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Abstract—Major challenges in ultrawideband (UWB) commu-
nications include timing acquisition, tracking, and low complexity
demodulation. Timing with dirty templates (TDT) is a recently
proposed acquisition algorithm with attractive features. Starting
with a performance analysis of TDT, this paper goes on to consid-
erably broaden its scope by developing novel tracking loops and
detectors by naturally following the TDT operation. Specifically,
upper bounds on the mean square error of the blind and data-aided
TDT estimators are derived, along with TDT-based demodulators,
obviating the need to know the underlying channel and time hop-
ping code. Analytical comparisons reveal that TDT demodulators
outperform RAKE with limited number of fingers in the medium-
high SNR range. TDT demodulation performance in the presence
of timing errors is evaluated and shown to be robust to mistiming.
In order to follow timing offset variations, an adaptive loop is also
introduced to track the first multipath arrival of each symbol. For
a given input disturbance, parameters of the loop are selected to
optimize jointly transient and steady state performance. Analytical
results are corroborated by simulations.

Index Terms—RAKE receiver, synchronization, time lock loops,
timing offset estimation, tracking performance, ultra-wideband
(UWB).

I. INTRODUCTION

U LTRAWIDEBAND (UWB) impulse radio (IR) offers
great potential in terms of low power, enhanced user ca-

pacity, high data rates and ability to coexist with legacy services.
Most of these benefits originate from the unique characteristics
inherent to UWB wireless transmissions [22]. However, to har-
ness these benefits, UWB-IR faces several challenges, among
which low-complexity timing and demodulation are particu-
larly critical. Timing UWB transmissions is more complicated
than usual because the ultrashort information bearing pulses
place stringent constraints on acquisition and tracking, which
compromise demodulation performance when limited energy is
captured.
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Several timing algorithms have been proposed recently for
UWB-IR. Maximum-likelihood (ML) [11] and least squares
approaches [1] are available, but tend to be computationally
complex as they require high sampling rates. Based on the
cyclic mean of the received waveform, which is nonzero for
pulse position modulation (PPM), blind timing and channel es-
timation schemes with lower complexity were put forth in [19].
A low complexity joint timing and template recovery algorithm
for both PPM and PAM was proposed in [13] and [12], with
universal applicability to UWB-IR in the presence or absence
of intersymbol interference and multiuser interference. Tim-
ing with dirty templates (TDT), which is the starting point of
this paper, was introduced in [23] for acquisition purposes; see
also [18] and [22].

Regarding demodulation, RAKE was the first receiver con-
sidered for UWB-IR communications. But for its complexity
and cost to remain low, the number of fingers that can be af-
forded is too small to capture the ample energy provided by
the UWB channel, which entails a large number of paths (of-
ten >50). In addition, estimating tap gains and delays to form
the RAKE template is costly and introduces errors which af-
fect RAKE performance [16], [17]. An alternative to RAKE,
is the so called transmitted reference (TR) receiver [5] and its
optimized version known as pilot waveform assisted modula-
tion (PWAM) [24], where a segment of the received waveform
serves as a template for demodulation [25]. Comparisons be-
tween RAKE and TR can be found in [3], [21]. Similar to RAKE,
TR and PWAM receivers require accurate timing synchroniza-
tion as well as training to recover the reference template, which
reduces bandwidth efficiency. This is mitigated in a recent low
complexity approach where timing is acquired blindly and de-
modulation is based on what is termed synchronized aggregate
template (SAT) [13]. This is the basis of the demodulator we
pursue here, which relies on data-aided or blind TDT to acquire
the timing information needed to form the SAT, which in turn
effects reliable demodulation because it collects the full multi-
path energy provided by the UWB channel. Our performance
comparisons will reveal that this is the main reason why TDT-
based demodulation outperforms practical RAKE receivers that
entail a limited number of fingers (typically <10).

To alleviate the effects of transmitter-receiver motion and
oscillator drifts, time tracking loops are often employed to adap-
tively follow timing offset variations in the received waveform.
Time lock loops (TLL) and phase locked loops (PLL) have been
investigated extensively [4], [10], [14], [15], but not as thor-
oughly in the context of UWB-IR radios. A tracker following the
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first received path in a cluster of multiple paths was designed and
the effect of other multipath components on loop performance
was considered in [2]. In this study, we combine TLL with
TDT-based acquisition and demodulation, which enables
tracking the symbol starting time instead of the first path in a
cluster (which might not be the first cluster for that transmitted
symbol).

The rest of this paper is organized as follows. Section II de-
scribes our system and outlines the TDT acquisition algorithm
of [23]. In Section III, upper bounds on the mean square error
of TDT estimators are derived. Section IV develops the novel
TDT-based demodulator, analyzes its performance and com-
pares it with the RAKE. A decision directed TLL is derived
in Section V, where its performance is also analyzed in terms
of output noise variance. For a known input, loop parameters
are selected to optimize both transient and steady state perfor-
mance. Corroborating simulations are provided in Section VI,
and conclusions are drawn in Section VII.

II. SYSTEM MODEL AND THE TDT ALGORITHM

For UWB-IR transmissions equipped with symbol periodic
(a.k.a. short) time hopping (TH) codes, the transmitted wave-
form can be expressed as [20]

s(t) =
√
Ep

∑
n

s(n)pT (t − nTs)

pT (t) :=
Nf −1∑
m=0

p(t − mTf − cm Tc) (1)

where Ep is the energy per pulse, {s(n) = ±1} denotes binary
PAM symbols, and pT (t) is the symbol waveform of duration
Ts = Nf Tf consisting of Nf frames, each of duration Tf . Each
frame contains an ultrashort monocycle p(t) of duration Tp (in
the order of ns), the position of which is shifted by the user-
specific TH code cm entailing Nc chips of duration Tc , per
frame; i.e., Tf = NcTc and {cm}Nf −1

m=0 ∈ [0, Nc − 1].
The UWB channel is modeled as a tapped delay line with

real impulse response: h(t) =
∑L

l=0 αlδ(t − τl,0 − τ0), where
τ0 is the first path arrival time, and τl,0 is the arrival time of path
l relative to path 0. Path gains {αl}L

l=0 and delays {τl,0}L
l=0

are assumed invariant over a block of symbols (block fad-
ing model). The received waveform r(t) is then the convolu-
tion s(t) � h(t) in the presence of multiuser interference (MUI)
ρ(t) and additive Gaussian noise η(t) with double-sided power
spectrum density σ2/2 and bandwidth B (≈1/Tp) dictated by
the cutoff frequency of the frontend ideal lowpass filter; i.e.,
r(t) = h(t) � s(t) + η(t) + ρ(t), or

r(t) =
√
Ep

∑
n

s(n)pR (t − nTs − τ0) + η(t) + ρ(t) (2)

where pR (t) := pT (t) � h(t + τ0) =
∑Nf −1

m=0

∑L
l=0 αlp(t −

mTf − cm Tc − τl,0) is the aggregate received symbol wave-
form which accounts for the transmit filter, the channel, and
the receiver’s frontend filter. Given r(t), our goal is to acquire
τ0, track it, and demodulate to obtain an estimate ŝ(n) of
s(n). We further wish to analyze the performance of the τ̂0

and ŝ(n) estimators and compare the latter with the standard
UWB-RAKE receiver.

