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Abstract—Adaptive modulation has the potential to increase the
system throughput significantly by matching transmitter parame-
ters to time-varying channel conditions. However, adaptive modu-
lation schemes that rely on perfect channel state information (CSI)
are sensitive to CSI imperfections induced by estimation errors
and feedback delays. In this paper, we design adaptive modulation
schemes for multiantenna transmissions based on partial CSI, that
models the spatial fading channels as Gaussian random variables
with nonzero mean and white covariance, conditioned on feedback
information. Based on a two-dimensional beamformer, our pro-
posed transmitter optimally adapts the basis beams, the power al-
location between two beams, and the signal constellation, to max-
imize the transmission rate, while maintaining a target bit-error
rate. Adaptive trellis-coded multiantenna modulation is also inves-
tigated. Numerical results demonstrate the rate improvement, and
illustrate an interesting tradeoff that emerges between feedback
quality and hardware complexity.

Index Terms—Adaptive modulation, channel feedback,
eigen-beamforming, multiantenna transmissions, space–time
block coding, trellis-coded modulation.

I. INTRODUCTION

BY MATCHING transmitter parameters to time varying
channel conditions, adaptive modulation can increase the

transmission rate considerably, which justifies its popularity
for future high-rate wireless applications; see e.g., [4], [6],
[8]–[12], [14], [17], [22], [25], and references therein. Crucial
to adaptive modulation is the requirement of channel state infor-
mation (CSI) at the transmitter, which may be obtained through
a feedback channel. Adaptive designs assuming perfect CSI
work well only when CSI imperfections induced by channel es-
timation errors and/or feedback delays are limited [4], [9]. For
example, an adaptive system with delayed error-free feedback
should maintain a feedback delay , where de-
notes the Doppler frequency [4]. Such a stringent constraint is
hard to ensure in practice, unless channel fading is sufficiently
slow. Long range channel predictors relax this delay constraint
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considerably [7], [12]. An alternative approach is to account
for CSI imperfections explicitly, when designing the adaptive
modulator [8].

On the other hand, antenna diversity has been well estab-
lished as an effective fading counter measure for wireless appli-
cations. Due to size and cost limitations, mobile units can only
afford one or two antennas, which motivates multiple transmit-
antennas at the base station. With either perfect or partial CSI at
the transmitter, the capacity and performance of multiantenna
transmissions can be further improved [16], [23]. Mean feed-
back is a special form of partial CSI, that is suitable for slowly
time-varying channels. Through a feedback channel, the trans-
mitter is assumed able to track the channel variations. However,
to account for the uncertainty due to channel estimation errors
and/or channel variations during the feedback delay, the trans-
mitter models the spatial channels as Gaussian random variables
with nonzero mean and white covariance, conditioned on the in-
stantaneous feedback [23]. Optimal transmitters based on mean
feedback have been studied using either capacity [16], [23], or,
performance-oriented criteria [13], [28].

In this paper, we design adaptive modulation schemes for
multiantenna transmissions with channel mean feedback. We
base our transmitter on a two-dimensional (2-D) beamformer
we derived recently in [28], where Alamouti coded [3] data
streams are power loaded and transmitted along two orthog-
onal basis beams. Different from [28] where performance is
optimized for a fixed constellation, our transmitter here opti-
mally adjusts the basis beams, the power allocation between
two beams, and the signal constellation, to maximize the system
throughput while maintaining a prescribed bit-error rate (BER).
We also investigate adaptive trellis coded modulation, to further
increase the transmission rate. Numerical results demonstrate
the rate improvement. Interestingly, adaptive multiantenna mod-
ulation turns out to be less sensitive to channel imperfections,
compared to its single-antenna counterpart. To achieve the same
transmission rate, an interesting tradeoff emerges between feed-
back quality and hardware complexity. As an example, the rate
achieved by one transmit antenna when can be pro-
vided by two transmit antennas, but with a relaxed feedback
delay , representing an order of magnitude improve-
ment.

