponential-integral function.
In Fig. 6, we plot the dependence of the average data rate

on the partial channel knowledge versus SNR. We ob-
serve that the approximation in (25) fits the simulation results
accurately except when the channel information error is large,
which corresponds to the case that is small.

In an OFDM system with loading performed for each subcar-
rier independently, the average system throughput is the mean
of all individual subcarriers’ throughput. When the CSIT uncer-
tainty is small, it follows from (24) that the outage throughput
averaged across subcarriers, , can be ap-
proximated by

(26)

where , and . Note that,
in an OFDM system, it is possible that for some subcarriers the

’s are relatively small, even when is small. For these sub-
carriers, the outage rate can be computed using (21). Since these
subcarriers have small channel gains, and their contribution to
the total system throughput is insignificant unless the SNR is
high, we assume for simplicity that is sufficiently large for
all . Simulation results verify that this assumption is reason-
able.

Finding the power allocation maximizing
is nontrivial, because is, in general, not a concave function
of . In the Appendix, we show that the number of local maxima
is finite, and develop an algorithm that goes through these local
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Fig. 6. Impact of � on �R (P = 0:01).

Fig. 7. Performance comparison of different power loading schemes (N =
16, L = 1, � = 0:01, and P = 0:01).

maxima systematically to find the global maximum. In most ap-
plications, however, close to optimal rate can be achieved using
the following suboptimal power allocation scheme:

,
(27)

where , and is
determined by the power constraint. Similar to (13), for a given

, the rate-maximizing ’s in (27) are obtained using a 1-D
search.

In Fig. 7, we compare achieved by the optimal power
allocation and the uniform power allocation. We adopt the set-
ting of Example 1 in Section III, and set the target

Fig. 8. �R versus SNR (N = 16, L = 1, P = 10 ).

and . We observe that optimal power allocation brings
significant gain over uniform power allocation. For comparison,
we also plot the approximation given by (26). Again, we verify
that this approximation is accurate.

The average system throughput versus SNR under dif-
ferent CSIT errors is plotted in Figs. 8 and 9 for
and , respectively. We simulate a two-tap channel
with i.i.d. channel coefficients distributed as .
We observe that, unlike the expected mutual information, the
system throughput under the outage probability constraint
degrades quickly as the CSIT error grows large. This is not
unexpected, since the outage behavior of a system depends on
the tail of the channel pdf, which is sensitive to the CSIT error
covariance.
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Fig. 9. �R versus SNR (N = 16, L = 1, and P = 0:1).

B. Joint Loading Across Subcarriers

1) Outage Rate Under Joint Loading: Performing joint
loading across all subcarriers brings gain over individual
loading by taking advantage of the multipath diversity. We
assume that given the mean channel feedback , the partial
CSIT is distributed according to . The first
step of the joint loading algorithm is to find that satisfies

(28)

where is the indicator function. In general, there is no
closed-form solution to this problem, and we have to rely on
Monte-Carlo simulation. When is small, however, we can
make use of the Gaussian approximation as follows. For a given
feedback , the mutual information for the th subcarrier is
Gaussian with ,
where and . Note
that we have assumed for all . Approximating
the sum of ’s with a Gaussian random variable, we have,

, where ,
.

Having obtained that , let us now
examine the . With a slight abuse of notation, we let

, , and
, and express as

(29)

where . For large , we have

(30)

where ,
and . So, the outage
throughput averaged across subcarriers is

(31)

Optimal power allocation which maximizes (31) can
be found using numerical search.

2) Effects of Multipath: The number of resolvable paths
affects the outage rate of an OFDM system in three ways: 1)

the channel estimation error will increase with , which is
confirmed by (6); 2) larger delay spread will require a longer
cyclic prefix; and 3) we can see from (31) that given , the

depends on , which, in turn, depends on the covari-

ance matrix of the partial CSIT . Intuitively

speaking, given , multipath introduces some degree of in-
dependence among different subcarriers and, hence, increases

. In the following, we will specialize our joint loading al-
gorithm for a Rayleigh-fading channel, and investigate the ef-
fects of multipath on . Specifically, we will use the example
of Section II-A.

Using in (5), and denoting the th row of as , we
can write as

(32)

where is the phase of . If there is no multipath, i.e.,
, then , (31) reduces to (26), and there is no gain

in performing joint loading. If , then . For
, the value of depends on the realization

of . Usually, large occurs when subcarriers and are
neighbors; i.e., is small. For these neighboring
subcarriers, and are usually small, so
we would expect . When gets larger, comes
closer to 0 for . So, in general, we would expect the gain
of joint loading to increase as increases.

Summarizing, the increase of will cause the increase of
given , but it will also lead to a larger and a longer
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Fig. 10. Joint loading versus independent loading (N = 16, L = 3, � =

0:01, and P = 10 ).