To this end, we adopt the following operating conditions.
1) C1. Inter-symbol interference (ISI) is absent, but inter-

frame interference and interpulse interference are allowed
to be present. ISI can be avoided by selecting c0, cNf −1

and Tf to satisfy: cNf −1Tc + Tp + τL,0 < Tf + c0Tc ; or,
by inserting zero guard frames of length ≥ τL,0 at the
end of each symbol. Either way, the aggregate received
waveform pR (t) has nonzero support [0, Ts ].

2) C2. In the data-aided (DA) mode with training symbols
known at the receiver, if multiple users are present, only
one is synchronized at a time; i.e., only one user sends the
training sequence while others are allowed to communi-
cate zero-mean information bearing symbols.
Based on C1 and C2, our results build on the TDT acquisi-
tion algorithm derived in [23] for DA and non-DA (a.k.a.
blind) operation. DA-TDT relies on the training sequence
{s(n) = (−1)�n/2�}, where �� denotes integer floor op-
eration. The received waveform is then averaged over K
consecutive segments of duration 2Ts each. This yields a
circularly shifted (by the wanted timing offset) demodu-
lation template which, along with its periodic extension,
are given by

r̄(t) :=
1
K

K−1∑
k=0

(−1)k r(t + 2kTs), t ∈ [0, 2Ts ]

r̃(t) := (−1)m r̄((t) mod 2Ts
) (3)

where m = (t − (t) mod 2Ts
)/(2Ts). Although three DA-

TDT variants have been derived in [23], we summarize
next the one with best performance.

3) DA-TDT [23]: Under C1, C2, and with training pattern
{s(n) = (−1)�n/2�}, timing offset τ0 can be estimated
using

τ̂0 = arg max
τ ∈[0,Ts )

JDA(τ)

JDA(τ) =
(∫ Ts +τ

τ

r̃(t)r̃(t + Ts) dt

)2

. (4)

The blind counterpart of (4) can be summarized as fol-
lows:

4) Non-DA TDT [23]: If MUI is absent, then timing offset
τ0 can be estimated blindly under C1 as

τ̂0 = arg max
τ ∈[0,Ts )

JNDA(τ),

JNDA(τ) =
1
K

K−1∑
k=0

(∫ (2k+1)Ts +τ

2kTs +τ

r(t)r(t + Ts) dt

)2

. (5)

The basic idea behind TDT is to locate the maximum of the
square of the correlation between pairs of successive symbol
long segments of r̃(t) (in DA-TDT), or r(t) (in blind TDT).
These symbol long segments are called “dirty templates” be-
cause: i) they are noisy, ii) they are distorted by the unknown
channel, and iii) they are subject to the unknown offset τ0.
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Notice that in addition to the channel, the TH code can be un-
known. DA-TDT enjoys fast acquisition, while blind TDT incurs
no rate loss.

Regarding implementation, the symbol long segments can
be computed using either digital or analog operations. Analog
approaches avoid the possibly high sampling rates needed in
the UWB regime, but implementing the analog delay required
to shift successive r(t) segments by Ts or 2Ts can be chal-
lenging. Nonetheless, chips implementing analog delays from
20–1 000 ns are available [6]. On the other hand, when sampling
at 1–2 GHz can be afforded, it is possible to store r(t) digitally,
which facilitates the maximization required to find τ̂0. As far as
the maximization algorithm itself, we certainly need to evaluate
JDA or JNDA over a finite grid of equispaced candidate off-
set values τ . Spacing of these values depends on the desirable
resolution which is constrained only by the affordable complex-
ity: i) coarse timing with low complexity, e.g., by picking the
maximum over Nf candidate offsets τk = kTf , where integer
k ∈ [0, Nf ); or ii) fine timing with higher complexity at the chip
resolution with τi = iTc , i ∈ [0, Nf Nc).

Based on these TDT acquisition algorithms derived in [23],
we will develop novel TDT-based demodulators and tracking
loops. But first, we will analyze τ̂0 in (4) and (5) by deriving
upper bounds on their mean square error (MSE), which will
allow us to assess their asymptotic performance as K → ∞.

III. ASYMPTOTIC ANALYSIS OF TDT ESTIMATORS

Because JNDA(τ) and JDA(τ) are nonlinear functions of
τ , a general MSE analysis of τ̂0 is complicated, which typi-
cally prompts one to assess performance of TDT-based acqui-
sition via simulations. However, when the signal-to-noise-ratio
(SNR) is relatively high or the averaging size K is sufficiently
large, it is possible to derive analytical upper bounds on the
MSE of TDT estimators. We will derive such bounds, first for
data-aided TDT.

A. DA-TDT

If the number of users contributing to ρ(t) in (2) is large, then
the MUI will be approximately Gaussian (by virtue of the central
limit theorem), and ρ(t) obeying C2 can be lumped into the
AGN η(t). We assume throughout this section that τ0 ∈ [0, Ts),
which we show in Appendix I incurs no loss of generality. With
the training sequence {s(n) = (−1)�n/2�}, the sample average
in (3) can be written for t ∈ [0, 2Ts ] as (see Appendix I for a
detailed derivation)

r̄(t) =
√
EppR (t − τ0) +

√
EppR (t − Ts − τ0)

−
√

EppR (t + Ts − τ0) + η̄(t)

:= r̄s(t) + η̄(t), t ∈ [0, 2Ts ] (6)

where r̄s(t) :=
√
EppR (t − τ0) +

√
EppR (t − Ts − τ0) −√

EppR (t + Ts − τ0) and η̄(t) := (1/K)
∑K−1

k=0 (−1)kη(t +
2kTs) are the noise-free and noisy parts of r̄(t), respec-
tively. It can be readily shown that the variance of η̄(t) is

Var(η̄(t)) = Bσ2/K. Using (6), we can rewrite JDA(τ) in (3)
as

JDA(τ)

=
[∫ Ts +τ

τ

r̄s(t)r̄s(t − Ts) dt +
∫ Ts +τ

τ

r̄s(t − Ts)η̄(t) dt

+
∫ Ts +τ

τ

r̄s(t)η̄(t − Ts) dt +
∫ Ts +τ

τ

η̄(t − Ts)η̄(t) dt

]2

:= [χ(τ) + ζ(τ)]2 (7)

where χ(τ) :=
∫ Ts +τ

τ r̄s(t)r̄s(t − Ts) dt and ζ(τ) captures
zero-mean noise-related terms. Several useful expressions for
ζ(τ) are summarized below. They can be easily verified (see
Appendix II).