The rest of this paper is organized as follows. Section II
presents a unifying BER approximation, that comes handy
for adaptive modulation. Section III specifies the system and
channel models. Uncoded adaptive multiantenna modulation is
designed in Section IV, and adaptive trellis coded modulation
is developed in Section V. Numerical results are collected in
Section VI, and conclusions are drawn in Section VII.

1536-1276/04$20.00 © 2004 IEEE
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Notation: Bold uppercase (lowercase) letters denote matrixes
(column vectors); and denote conjugate, trans-
pose, and Hermitian transpose, respectively; stands for ex-
pectation, denotes the identity matrix of size de-
notes an all-zero matrix with size . The special nota-
tion h indicates that is complex Gaussian dis-
tributed with mean h, and covariance matrix .

II. UNIFYING BER APPROXIMATION

Our goal in this section is to present a unifying approxi-
mation to BER for -ary quadrature amplitude modulation
( -QAM). Gray mapping from bits to symbols is assumed.
Notice that closed-form BER expressions are available in
e.g., [27]. However, in order to facilitate adaptive modulation,
approximate BERs, that are very simple to compute, are par-
ticularly attractive; see also [9]. In addition to square QAMs
with , we will also consider rectangular QAMs with

. We will focus on those rectangular QAMs that can
be implemented with two independent pulse-amplitude-mod-
ulations (PAMs): one on the in-phase branch with size ,
and the other on the quadrature-phase branch with size ,
as those studied in [24], [27].

In this section, we consider a nonfading channel with addi-
tive white Gaussian noise (AWGN), having variance per
real and imaginary dimension. For a constellation with average
energy , let be its minimum Euclidean
distance. For each constellation, we define a constant as

for square QAM (1)

for rectangular QAM (2)

The symbol energy is then related to through the identity

(3)

We adopt the following unifying BER approximation for all
QAM constellations:

(4)

which can be re-expressed as

(5)

The BER approximation in (5) with in (1) for square -QAM
was first proposed in [9]. We here extend the result in [9] to
rectangular QAMs. BPSK is a special case of rectangular QAM
with , corresponding to in (5). Hence, no special
treatment is needed for BPSK, as opposed to [4], [9]. We next
verify the approximate BER in (5).

Example 1 (BER Approximation): In Fig. 1, we compare the
exact BERs evaluated using [24] against the approximate BERs
of (5) for QAM constellations with . The

Fig. 1. BER approximation for QAM constellations.

Fig. 2. System diagram.

approximation is within 2 dB, for all constellations at
, as confirmed by Fig. 1.

III. SYSTEM DESCRIPTION

With reference to Fig. 2, we study a wireless communication
system with transmit- and receive-antennas. We focus on
flat-fading channels, and let denote the channel coefficient
between the th transmit- and the th receive-antenna, where

and . For the extension to frequency
selective multipath channels, we refer the readers to, e.g., [26].
We collect channel coefficients in an channel matrix
having th entry . For each receive antenna , we also
define the channel vector .

The wireless channels are slowly time-varying. The receiver
obtains instantaneous channel estimates, and feeds them back to
the transmitter regularly. Based on the available channel knowl-
edge, the transmitter optimizes its transmission to improve the
performance, and increase the overall system throughput. We
next specify our channel feedback setup, and develop our adap-
tive multiantenna transmission structure.

A. Channel Mean Feedback

Similar to [23], we focus on channel mean feedback, where
spatial fading channels are modeled as Gaussian random vari-
ables with nonzero mean and white covariance conditioned on
the feedback. Specifically, we adopt the following assumption
throughout.
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AS0) The transmitter models the channel as

H (6)

where H is the conditional mean of given feedback
information, and is the
associated zero-mean error matrix. The deterministic
pair H parameterizes the partial CSI, which is
updated regularly given feedback information from the
receiver.