Fig. 11. Effects of channel multipath (N = 16, P = 10 ).

cyclic prefix. The combined effects will be investigated through
simulation.

3) Numerical Results: We simulate an OFDM transmission
through a Rayleigh-fading channel of order . The CSIT
has , and the target outage probability is

. The outage throughput achieved by independent loading,
and by joint loading with uniform and optimal power allocation
are all plotted in Fig. 10. We observe that joint loading brings
about 2-dB gain over independent loading. We can also con-
firm that the approximation given by (31) fits the simulation re-
sults quite well. In this setting, optimal power allocation does
not bring significant gain for the joint loading algorithm over
uniform power allocation.

To see how multipath affects throughput, we simulate the
outage rates for channels with no multipath and with

paths, respectively. The channel is estimated from one
training block (for simplicity, we assume no feedback delay).
The target outage probability is set to 10 . The simulation re-
sults are plotted in Fig. 11. We observe that the rate of inde-

pendent loading suffers severe degradation when there is multi-
path. Joint loading is able to largely offset this rate loss at low to
moderate SNR, although it still suffers considerable loss at high
SNR, mainly due to the use of a longer cyclic prefix.

V. CONCLUSION

We studied the fundamental limit imposed by imperfect
channel feedback on the throughput of OFDM systems. Both
ergodic and quasi-static channel uncertainty models were in-
vestigated. For the ergodic model, we derived an optimal power
loading scheme, and compared it with uniform power alloca-
tion and water-filling. For quasi-static channels, we developed
two different rate allocation schemes: independent loading
and joint loading across subcarriers. An efficient optimal
power allocation algorithm was developed for the independent
loading scheme. We demonstrated that in flat-fading channels,
independent loading and joint loading are equivalent, while in
multipath channels, joint loading brings substantial gains to
outage rates over independent loading.

In this paper, we derived optimal power loading algorithms
for OFDM based on average and outage capacity criteria. For
optimal bit loading schemes maximizing rate in adaptive SISO
and MIMO OFDM systems, the reader is referred to [9]–[11],
where partial CSIT based algorithms are derived to meet a target
BER under a given transmit-power budget.

APPENDIX

In this appendix, we find the ’s that maximize
, subject

to the power constraint. Alternatively, we can state the problem
as follows:

(33)

(34)

(35)

We first examine the convexity of the objective function. Taking
first-order derivative of , we have

(36)

It is easy to see that the Hessian of is a diagonal matrix
with diagonal elements

(37)

So, is a convex function if and only if
, for all . For now, let us assume that these
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conditions are satisfied, so the Karush–Kuhn–Tucker (KKT)
conditions are sufficient conditions for a global minimum [22]

(38)

(39)

(40)

Combining (36) with (38), we obtain

(41)

If no feasible satisfies (41), then from (40), we have .
It is easy to verify that , in this case. Otherwise, setting

, there are two possible solutions to (41)

(42)

(43)

where . Since

(44)

is the desirable solution. Hence, the optimal power
allocation is given by (27).

When the convexity conditions are not satisfied, exhaustive
search is usually needed to find the global minimum. However,
we will show next that a lower complexity alternative is pos-
sible. Without loss of generality, let us assume that

(45)

It is easy to verify that the constraints in (33) satisfy the Man-
gasarian-Fromovitz constraint qualification [22]. So, every local
minimum must satisfy the KKT conditions. In addition, a local
minimum must satisfy

(46)

Otherwise, given a small perturbation of the form
, where , we

have that the constraints (34) and (35) are satisfied, and

(47)

Using (42)–(46), we can show that and that if
for some , then

or
.

(48)

Therefore, a local minimum must have one of the following two
forms:

(49)

(50)

So, the difference between local minima lies in the number of
zero elements and the choice of the last nonzero element. Note
that for , in (42) is a strictly monotonically de-
creasing function of , while in (43) is a strictly monoton-
ically increasing function of . Once the number of zero ele-
ments is fixed, and are determined by the power con-
straint. Suppose that we have found a local minimum ,
and by forcing , we can obtain another local min-
imum point . Obviously, because the other
subcarriers will now be allocated more power. So

(51)

meaning that

(52)

Using (52), we can show that

(53)

Since

(54)

we have , and, hence

(55)

Summarizing, the global minimum can be found as follows:

1) compute the KKT point given by
(27), and the other possible KKT point
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with the same number of nonzero el-
ements;
2) if , then ; other-
wise, .
3) find such that , and is
the smallest among all subcarriers with
nonzero power;
4) if , terminate the search;
otherwise, compute and by
forcing .
5) set , , , and
; go to step 2.

In our simulations, we find that this algorithm usually ter-
minates in a few iterations. Also, the suboptimal power loading
scheme given by (27) achieves close to optimal rate in most sce-
narios.
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