E[ζ2(τ)] =
EpERσ2

K
+ BTs

σ4

2K2
,

E[ζ̇2(τ0)] =
2σ4B2

K2
, E[ζ(τ)ζ̇(τ)] = 0 (8)

where ER :=
∫ Ts

0 p2
R (t)dt. For K sufficiently large, τ̂0 in (4)

will be close to the true timing offset τ0, and will lie in the
interval [τ0 − ε, τ0 + ε] with probability close to 1, where ε �
Tp is a small positive number. Let us consider the two cases: τ̂0 ∈
[τ0 − ε, τ0] and τ̂0 ∈ [τ0, τ0 + ε], separately. Starting with τ̂0 ∈
[τ0, τ0 + ε], denoting ∆τ := τ̂0 − τ0, and invoking Lagrange’s
mean value theorem, we know that there exists a µ ∈ (0, 1)
such that: J̇DA(τ̂0) = J̇DA(τ0 + ∆τ) = J̇DA(τ0) + ∆τ J̈(τ0 +
µ∆τ), where J̇DA(τ) and J̈DA(τ) denote, respectively, the first
and second derivatives of JDA(τ) with respect to τ . Recalling
that J̇DA(τ̂0) = 0 by the construction of τ̂0 in (4), we can write

∆τ = − J̇DA(τ0)
J̈DA(τ0 + µ∆τ)

. (9)

If J̈DA(τ0 + µ∆τ) has nonzero mean E[J̈DA(τ0 + µ∆τ)],
which is asymptotically much greater than the perturbation:
J̈DA(τ0 + µ∆τ) − E[J̈DA(τ0 + µ∆τ)], then J̈DA(τ0 + µ∆τ)
can be approximated by its mean; see, e.g., [7]. Applying this
approximation to (9), the MSE of τ̂0 conditioned on the fact that
∆τ ∈ [0, ε], can be expressed as

E[∆τ2|∆τ ∈ [0, ε]] =
E[J̇2

DA(τ0)]
E2[J̈DA(τ0 + µ∆τ)|∆τ ∈ [0, ε]]

.

(10)

Using r̄s(t) from (6), χ2(τ) for τ ∈ [τ0, τ0 + ε] in (7) can be
manipulated further to arrive at

χ2(τ) = E2
p

{∫ Ts

0

[pR (t + τ − τ0) + pR (t − Ts + τ − τ0)]

×[−pR (t + τ − τ0) + pR (t − Ts + τ − τ0)] dt

}2

= E2
p

[∫ τ−τ0

0

p2
R (t) dt −

∫ Ts

τ−τ0

p2
R (t) dt

]2

. (11)
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In the rest of this subsection, we evaluate (10) for data-aided
TDT. Beginning with the denominator of (10), we differentiate
(7) twice with respect to τ to obtain

J̈DA(τ) = 2χ(τ)χ̈(τ) + 2χ̇2(τ)

+ 2ζ̇2(τ) + 2ζ(τ)ζ̈(τ) + SNT (12)

where SNT denotes single noise terms which vanish after taking
expected values on both sides of (12). The expected values of
the double noise terms in (12) decrease at least as O(1/K) for
large K (see (57) in Appendix II), which allows one to ignore
them in the asymptotic regime. Based on (11) and (12), we can
simplify E[J̈DA(τ)] for τ ∈ [τ0, τ0 + ε] as follows:

E[J̈DA(τ)] = 2χ(τ)χ̈(τ) + 2χ̇2(τ)

= 8E2
p pR (τ − τ0)ṗR (τ − τ0)

×
[∫ τ−τ0

0

p2
R (t) dt −

∫ Ts

τ−τ0

p2
R (t) dt

]

+ 8E2
p p4

R (τ − τ0)

= −8E2
p ERpR (τ − τ0)ṗR (τ − τ0)

+ 8E2
p p4

R (τ − τ0), τ − τ0 ∈ [0, ε] (13)

where the last step holds true because for τ ∈ [τ0, τ0 + ε], we
have∫ τ−τ0

0

p2
R (t) dt −

∫ Ts

τ−τ0

p2
R (t) dt ≈ −

∫ Ts

0

p2
R (t) dt = −ER.

(14)

Substituting (13) into (9), we obtain

∆τ =
J̇DA(τ0)

8E2
p ERpR (µ∆τ)ṗR (µ∆τ) − 8E2

p p4
R (µ∆τ)

. (15)

Close consideration of (15) will guide the choice of design
parameters affecting the MSE of τ̂0. Notice that if p(t) behaves
like ta for t ∈ [0, ε], then p(t)ṗ(t) behaves like at2a−1 and with
a < 1/2, it follows that p(t)ṗ(t) → ∞ as t → 0. Since the be-
havior of pR (t)ṗR (t) near its end points (0 and Ts) depends on
how p(t)ṗ(t) behaves near its end points, we deduce that the ap-
propriate p(t) can ensure pR (t)ṗR (t) → ∞ as t → 0, in which
case E[(τ̂0 − τ0)2] → 0. So, a properly chosen pulse shaper can
result in arbitrarily small asymptotic MSE of the TDT estima-
tor. This observation motivates confining the class of desirable
pulse shapers to satisfy the following property:

1) P1. Monocycle pulse p(t) is continuous and differentiable
over t ∈ (0, ε], and p(t) ∝ ta with a < 1/2 for t ∈ [0, ε].

Since pR (t)ṗR (t) and p(t)ṗ(t) behave similarly near their
end points, P1 implies that

pR (µ∆τ)ṗR (µ∆τ) ∝ a(µ∆τ)2a−1 ≥ pR (ε)ṗR (ε),

for ∆τ ∈ [0, ε]. (16)

The second term in the right-hand side of (13) is much smaller
than the first term and can be neglected, since pR (t) ≈ 0 near
its end points. Using (16), the square of (15) is upper bounded

as

E
[
(τ̂0 − τ0)2|∆τ ∈ [0, ε]

]
≤ E[J̇2

DA(τ0)]
64E4

p E2
Rp2

R (ε)ṗ2
R (ε)

. (17)

The numerator of (17) is found in Appendix III to be

E
[
J̇2

DA(τ0)
]

= 4χ2(τ0)E[ζ̇2(τ0)] =
8

K2
E2

p E2
Rσ4B2. (18)

Substituting (18) into (17), we obtain

E[(τ̂0 − τ0)2|∆τ ∈ [0, ε]] ≤ 1
K2

(Bσ2)2

8E2
p p2

R (ε)ṗ2
R (ε)

. (19)

A similar approach can be followed when ∆τ ∈ [−ε, 0]. Using
the same arguments made for τ ∈ [τ0, τ0 + ε], the counterpart
of P1 is:

2) P2. Monocycle pulse p(t) is continuous and differentiable
over t ∈ (Tp − ε, Tp ], and p(t) ∝ (Tp − t)b with b < 1/2
for t ∈ [Tp − ε, Tp).

Mimicking the steps used to derive (19), we find that for
τ ∈ [τ0 − ε, τ0] it holds that

E[(τ̂0 − τ0)2|∆τ ∈ [−ε, 0]] ≤ 1
K2

(Bσ2)2

8E2
p p2

R (Ts − ε)ṗ2
R (Ts − ε)

.

(20)

Combining (19) and (20), we arrive at

E[∆τ2] = Pr(∆τ ∈ [0,+ε])E[∆τ2|∆τ ∈ [0,+ε]]

+ Pr(∆τ ∈ [−ε, 0])E[∆τ2|∆τ ∈ [−ε, 0]]

≤ Pr(∆τ ∈ [0,+ε])
σ4B2

K28E2
p p2

R (ε)ṗ2
R (ε)

+ Pr(∆τ ∈ [−ε, 0])
σ4B2

K28E2
p p2

R (Ts − ε)ṗ2
R (Ts − ε)

≤σ4B2

8E2
p

1
min {p2

R (ε)ṗ2
R (ε), p2

R (Ts − ε)ṗ2
R (Ts − ε)}

1
K2

which we summarize as follows:
Proposition 1: For a pulse shaper p(t) designed to obey P1

and P2, the MSE of the DA-TDT estimator in (4) is asymptoti-
cally upper bounded by

E[(τ̂0 − τ0)2]

≤ 1
K2

B2σ4

8E2
p min {p2

R (ε)ṗ2
R (ε), p2

R (Ts − ε)ṗ2
R (Ts − ε)} .