The partial CSI parameters H can be provided in many
different ways; see [28] for a brief summary. For illustration
purposes, we elaborate next on a specific application scenario
with delayed channel feedback [8], [16], [23], that we will use
in our simulations.

Example 2 (Delayed Channel Feedback): Suppose that: 1)
the channel coefficients are independent and
identically distributed with Gaussian distribution ; 2)
the channels are slowly time varying according to Jakes’ model
with Doppler frequency ; and 3) the channels are acquired
perfectly at the receiver and are fed back to the transmitter with
delay , but without errors. Perfect channel estimation at the
receiver (with infinite quantization resolution), and error-free
feedback, which can be approximated by using error-control
coding and automatic repeat request (ARQ) protocol in the
feedback channel, are commonly assumed [8], [9]. Notice that
the channel feedback is drawn from the same Gaussian
process as , but in seconds ahead of . The corresponding
entries of and are then jointly zero-mean Gaussian,
with correlation coefficient specified from the
Jakes’ model, where is the zeroth-order Bessel function
of the first kind. For each realization of , the parameters
needed in the mean feedback model of (6) are obtained as [8],
[16], [23]

H (7)

B. Adaptive 2-D Transmit-Beamforming

The adaptive multiantenna transmitter in this paper is based
on the 2-D beamformer that we developed recently in [28] for
fixed constellations. Depending on channel feedback, the in-
formation bits will be mapped to symbols drawn from a suit-
able constellation. The symbol stream will then be fed to
the 2-D beamformer, and transmitted through antennas. The
structure of the 2-D beamformer is depicted in Fig. 3. It uses
the Alamouti code [3], to generate two data streams and

from the original symbol stream as follows:

(8)

The total transmission power is allocated to these streams:
to , and to , where

. Each power-loaded symbol stream is weighted by an

Fig. 3. The 2-D eigen-beamformer, u := [U ] .

beam-steering vector , and transmitted simultane-
ously. Collecting symbols across antennas, the transmitted
vector at the th time slot is

(9)

Moving from single to multiple transmit-antennas, a number
of spatial multiplexing and space time coding options are pos-
sible, at least when no CSI is available at the transmitter. We are
motivated to pursue an adaptive transmitter based on our 2-D
beamforming approach for the following reasons.

1) Based on channel mean feedback, the optimal trans-
mission strategy (in the uncoded case) is to combine
beamforming (with beams) with orthogonal
space–time block coding (STBC) [3], [20], where the
optimality pertains to an upper-bound on the pairwise
error probability [13], or, an upper-bound on the symbol
error rate [28]. However, orthogonal STBC loses rate
when , which is not appealing for adaptive mod-
ulation whose ultimate goal is to increase the data rate
given a target BER performance. On the other hand, the
2-D beamformer can achieve the best possible perfor-
mance when the channel feedback quality improves [28].
Furthermore, the 2-D beamformer is suboptimal only at
very high SNR [28]. In such cases, the achieved BER is
already below the target, rendering further effort on BER
improvement by sacrificing the rate unnecessary. In a
nutshell, the 2-D beamformer is preferred because of its
full-rate property, and its robust performance across the
practical SNR range.

2) Our 2-D beamformer structure is general enough to in-
clude existing adaptive multiantenna approaches; e.g., the
special case of with perfect CSI con-
sidered in [12]. To verify this, let us denote the channels
as and . Setting
when and otherwise, our 2-D
beamformer reduces to the selective transmitter diversity
(STD) scheme of [12]. Setting and

, our 2-D beamformer reduces
to the transmit adaptive array (TxAA) scheme of [12].
Finally, setting and

leads to the space–time transmit diversity
(STTD) scheme of [12].
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3) Thanks to the Alamouti structure, our optimal receiver
processing is simple. The received symbol on the

th antenna is

(10)

where is the additive white noise with variance
per real and imaginary dimension. Equation (10)

suggests that the receiver only observes two virtual
transmit antennas, transmitting and , respec-
tively. The equivalent channel coefficient from the th
virtual transmit antenna to the th receive-antenna is

. Supposing that the channels remain constant
at least over two symbols, the linear maximum ratio
combiner (MRC) in [3] is directly applicable to our re-
ceiver, ensuring maximum likelihood optimality. Symbol
detection is performed separately for each symbol; and
each symbol is equivalently passing through a scalar
channel with

(11)

where has variance per dimension. The
transmitter influences the quality of the equivalent scalar
channel through the 2-D beamformer adaptation of

.
4) Individually, Alamouti’s coding and transmit-beam-

forming have been proposed into standards [1], [2]. The
2-D beamformer offers a neat combination of these two
existing components.

We next specify our adaptive transmitter based on the 2-D
beamformer structure.

IV. ADAPTIVE MODULATION BASED ON 2-D BEAMFORMING

Based on mean feedback, the transmitter will adjust the basis
beams ( and ), the power allocation ( and ), and the
signal constellation of size and energy , to maximize the
transmission rate while maintaining the target BER: target.
As in [8]–[10], we will adopt QAM constellations. Suppose we
have different QAM constellations with , where

, as those specified in Example 1. Correspond-
ingly, we denote the constellation-specific constant as . The
value of is evaluated from (1), or (2), depending on the con-
stellation . When the channel experiences deep fades, we will
allow our adaptive design to suspend data transmission (this will
correspond to ).

Under AS0), the transmitter perceives a random channel ma-
trix as in (6). The BER for each realization of is obtained
from (11) and (5) as

(12)

Since the realization of is not available, the transmitter relies
on the average BER

(13)

and uses as a performance metric to select a constella-
tion of size .

A. Adaptive Beamforming

Let the eigen decomposition of H H be

H H

(14)

where contains eigenvectors, and
has the corresponding eigenvalues on its diagonal in a

nonincreasing order: . Since

are also eigenvectors of H H , the correlation matrix
of the perceived channel in (6), we term them as eigendirec-
tions or eigenbeams [28].

For any power allocation with , we have estab-
lished in [28, Proposition 2] and [28, eq. (63)] that the optimal

and minimizing in (13) are

(15)

In other words, the optimal basis beams for our 2-D beamformer
are eigenbeams corresponding to the two largest eigenvalues
and . Hereafter, we term our adaptive 2-D beamformer as 2-D
eigenbeamformer.

B. Adaptive Power Allocation Between Two Beams

With the optimal eigenbeams in (15), the average BER can
be obtained similar to [28, eq. (51)], but with only two virtual
antennas. Formally, the expected BER is

(16)

where for notational brevity, we define

(17)

For a given , the optimal power allocation that minimizes
(16) can be found in closed-form, following derivations in [28].
Specifically, with two virtual antennas, we simplify [28, eq.
(53)] to

and

(18)
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where is obtained from [28, eq. (54)] as

The optimal solution in (18) guarantees that ; thus,
more power is allocated to the stronger eigenbeam. If two eigen-
beams are equally important , the optimal solution is

. On the other hand, if the channel feedback
quality improves as , we have , and . We
underscore that the optimal and are constellation depen-
dent.

C. Adaptive Rate Selection With Constant Power

With perfect CSI, using the probability density function (pdf)
of the channel fading amplitude, the optimal rate and power
allocation for single antenna transmissions has been provided
in [9]. Optimal rate and power allocation for our multiantenna
transmission with imperfect CSI turns out to be complicated. We
will thus focus on constant power transmission, and only adjust
the modulation level, as in [4], [12], [17], [22]. Constant power
transmission simplifies the transmitter design, and obviates the
need for knowing the channel pdf.

With fixed transmission power and a given constellation, the
transmitter computes the expected BER with optimal power
splitting on two eigenbeams, per channel feedback. It then
chooses the rate-maximizing constellation, while maintaining
the target BER. Since the BER performance decreases mono-
tonically with the constellation size, the transmitter finds the
optimal constellation to be

(20)

Equation (20) can be simply solved by trial and error: we start
with the largest constellation , and then decrease
until we find the optimal .