(21)

Equation (21) reveals that MSE(τ̂0) → 0 as K → ∞, which
proves mean-square sense consistency of the DA-TDT estima-
tor. For large K, the estimator’s convergence rate is at least on
the order of O(1/K2). Two remarks are now in order.

Remark 1: In deriving (21), we tacitly assumed that JDA(τ)
has a unique maximum. Gaps present among successively re-
ceived multipath components, cause JDA(τ) in (4) to exhibit
a plateau around its peak. This implies multiple maxima and
renders τ̂0 in (4) to have infinite mean square error. However,
choosing any point on this plateau as our timing estimate leads
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to maximum energy capture, which as far as symbol detection
is concerned is what controls bit error rate (BER) in demodula-
tion. From this point of view, albeit nonunique, any point on the
plateau can be considered equally good, even though (21) will
not be valid in this case.

Remark 2: To ensure the O(1/K2) convergence of
MSE(τ0), properties P1 and P2 are sufficient. However, for
practical SNR values, conventional pulse shapers (not necessar-
ily adhering to P1 and P2) also yield reliable timing estimators.
This is confirmed by simulations, where second derivative of
Gaussian pulse, which does not satisfy P1 and P2, is used as
a UWB pulse shaper. Through simulations, it is illustrated that
satisfactory MSE is obtained for practical values of K and SNR.

B. Non-DA TDT

For the blind TDT estimator in (5), we can show that [ [23],
(11)]

E[JNDA(τ)] =
1
2
χ2(τ) +

1
2
E2

R + E[ζ2(τ)]. (22)

To evaluate (10) for JNDA(τ), we follow steps similar to those
used for DA-TDT. Specifically, E[J̈NDA(τ)] for τ ∈ [τ0, τ0 + ε]
can be expressed as

E[J̈NDA(τ)] = 2χ(τ)χ̈(τ) + 2χ̇2(τ)

= 4E2
p pR (τ − τ0)ṗR (τ − τ0)

×
[∫ τ−τ0

0

p2
R (t) dt −

∫ Ts

τ−τ0

p2
R (t) dt

]

+ 4E2
p p4

R (τ − τ0)

= −4E2
p ERpR (τ − τ0)ṗR (τ − τ0)

+ 4E2
p p4

R (τ − τ0). (23)

Using an approach similar to Appendix III, we find

E
[
J̇2

NDA(τ0)
]

=
4
K

χ2(τ0)E
[
ζ̇a

2(τ0)
]

=
8
K

E2
p E2

Rσ4B2

(24)

where ζa is defined similar to ζ, but with all terms containing
η̄ in (7) replaced by η. Variance expressions for ζa can also
be derived from those of ζ in (8) after replacing σ2/K with
σ2. Substituting (23) and (24) in (10) and applying P1 and P2,
a result similar to DA-TDT is obtained which we summarize
next.

Proposition 2: For a pulse shaper p(t) designed to satisfy
P1 and P2, the MSE of the non-DA TDT estimator in (5) is
asymptotically upper bounded by

E[(τ̂0 − τ0)2]

≤ 1
K

B2σ4

2E2
p min {p2

R (ε)ṗ2
R (ε), p2

R (Ts − ε)ṗ2
R (Ts − ε)} .

(25)

Notice that again MSE → 0 as K → ∞, which proves con-
sistency of our blind TDT estimator. For large K, its conver-
gence rate will be at least on the order of O(1/K), which is

an order of magnitude slower than its counterpart for DA-TDT.
Having quantified the asymptotic TDT acquisition performance,
we move on to see how the τ̂ estimators can be used for demod-
ulation.

IV. TDT-BASED DEMODULATION

In this section, we will derive a TDT-based demodulator and
study its performance. Our exposition will proceed in four parts:
Template recovery from r(t); TDT-based demodulation perfor-
mance in the presence of timing errors (large sample analysis);
Finite sample analysis of TDT-based demodulation in the pres-
ence of timing errors; and Comparisons between RAKE and
TDT-based receivers with perfect timing.

A. Template Recovery

1) DA Operation: Obtained using the training sequence
{s(n) = (−1)�n/2�}, the waveform r̃(t) in (3) conveys infor-
mation (within a circular shift τ0) about the received aggregate
template pR (t). With τ̂0 obtained as in (4), simple timing ad-
justment of r̃(t) yields

p̌R,DA(t) =
1√
Ep

r̃(t + τ̂0), t ∈ [0, Ts ]. (26)

Since r̃(t) is required for TDT acquisition, the complexity in
forming p̌R,DA(t) is minimal. But as we explain in Appendix
I, p̌R,DA(t) recovered through r̃(t) has a sign ambiguity. To
resolve this ambiguity, a couple of additional positive training
symbols {s(k) = +1}K2

k=K1
can be transmitted and demodu-

lated using

ŝ(k) = sign

[∫ (k+1)Ts +τ̂0

kTs +τ̂0

r(t)p̌R,DA(t − kTs − τ̂0) dt

]

(27)

for k ∈ [K1,K2]. Through averaging, we can find a more re-
liable sign estimator via sign[

∑K2
k=K1

ŝ(k)]. And based on the
latter, we can obtain the ambiguity-free aggregate received tem-
plate as:

p̂R,DA(t) = p̌R,DA(t) · sign

[
K2∑

k=K1

ŝ(k)

]
, t ∈ [0, Ts ].

(28)
Since K used for TDT-based acquisition is relatively large, the
additional training symbols contribute a negligible amount to
the overall overhead and can be neglected.

2) Blind Operation: Consider a broadcast scenario where
node A transmits data to node C. Suppose node B wants to
establish a new link with A. To synchronize B, A has to inter-
rupt transmission to C and send a training pattern. A training
pattern must be repeated for every node who joins the broad-
cast, and transmitting it wastes power and data rate. A more
efficient approach is for B to synchronize with A and recover a
demodulation template without interrupting the A–C communi-
cation. For such a scenario, we develop a blind template recovery
algorithm to operate jointly with blind TDT. To recover a de-
modulation template without training, we will use s(n) drawn
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Fig. 1. Template recovery in non-DA TDT with asymmetric-PAM.

from a binary asymmetric PAM (A-PAM), where information
bearing symbols are s(n) = 2b(n) − 1 + 2θδ(b(n) − 1), with
bits b(n) taking values {0, 1} equiprobably; θ > 0 is the A-
PAM parameter; and, δ( · ) denotes Kronecker’s delta function.
As in [13], taking expectation of the received signal in (2) pro-
duces E[r(t)] =

√
Epθ

∑
k pR (t − kTs − τ0); see also Fig. 1.