Interestingly, although we have entries in H, our con-
stellation selection depends only on the first two eigen-values

and . We can split the 2-D space of into
disjoint regions , each associated with one constella-
tion. Specifically, we choose

when (21)

The rate achieved by our system is, therefore,

(22)

where is the joint pdf of and . The outage prob-
ability is thus

(23)

We next specify the fading regions. Since , we have
. To specify the region in the

space, we will specify the intersection of with each straight
line , where . Specifically, the fading region

on each line will reduce to an interval. We denote this in-
terval on the line as , during which
the constellation is chosen. Obviously, , and

. What is left to specify are the boundary points
.

For a given constellation and power allocation factors
, we determine from (16) the minimum value

of on the line of , so that as

(24)

Since the optimal will lead to the minimal that
satisfies the BER requirement, we find the boundary point
as

(25)

The minimization in (25) is a simple one-dimensional (1-D)
search, and we carry it out numerically. Having specified the
boundaries on each line, we are now able to plot the fading re-
gions associated with each constellation in the 2-D space, as we
will illustrate later.

D. Special Cases

In the general multiple input multiple output (MIMO) case,
each constellation is associated with a fading region on
the 2-D plane . We will discuss several special cases,
where the fading region is effectively determined by fading in-
tervals on the first eigenvalue . In such cases, we denote the
boundary points as . The constellation is chosen
when . We then obtain

(26)

where is the cumulative distribution
function (cdf) of . The outage in (23) becomes

(27)

To calculate the rate and outage, it suffices to determine the pdf
of , and the boundaries .

1) Multiple Input and Single Output (MISO): We consider
here multiple transmit- and a single receive-antennas. With

, we have only one nonzero eigenvalue , and thus
. The boundary points are

(28)

where is specified in (25).
Example 3 (i.i.d. Channels): When , the channel

is distributed as . With delayed feedback considered
in Example 2, we have ,
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Fig. 4. Fading regions for different constellations.

which is Gamma distributed with parameter and mean
. The pdf and cdf of are (see also [4])

(29)

(30)

Plugging (30) and (28) into (26), the rate becomes readily
available.

2) One-Dimensional Eigen-Beamforming: We now return
to the MIMO case. Instead of using two basis beams, the con-
ventional beamforming uses only one eigen-beam; an adaptive
system based on 1-D beamforming is studied in [29]. Our 2-D
beamformer subsumes the 1-D beamformer by setting
and . Numerical search in (25) is now unnecessary, and

does not depend on anymore. We simplify (24) to

(31)

The fading region, thus, depends only on .
Example 4 (Fading Region): The optimal regions for dif-

ferent signal constellations are plotted in Fig. 4 with
dB, and . As the constellation size

increases, the difference between 1- and 2-D beamforming de-
creases.

3) Perfect CSI: With perfect CSI H , the
optimal loading in (18) ends up being . There-
fore, the optimal transmission strategy in this case is 1-D eigen-
beamforming. Our results apply to 1-D beamforming, but with

. Specifically, we simplify (16) to

(32)

and (31) to

(33)

Equation (32) reveals that the MIMO antenna gain is intro-
duced solely through , the maximum eigenvalue of H H (or,

).
Remark 1: Notice that with perfect CSI, one can enhance

spectral efficiency by adaptively transmitting parallel data
streams over as many as eigenchannels of . These
data streams can be decoded separately at the receiver. How-
ever, this scheme can not be applied when the available CSI is
imperfect, since the eigendirections of HH are no longer the
eigendirections of the true channel . As a result, these
parallel streams will be coupled at the receiver side, and will
interfere with each other. This coupling calls for higher receiver
complexity to perform joint detection, and also complicates
the transmitter design, since no approximate BER expressions
are readily available. Adaptive transmitter design with parallel
transmissions based on imperfect CSI is an interesting topic,
but beyond the scope of this paper.