If τ0 were available, the received symbol waveform could be
easily obtained as: pR (t) = E[r(t + τ0)]/(

√
Epθ). In practice,

the ensemble mean is replaced with its consistent sample mean
estimator, and τ0 is replaced by τ̂0 to obtain the synchronized
aggregate template (SAT) as

p̂R,NDA(t) =
1√
Epθ

1
2K

2K−1∑
k=0

r(t + kTs + τ̂0) t ∈ [0, Ts ]

(29)

where an averaging size of 2K is used, since 2K symbols are
needed in (5) for TDT-based acquisition. Without sacrificing
spectral efficiency, (29) yields an estimate of the demodulation
template without sign ambiguity. Although (29) is similar to
the one proposed in [12], [13] for joint timing synchronization
and demodulation, one difference is that [12], [13] advocates A-
PAM transmission intermittently to enable timing acquisition,
whereas here we rely on A-PAM only for SAT recovery and
acquire timing using the non-DA TDT estimator in (5).

B. Large Sample Performance

Large sample performance of TDT-based demodulators in
the presence of timing errors is considered here, while a finite
sample performance analysis is carried out in Section IV-C.
Let us define τ̃0 := τ̂0 − τ0. Throughout this section and the
next, we assume without loss of generality that |τ̃0| ∈ [0, Ts ]. If
|τ̃0| ≥ Ts , a delay of several Ts secs in symbol detection will
be in effect. Nonetheless, the figures of merit for our analysis
(BER and detection SNR) will remain the same.

With τ̃0 ∈ [0, Ts ], as the number of samples K in (3) and (29)
grows large, the SAT recovered either from (26) or from (29)
will asymptotically converge to the template

p̂R (t) = pR (t + τ̃0) + pR (t − Ts + τ̃0), t ∈ [0, Ts ]. (30)

Utilizing p̂R (t), we obtain the decision variable

dk =
∫ Ts

0

p̂R (t)r(t + kTs + τ̂0) dt

=
√
Eps(k)EC (τ̃0) +

√
Eps(k + 1)EC (τ̃0 − Ts) + ηk

(31)

where EC (u) :=
∫ Ts

0 p2
R (t + u) dt denotes the amount of cap-

tured energy, and ηk :=
∫ Ts

0 η(t + kTs + τ̂0)p̂R (t) dt. It is
easily seen that ηk is zero mean Gaussian with variance
σ2

∫ Ts

0 p̂2
R (t) dt/2 = σ2ER/2, where ER denotes the total re-

ceived energy defined in (14). Thus, the probability of error for
the sign detector ŝ(k) = sign[dk ] as K → ∞ can be evaluated
as

P∞
e =

1
4
Pr(dk < 0 | s(k) = +1, s(k + 1) = +1)

+
1
4
Pr(dk < 0 | s(k) = +1, s(k + 1) = −1)

+
1
4
Pr(dk > 0 | s(k) = −1, s(k + 1) = +1)

+
1
4
Pr(dk > 0 | s(k) = −1, s(k + 1) = −1)

=
1
2

[
Q

(√
2EpER

σ2

)

+ Q

(√
2EpER

σ2

EC (τ̃0) − EC (τ̃0 − Ts)
ER

)]
. (32)

Similarly, when τ̃0 ∈ [−Ts, 0], the BER of the sign detector can
be found to be

P∞
e =

1
2

[
Q

(√
2EpER

σ2

)

+ Q

(√
2EpER

σ2

EC (τ̃0) − EC (τ̃0 + Ts)
ER

)]
. (33)

From (32) and (33), one can clearly see that our demodulator
will be very robust to mistiming τ̃0, so long as EC (τ̃0) captures
most of ER .

C. Finite Sample Performance

Because BER in the presence of mistiming is difficult to
evaluate with finite samples, we will derive an expression for
the predetection SNR. Assuming data-aided operation and cor-
rect removal of sign ambiguity in (28), the decision variable is
formed as follows:

(dk )TDT =
∫ Ts

0

p̂R,DA(t)r(t + kTs + τ̂0) dt. (34)

Supposing temporarily that τ̃0 = τ̂0 − τ0 ∈ [0, Ts ], for t ∈
[0, Ts ], the SAT and received waveform can be respectively
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expressed as [cf. (2), (6), and (26)]

p̂R,DA(t) =
0∑

l=−1

pR (t + τ̃0 + lTs) +
1√
Ep

η̄(t + τ̂0)

r(t + kTs + τ̂0) =
√

Ep

0∑
l=−1

s(k − l)pR (t + τ̃0 + lTs)

+ η(t + kTs + τ̂0). (35)

Substituting (35) into (34), we obtain

(dk )TDT =
√

Eps(k)
∫ Ts

0

p2
R (t + τ̃0) dt

+
√
Eps(k + 1)

∫ Ts

0

p2
R (t − Ts + τ̃0) dt

+
∫ Ts

0

pR (t + τ̃0)

× [η(t + kTs + τ̂0) + s(k)η̄(t + τ̂0)] dt

+
∫ Ts

0

pR (t − Ts + τ̃0)

× [η(t + kTs + τ̂0) + s(k + 1)η̄(t + τ̂0)] dt

+
∫ Ts

0

1√
Ep

η(t + kTs + τ̂0)η̄(t + τ̂0) dt

:=
√
Ep [s(k)EC (τ̃0) + s(k + 1)EC (τ̃0 − Ts)]

+ η̄1(k) + η̄2(k) + η̄3(k) (36)

where η̄1(k), η̄2(k), and η̄3(k) are mutually
uncorrelated zero-mean Gaussian with variances
Var(η̄1) = [EC (τ̃0)σ2(K + 1)]/(2K), Var(η̄2) = [EC (τ̃0 −
Ts)σ2(K + 1)]/(2K), and Var(η̄3) = (BTsσ

4)/(2KEp). Let
N1 := Var(η̄1(k)) + Var(η̄2(k)) + Var(η̄3(k)). The signal-
to-interference-plus-noise-ratio (SINR) in (36) is then found
as

SINRTDT =
E[(

√
EpEC (τ̃0)s(k))2]

E[(
√

EpEC (τ̃0 − Ts)s(k + 1))2] + N1

=
E2

C (τ̃0)

E2
C (τ̃0 − Ts) + (σ2

Ep
)( (K +1)ER

2K ) + (σ2

Ep
)2(BTs

2K )
.

(37)

Similarly, when τ̃0 ∈ [−Ts, 0], the SINR turns out to be

SINRTDT

=
E2

C (τ̃0)

E2
C (τ̃0 + Ts) +

(
σ2

Ep

) (
(K +1)ER

2K

)
+

(
σ2

Ep

)2 (
BTs

2K

) .

(38)

As with our large sample analysis, (37) and (38) imply that our
demodulator will be very robust to mistiming τ̃0, as long as
EC (τ̃0) captures most of ER .

D. RAKE Versus TDT-Based Demodulation

With frequency-selective propagation, RAKE offers a low-
complexity demodulator capable of collecting the channel’s
multipath energy. However, RAKE performance in the UWB
regime is limited mainly because only a small fraction of mul-
tipath energy can be captured with a small number of fingers
that can be afforded by implementation constraints. TDT-based
demodulation on the other hand, can capture the full multipath
energy while bypassing the costly estimation of UWB channels
which is required for RAKE operation. A comparison of these
two schemes is thus well motivated, and will shed light into
TDT versus RAKE capabilities and shortcomings. For a fair
comparison, the timing offset is assumed to be perfectly known
for both demodulators; i.e., throughout this section we consider
τ̂0 = τ0.

1) RAKE Performance: To enable coherent detection, a
RAKE receiver requires estimation of the L + 1 tap weights
and delays of the channel, which is typically performed using a
training sequence. The Lr � L + 1 strongest weights are then
selected to form the RAKE demodulation template. To sim-
plify exposition, let us suppose that: i) tap delays are perfectly
estimated; ii) Tp is chosen small enough to avoid inter pulse in-
terference; and, iii) the TDT-TH code is absent. ML estimation
of the tap weights relies on NRAKE positive training symbols
for which the aggregate transmitted waveform can be written
as sTR(t) =

√
Ep

∑NRAKE
i=1 pT (t − iTs). The resultant DA tap

estimators are given by [11]

α̂l =
1

NRAKENf

√
Ep

×
∫

r(t)

(
NRAKE∑

i=1

pT (t − iTs − τl,0)

)
dt (39)

for l ∈ S(Lr ), where S(Lr ) is the set of Lr strongest multipath
components, each with variance

Var(α̂l) =
σ2

2NRAKENf Ep
. (40)

A RAKE receiver with maximal ratio combining (MRC) just
forms the demodulation template ĥ(t) =

∑
l∈S(Lr ) α̂lpT (t −

τl,0), and obtains the decision statistic as

(dk )RAKE =
∫ Ts

0

r(t + kTs + τ0)ĥ(t) dt. (41)

Let α̂l = αl + nl , where nl is zero-mean Gaussian with variance
defined in (40). Substituting (2) and ĥ(t) =

∑
l∈S(Lr ) α̂lp(t −

τl,0) into (41), we obtain

(dk )RAKE = s(k)Nf

√
Ep

∑
l∈S(Lr )

α2
l

+ s(k)Nf

√
Ep

∑
l∈S(Lr )

αlnl

+
∫ Ts

0

η(t + kTs + τ0)ĥ(t)dt. (42)
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Since nl and η(t) are independent, the variance of the noise
terms in the RHS of (42) can be evaluated easily, based on
which the SNR at the RAKE output can be expressed as

SNRRAKE =




NRAKENf

(∑
l∈S(Lr ) α2

l

)
+ 1

2NRAKEN2
f

(∑
l∈S(Lr ) α2

l

)2 (σ2/Ep)

+
Lr

4N2
f NRAKE

(∑
l∈S(Lr ) α2

l

)2 (σ2/Ep)2




−1

. (43)

We are now ready to compare RAKE with DA-TDT based
demodulation in terms of detection SNR when finite sample de-
tection is used, and perfect timing is assumed for both receivers.
For DA-TDT, plugging τ̃0 = 0 in (37) or (38) gives

SNRTDT =
2EpNf

∑L
i=0 α2

i

σ2

×
(

1 +
BTs

K

σ2

EpNf

∑L
i=0 α2

i

)−1

. (44)

Upon defining (
∑

l∈S(Lr ) α2
l )/(

∑L
l=0 α2

l ) := β, we corre-
spondingly have from (43) that

SNRRAKE =
2EpNf

∑L
i=0 α2

i

σ2

×
(

1 +
Lr

2NRAKE

σ2

EpNf β
∑L

i=0 α2
i

)−1

β.

(45)

Comparing (44) with (45), we deduce the following:
1) Because of the noise enhancement arising due to the large

time-bandwidth product BTs in (44), for small K, RAKE
may outperform DA-TDT. But remember that here we
assumed the RAKE finger delays (which are not needed
by TDT) are available error-free.

2) When K is large enough, TDT will outperform the RAKE,
since TDT-based demodulation collects all the available
multipath energy while RAKE with a small number of
fingers Lr � L has limited capability in capturing the
ample energy produced by the dense multipath of the
UWB channel.

Remark 3: Transmitted reference (TR) is an alternative UWB
demodulator, which has been also compared with RAKE re-
cently [3]. In its DA mode, our TDT-based scheme basically
performs TR demodulation. However, there are two major ben-
efits that a TDT-based receiver offers over TR: i) Similar to
RAKE, TR requires a timing offset estimate to be available be-
forehand, while the symbol-long templates in the TDT-based
receiver are utilized both for timing and demodulation; and
ii) TR suffers from a 50% rate loss [5], while TDT incurs no
overhead in its blind mode, and a very small rate loss in the DA
mode as it requires 2K training symbols only at the beginning

of every block. For typical values of the channel coherence time,
the number of these training symbols are less than 1% of the
block size [12]. As for the blind TDT mode, the price paid is a
somewhat longer acquisition interval.

As an alternative to blind TDT, the ensuing session will in-
troduce a tracking loop operating in a decision-directed (DD)
mode in order to follow channel and timing offset variations.

V. TLL DESIGN AND ANALYSIS

After timing has been successfully acquired, a tracking sub-
system is required to track changes in timing offset τ0(t) arising
from relative motion between transmitter and receiver and/or
clock drifts present in transmit-receive oscillators. In this sec-
tion, we will develop a time lock loop (TLL) to follow these
time variations. With BL denoting the noise equivalent band-
width of the TLL, we will further select the loop parameters to
minimize the weighted sum of the output noise power and its
transient error energy for a predetermined TLL input signal. We
will assume the following operating conditions:

1) c1. Acquisition has proceeded TLL operation and it has
been successful so that the TLL is “in lock” at the begin-
ning of its operation.

2) c2. Monocycle pulse p(t) is known at the receiver.
3) c3. For Gaussian pulse and its derivatives of duration

Tp ≈ 0.3 nsec or smaller, [2] has shown that the effect
of multipath, with multipath parameters defined in [8], on
the tracking loop is negligible and can be ignored. Thus
for tracking loop analysis, UWB multipath channel can
be modeled as only producing a single scaled and delayed
replica of the transmitted signal.

4) c4. UWB channel parameters change slowly with time.
Since TLL is already in lock under c1, it suffices to track

only the first arriving multipath component of each symbol.
Condition c3 ensures that ignoring other multipath components
does not degrade loop performance. TLL operates in a DD
fashion and makes use of the detected symbols which are reliable
when TLL is in lock. To design the TLL, we will pursue an ML
approach. With τ̂k denoting the TLL estimate of τ0(k) at time
kTs , the error signal e(k) which drives the loop is given by (see
e.g., [14])

e(k) = −ŝ(k)
∫

r(t)ṗ(t − kTs − τ̂k ) dt

= ŝ(k)(r(t) � [−ṗ(−t)])|t=kTs +τ̂ k
(46)

where � denotes convolution, and {ŝ(k)} denotes previously
detected symbols. A hybrid TLL is used, as depicted in Fig. 2,
where the loop operates digitally and sampling is performed
synchronously by the number controlled oscillator (NCO) at
the symbol rate Ts [4]. The factor 1/α̂1 in Fig. 2 is required
in order to eliminate the effect of α1 which is a time vary-
ingrandom quantity accounting for channel effect on the first
arriving pulse, and has an undesirable impact on the loop oper-
ation [2]. The estimator α̂1 can be obtained using a DD version
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Fig. 2. Block diagram of TLL.