V. ADAPTIVE TRELLIS-CODED MODULATION (TCM)

In this section, we consider coded modulation. We recall from
(11) that each information symbol is equivalently passing
through a scalar channel in the proposed transmitter. Thus, con-
ventional channel coding can be applied. As in [8], [10], [11],
[14], we focus on TCM, where a fixed trellis code is superim-
posed on uncoded adaptive modulation for fading channels. Our
goal in this section is to extend the single antenna design with
perfect CSI [10], to our MIMO system with partial (i.e., imper-
fect) CSI.

The adaptive TCM diagram is plotted in [10, Fig. 2]. Out of
information bits, bits are passing through a trellis encoder to
generate coded bits. A constellation of size is parti-
tioned into subsets with size each. The coded
bits will decide which subset to be used, and the remaining
uncoded bits will specify one signal point from the subset to be
transmitted. Similar to [10], we fix the trellis code, and adapt the
signal constellation according to channel conditions. Different
from the uncoded case, the minimum constellation size now is

with each subset containing only one point. With a con-
stellation of size , only bits are transmitted.

A. BER Approximation for AWGN Channels

Let denote the minimum Euclidean distance between
any pair of valid codewords. At high SNR, the error probability
resulting from nearest neighbor codewords dominates. The
dominant error events have probability [18, Fig.8.3-1], [10]

(34)
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where is the number of nearest neighbor codewords
with Euclidean distance . Along with (4) for the uncoded
case, we propose to approximate the BER by

(35)

where the constants and need to be determined. For each
chosen trellis code, we will use one constant for all possible
constellations, to facilitate the adaptive modulation process. For
each chosen trellis code and signal constellation , the ratio of

is fixed. For each prescribed trellis code, we define

for the constellation (36)

Substituting (36) and (3) into (35), we obtain the approximate
BER for constellation as

(37)

Example 5 (BER Approximation for Four-State TCM): We
check the four-state trellis code with [18, Fig. 8.3-6].
The constellations of size are divided
into four subsets, following the set partitioning procedure in [18,
Fig. 8.3-2]. Let denote the minimum distance after the th set
partitioning. For QAM constellations, we have
[18, p. 524]. When , parallel transitions dominate with

. With , no parallel transition exists,
and we have . We find the param-
eter for the four-state trellis, where

[18, Table 8.3.3]. The simulated BER and the ap-
proximate BER in (37) are plotted in Fig. 5. The approximation
is within 2 dB for BER less than 10 .

Example 6 (BER Approximation for Eight-State TCM): We
also check the eight-state trellis code with and
[18, Fig. 8.3-10]; the trellis is also plotted in Fig. 6. The con-
stellations of size are divided into eight
subsets. The subset sequences dominate the error performance
with for all constellations. We choose

for the eight-state trellis code, where
[18, Table 8.3.3]. The approximation is within 2

dB for BER less than . We skip the plot for brevity.

B. Adaptive TCM for Fading Channels

We are now ready to specify the adaptive coded modulation
with mean feedback. Since the transmitted symbols are corre-
lated in time, we explicitly associate a time index for each
variable, e.g., we use to denote the channel perceived at
time . We calculate the following average error probability at
time based on (11) and (37):

(38)

Fig. 5. BER approximation for trellis coded modulation (four-state trellis).

Fig. 6. One possible error path in adaptive TCM (eight-state trellis).

At each time when updated feedback arrives, our transmitter
chooses the constellation

(39)

By the similarity of (37) and (5), we end up with an uncoded
problem, with constellation having a modified constant
and conveying bits.

However, distinct from uncoded modulation, the coded trans-
mitted symbols are correlated in time. Suppose that the channel
feedback is frequent. The subset sequences may span multiple
feedback updates, and thus different portions of one subset se-
quence may use subsets partitioned from different constella-
tions. We show an example in Fig. 6. Our transmitter design
in (39) implicitly assumes that all dominating error events are
confined within one feedback interval. Nevertheless, we show
next that this design guarantees the target BER for all possible
scenarios. Since the dominating error events may occur between
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parallel transitions, or, between subset sequences, we explore all
the possibilities in the following.