Fig. 3. S-curve for the Gaussian monocycle and its first and second derivatives.

of (39)

α̂1(k) =
1

MNf

√
Ep

∫
r(t)

×
(

k−1∑
i=k−M

ŝ(i)pT (t − iTs − τ̂k−1)

)
dt

where k is the index denoting time t = kTs,M is the averaging
size, and τ̂k−1 is the loop estimate of τ0(k − 1) at t = (k − 1)Ts .
The so called S-curve, E[e(k)], is found from (46) to be

g(∆τk ) := E[e(k)] =
√

Epp(t) � [−ṗ(−t)]|t=−(τ0(k)−τ̂ k )

:=
√
EpRpṗ(−∆τk ) (47)

where ∆τk := τ0(k) − τ̂k and Rpṗ(t) := p(t) � [−ṗ(−t)]. The
S-curve for a Gaussian monocycle pulse p(t) and its first and
second derivatives are plotted in Fig. 3. The second derivative
of the Gaussian monocycle has the highest slope near the origin,
and is thus most sensitive to small timing errors. On the other
hand, the Gaussian pulse offers the largest lock range. To analyze
the loop tracking performance, the TLL is assumed operating
close to ∆τk = 0, in which case g(∆τk ) can be linearized as
g(∆τk ) = g(0) + ġ(0)∆τk . Fig. 4 depicts the equivalent linear
model in which G := ġ(0) =

√
Ep Ṙpṗ(0), and ηk := e(k) −

Fig. 4. Linearized TLL model.

E[e(k)] is the noise entering the loop. It follows easily from
(46) and (2) that

ηk = − ŝ(k)
α̂1(k)

∫
η(t)ṗ(t − kTs − τ̂k ) dt. (48)

Noise sequence ηk is white with variance σ2Eṗ /2E[α̂2
1(k)],

where Eṗ :=
∫

[ṗ(t)]2 dt, and E[α̂2
1(k)] is considered much

greater than the perturbation α̂2
1(k) − E[α̂2

1(k)]. The loop filter
is selected to track a ramp input with zero steady-state error [15].
From Fig. 4, the loop transfer function can be written as

Hloop(z) =
T (z)
N(z)

=
KD z + KD κ

z2 + (GKD − 2)z + (GKD κ + 1)

(49)

where T (z) and N(z) are the z-transforms of τk and ηk , respec-
tively, and F (z) := KD (z + κ)/(z − 1). Constants KD and κ
are design parameters which we will choose later on to optimize
loop performance. Using standard z-transform techniques, the
noise power at the output of the TLL (τ̂k in Fig. 4) is found to
be [cf. (48), (49), and [10, Table IV])

σ2
τ =

σ2Eṗ

2E [α̂2
1(k)]

×
∣∣∣∣ (1 + κ2)(2 + GKD κ) − 2κ(GKD − 2)

Gκ[G2KD (κ2 − 1) + 4G(κ + 1)]

∣∣∣∣ . (50)

Choosing KD and κ to minimize (50) trades off noise perfor-
mance for transient response of the loop. To determine KD and
κ, we will use a result from analog PLLs to jointly optimize
loop performance with respect to transient behavior as well as
noise handling ability. To this end, we need to map z-domain
quantities to the s-domain. Letting Hloop(z) model a lowpass
filter with noise equivalent bandwidth BL � 1/Ts , a digital
PLL approximates an analog PLL with z = ejωTs ≈ 1 + jωTs ,
for ωTs � 1. Setting jω = s, we can write Hloop(z) as

Hloop(s) =
1
G

×
s
(

Ts

1+κ

)
+ 1

s2
(

T 2
s

GKD (1+κ)

)
+ s

(
Ts

1+κ

)
+ 1

(51)

where z = 1 + sTs . For a given TLL input τ0(t), the optimiza-
tion method we use minimizes the noise MSE at the TLL output
subject to a finite transient error energy constraint [9]: The La-
grangian is formed as σ2

τ + λ2
∫ ∞
0 [τ0(t) − τ(t)]2 dt, where the

Lagrange multiplier λ can be thought of as a relative weight
between noise MSE and transient error energy. For a ramp input
τ0(t) = mt, the optimal loop parameters can be found as (see
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(51) and [15, Table 3.7-1])

ω2
n = mλ(Var(ηk ))−1/2, κ =

ωnTs√
2

− 1, KD =
√

2ωnTs

G
.

(52)

The remaining task is to check for condition BL � 1/Ts , which
was used in deriving (51) from (49). Parameter BL is defined
as [15]

BL =
1

H2
loop(0)

∫ ∞

0

|Hloop(f)|2 df.

For Hloop(s) in (51), BL is found to be BL = 0.53ωn � 1/Ts

[15, Table 3.3-1].
The TLL design procedure can now be summarized as fol-

lows:
TLL Design. For an input ramp τ0(t) = mt, find ωn as in (52)
and check whether BL = 0.53ωn � 1/Ts holds true. If it holds,
compute KD and κ from (52), and build the TLL as in Fig. 2.

If the step or ramp error is large enough, it can drive the TLL
out of lock. TLL lock range depends on the monocycle shape
p(t), but can not exceed 2Tp . UWB transceivers use monocy-
cles of ultra short duration so the lock range is usually small (in
the order of ns), meaning that TLL can easily fall out of lock.
In UWB channels, the received waveform consists of a large
number of resolvable paths, so when out of lock, TLL begins to
track a wrong path instead of the first one. Fortunately, the fact
that TDT-based demodulators are robust to mistiming implies
that if TLL is following a path close to the first one, the TDT-
based demodulator can still perform reliable symbol detection.
A lock detector which measures predetection power and com-
pares it versus a threshold can be used to prevent false locks
far away from the correct path by producing an “out of lock”
signal. After the generation of such a signal, the receiver enters
the acquisition mode. Using DA or blind TDT acquisition, the
TLL is brought back in lock, and resumes its operation.

Because of c4, the template used in TDT-based demodula-
tion should be updated continuously to account for channel
variations. This can be done by averaging the received analog
waveform r(t) in a manner similar to (3), but in a DD mode.
If {ŝ(k)} denotes the detected symbols, K the averaging size,
and τ̂n stands for the TLL estimate of τ0 at time nTs , then the
demodulation template denoted by p̂n,R (t) is evaluated at time
nTs by a moving average

p̂n,R (t) =
1
K

n∑
k=n−K +1

ŝ(k)r(t + kTs + τ̂n ), t ∈ [0, Ts ].

UWB radios are mainly considered for indoor wireless com-
munications, where speeds are not that high (on the order of
1 m/s). As a result, channel coherence times are on the order of
21 msec [12]; so, updating our timing and demodulation tem-
plate estimates every symbol period, which is usually less than
1 µsec, is good enough.

In a block diagram format, Fig. 5 summarizes the acquisition,
demodulation and tracking modules of our TDT-based receiver.

Fig. 5. Block diagram of a TDT-based receiver including a TLL.

Fig. 6. Normalized MSE for blind and data-aided TDT.

VI. SIMULATIONS

Several simulations have been performed to analyze the
performance of TDT in the acquisition, demodulation, and
tracking stages. The monocycle is chosen as the normal-
ized second derivative of the Gaussian pulse p(t) = ((t2 −
T 2)/

√
3
√

πT 5/8)e−t2/2T 2
with T = 1/6 ns, having dura-

tion Tp = 1 ns. Other parameters are selected as Tf = 35 ns,
Nf = 4, and B ∼= 1 GHz is the 3 dB bandwidth of the frontend
lowpass filter.