1) Parallel Transitions Dominate: The parallel transitions
occur in one symbol interval, and thus depend only on one con-
stellation selection. The transmitter adaptation in (39) is in ef-
fect.

2) Subset Sequences Dominate: The dominating error
events may be limited to one feedback interval, or, may span
multiple feedback intervals. If the dominating error events are
within one feedback interval, the transmitter adaptation in (39)
is certainly effective. On the other hand, the error path may span
multiple feedback intervals, with different portions of the error
path using subsets partitioned from different constellations.

We focus on any pair of subset sequences and . For
brevity, we assume that the error path spans two feedback
intervals (or updates), at time and . Different constel-
lations are chosen at time and , resulting in different

and . We resort to Fig. 6 to describe a simple
example. The distance between and can be partitioned as:

. The contribution of
at time is the minimum distance between subsets and

plus the minimum distance of subsets and ,
i.e., . Similarly, we have

.
Now, we construct two virtual events that the error path be-

tween and experiences only one feedback: one at and
the other at . For , the average pairwise error proba-
bility is defined as

(40)

We define the constants as

(41)

It is clear that , and .
We next show that when the error path between and

spans multiple feedback intervals, the average pairwise error
probability (PEP) decreases, relative to the case of one feedback
interval. Since the conditional channels at different times are
independent, we have

(42)

Fig. 7. Transmission rates for variable feedback quality.

where in deriving (42), we have used the inequality in (47)
proved in the Appendix. Equation (42) reveals that the worst
case happens when the error path between subset sequences
spans only one feedback. In such cases, however, we have guar-
anteed the average BER in (39), for each feedback. When the
error path in dominating error events spans multiple feedback
intervals, the average pairwise error probability decreases, and
thus the average BER [proportional to the dominating pairwise
error probability as approximated in (35)] is guaranteed to stay
below the target.

In summary, the transmitter adaptation in (39) guarantees
the prescribed BER. With perfect CSI, this adaptation reduces
to that in [10], where is maintained for each constellation
choice. Compared with [8], our approach here is simpler in
the sense that we do not need to check all distances between
each pair of subsets. If indeed multiple distances are to be
checked, the optimal power allocation between two beams will
become involved. Notice that an interleaver is introduced in [8]
to improve performance by distributing the error path between
subset sequences to multiple channel feedback intervals. This
intuition is theoretically verified by (42), which is not available
in [8]. However, interleaving may not be feasible due to the
inherent lack of large time diversity within a reasonable delay.

VI. NUMERICAL RESULTS

In our simulations, we adopt the channel setup of Example 2,
with . Recall that the feedback quality is related to
the correlation coefficient via: .
With , we have dB.
For fair comparison among different setups, we use in all plots
the average received SNR defined as

average SNR (43)

Case 1 (Distance From Capacity): We set .
Fig. 7 plots the rate achieved by the proposed adaptive trans-
mitter with , and . It
is clear that the rate decreases relatively fast as the feedback
quality drops.
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Fig. 8. Rate improvement with multiple transmit antennas.

Fig. 9. Tradeoff between feedback delay and hardware complexity.

For comparison, we also plot the channel capacity with mean
feedback [23], using the semianalytical result in [15]. As shown
in Fig. 7, the capacity is less sensitive to channel imperfections.
The capacity with perfect CSI is larger than the capacity with
no CSI by about bit at high SNR, as predicted in
[21]. With , the adaptive uncoded modulation is about
11 dB away from capacity.

Case 2 (Rate Improvement With Antennas): We set
, and . As shown in Fig. 8, the

achieved transmission rate increases as the number of transmit
antennas increases. The largest rate improvement occurs when

increases from one to two. Notice that the achieved rate with
is sightly less than that in [8, Fig. 4], due to the lack of

energy adaptation.
Case 3 (Tradeoffs Between Feedback Quality and Hard-

ware Complexity): It is shown in [4] that the critical value is
for single antenna transmissions. In Fig. 9, we

verify that with two transmit antennas, the achieved rate with
coincides with that corresponding to

Fig. 10. Rate improvement with trellis coded modulation.

one transmit antenna with perfect CSI ; hence,
more than ten times of feedback delay can be tolerated. The
rate with and is even better
than that of with perfect CSI. To achieve the same
rate, the delay constraint with single antenna can be relaxed
considerably by using more transmit antennas, an interesting
tradeoff between feedback quality and hardware complexity.

Fig. 9 also reveals that the adaptive design becomes less sensi-
tive to CSI imperfections, when the number of transmit antenna
increases.

Case 4 (TCM): We test the four-state and eight-state
trellis codes listed in Examples 5 and 6. We first set

. When the feedback
quality is near perfect , the rate is considerably
increased by using trellis coded modulation instead of uncoded
modulation, in agreement with the perfect CSI case [10]. How-
ever, the achieved SNR gain decreases quickly as the feedback
quality drops, as shown in Fig. 10. This can be predicted from
(47), since increasing the Euclidean distance by TCM with set
partitioning is less effective for fading channels than
for AWGN channels . If affordable, coded bits can
be interleaved to benefit from time diversity, as suggested in
[8]. This is suitable for the eight-state TCM, where the subset
sequences dominate the error performance.

On the other hand, the Euclidean distance becomes the ap-
propriate performance measure, when the number of receive an-
tennas increases, as established in [5]. The SNR gain introduced
by TCM is thus restored, as shown in Fig. 11 with .

Comparing Fig. 10 with Fig. 7, one can observe that the adap-
tive system is more sensitive to noisy feedback when the pre-
scribed bit error rate is small 10 as opposed to large 10 .

VII. CONCLUSION

In this paper, we introduced adaptive modulation for multi-
antenna transmissions with channel mean feedback. Based on
a 2-D beamformer, the proposed transmitter optimally adapts
the basis beams, the power allocation between two beams, and
the signal constellation, to maximize the transmission rate while
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Fig. 11. Impact of receive diversity on adaptive TCM.

guaranteeing a target BER. Both uncoded and TCM were ad-
dressed. Numerical results demonstrated the rate improvement
enabled by adaptive multiantenna modulation, and pointed out
an interesting tradeoff between feedback quality and hardware
complexity.

The proposed adaptive modulation maintains low receiver
complexity thanks to the Alamouti structure. Relaxing the re-
ceiver complexity constraint, adaptive modulation based on spa-
tial multiplexing schemes is an interesting future research topic.

APPENDIX

Let denote a nonnegative random variable with pdf ,
and mean . We wish to prove that the following function:

(44)

is a nondecreasing function of . Toward this goal, we
need to verify

(45)

Now it remains to show that . Using the
Cauchy–Schwartz inequality [18, p. 161], we verify that

(46)

Therefore, is nondecreasing with , and .
Hence, we proved that is nondecreasing with .

Since , we establish the following two in-
equalities:

(47)

(48)

We can also provide an intuitive explanation of these results. If
we view as the received SNR, then is proportional to the
approximate BER of a BPSK transmission, as evidenced from
(5). When , the received SNR is decreasing, while the re-
ceived SNR is increasing when . The equalities in (47) and
(48) hold only when is a delta function ;
in other words, when is the SNR of a nonfading channel.
Equations (47) and (48) simply point out the fact that the av-
erage BER for an arbitrary fading channel deteriorates
(when ), or, improves (when ), with a lower speed
compared to a nonfading channel, whose BER is

In other words, the slopes of BER curves of arbitrary fading
channels are no larger than that of a nonfading channel at any
fixed BER level.
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