A. TDT Timing Offset Estimation Performance

In Fig. 6, the MSE of τ̂0 in data-aided and blind TDT is plotted
versus symbol energy-to-noise ratio for different amounts of
averaging K. The UWB channel used is model 1 as defined
in [8], and the search resolution to find the maximum was set
to Tp/10 (0.1 ns) for both DA and non-DA TDT. The resultant
detection probability is plotted versus symbol SNR in Fig. 7.
Detection probability is defined as the probability that |τ̂0 −
τ0| ≤ T∆; here T∆ is chosen to be 1 ns.
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Fig. 7. Probability of detection for blind and data-aided TDT.

Fig. 8. BER for data-aided TDT-based demodulation with timing error 10 ns.

B. TDT Demodulation Performance

Test A. Demodulation performance of DA-TDT in (26) when
timing errors are present is illustrated in Fig. 8. Channel model
1 in [8] is used. The timing error is chosen to be 10Tp = 10 ns,
and the BER curve corresponding to the ideal matched filter
with perfect timing is also plotted as a benchmark. It can be
seen that DA-TDT is very robust to mistiming and BER curves
corresponding to the TDT-based demodulator in the presence of
timing errors come very close to the matched filter benchmark
at medium-high SNR.

Test B. Demodulation performance of TDT in terms of BER
has been simulated and compared with the RAKE in Figs. 9
and 10. To highlight the dense multipath nature of the UWB
channel, we use a normalized model with equally spaced taps
defined as

τl = 1.5l ns, αl = ± 1√
23

, for l = 0, 1, . . . 23

Fig. 9. BER comparison between RAKE and TDT demodulators.

Fig. 10. BER comparison between RAKE and TDT demodulators with Lr =
10 RAKE fingers.

In both figures, BER is plotted versus symbol SNR. From Fig. 9,
it is clear that RAKE performs poorly when the number of fin-
gers is small. Increasing the number of fingers may not be af-
fordable in the UWB regime, where L can easily exceed 25. On
the other hand, TDT performance can be improved by simply
increasing the amount of averaging K. At high SNR, the BER
curves for TDT come very close to the performance achieved
through ideal matched filtering. Fig. 10 illuminates the differ-
ence between RAKE and TDT receivers. For TDT, more av-
eraging leads to improved performance and markedly lower
BER, while for RAKE increasing the length of training beyond
a certain point offers no improvement. In fact, the only way to
improve RAKE performance is by adding fingers which cer-
tainly demands more hardware and increases complexity. Note
that the slope of TDT curves drops faster than those of RAKE.
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Fig. 11. Transient response and tracking capability of TLL for ramp input.

As a result, although RAKE performs better at low SNR, TDT
outperforms RAKE for high enough SNR.

C. Tracking Loop Performance

The time variation of τ0 is modeled as τ0(t) = mt with slope
m = Tp/10Ts . We select λ = 2 × 106, symbol period Ts =
1 µsec, and input noise variance Var(ηn ) = 10−16 watts/Hz.
The optimum ωn is found to be ωn =

√
2 × 105 Hz, which gives

ωnTs =
√

2/10. This value of ωn satisfies 0.53ωn � 1/Ts .
From the S-curve in Fig. 3, G is found for a second order
derivative of the Gaussian pulse to be 0.9. Since TLL operates
digitally with sampling rate Ts , we have τ0(n) = 0.1nTp . For
these selected parameters, the optimum KD and κ values are
found from (52) to be 2/9 and −0.9, respectively. To analyze
the performance of this loop, a linear TLL model similar to (4)
is simulated. The tracking capability and transient performance
are illustrated in Fig. 11 for the optimum KD = 2/9 and for
KD = 1. From the figure it is seen that both loops can fol-
low the input ramp very closely. This is due to the fact that a
second order loop was chosen. However, the optimum KD ex-
hibits better transient performance than KD = 0.1. Still, if we
increase KD from the optimum value we even get better tran-
sient response. The obvious tradeoff is noise power at the TLL
output (τ in Fig. 4), which is plotted in Fig. 12 for the selected
parameters versus a range of values for KD . The input noise
power is set to unity in Fig. 12. At the optimum KD ≈ 0.2, the
TLL reduces the input noise power by a factor 5. Decreasing
KD to KD = 0.1, will improve noise reduction while transient
performance will suffer as confirmed by Fig. 11. Our optimum
KD is chosen as a compromise between these two conflicting
requirements with relative weight λ = 2 × 106.

VII. CONCLUSION

In this paper, acquisition performance of TDT was consid-
ered first and upper bounds on the mean square error of blind
and data-aided TDT estimators were derived. The scope of TDT

Fig. 12. TLL output noise variance versus KD for normalized TLL input
noise variance.

was broadened through TDT-based demodulation and tracking
algorithms. The performance of TDT demodulators was com-
pared with RAKE. It was shown that while RAKE suffers due
to its limited number of fingers, TDT can collect full multipath
energy and outperforms the RAKE at high enough SNR (15
dB in our simulations). BER and detection SNR were evaluated
for TDT-based demodulators in the presence of timing errors
and found to be robust to mistiming. A TDT-based TLL was
also developed to account for timing offset variations due to
transmitter-receiver mismatch and oscillator drifts. The track-
ing loop parameters were selected to jointly optimize transient
and steady state TLL performance. Finally, an iterative template
recovery approach was introduced to account for the slowly time
varying nature of UWB channels, where templates are updated
in a decision-directed fashion.1

APPENDIX I

PROOF OF (6)

Throughout the paper we assumed that τ0 ∈ [0, Ts). Here
we consider the case where τ0 /∈ [0, Ts). The proof of (6) is
also detailed, to show how the sign ambiguity in r̄(t) appears
when τ0 /∈ [0, Ts). In general, we have τ0 = MTs + τ̌0, where
τ̌0 = (τ0) mod Ts

∈ [0, Ts). Suppose that M = 2q is even (the
proof for M odd is similar). For t ∈ [0, 2Ts ], the template r̄(t)
in (3) can be written as

r̄(t) =
1
K

K−1∑
k=0

(−1)k

×
[√

Ep

∑
n even

s(n)pR (t − nTs − τ̌0 + 2kTs − 2iTs)

+ η(t + 2kTs)

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Government.
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+
√
Ep

∑
nodd

s(n)pR (t − nTs − τ̌0 + 2kTs − 2iTs)

]

=
1
K

K−1∑
k=0

(−1)k

[√
Ep

∑
n

1∑
m=0

s(2n + m)

× pR (t − (2n + m + 2q − 2k)Ts − τ̌0)

+ η(t + 2kTs)

]
.

With further computation, r̄(t) is written as

r̄(t) =

√
Ep

K

K−1∑
k=0

(−1)k s(2k − 2q)

× pR (t + 2(k − n − q)Ts − τ̌0)

+
1
K

K−1∑
k=0

(−1)kη(t + 2kTs)

+

√
Ep

K

K−1∑
k=0

k∑
n=k−1

(−1)k s(2n + 1)

× pR (t + (2(k − n − q) − 1)Ts − τ̌0)

and subsequently

r̄(t) =
K−1∑
k=0

[(−1)2k−q
√

EppR (t − τ̌0)

+ (−1)2k−q
√

EppR (t − Ts − τ̌0)

+ (−1)2k−q−1
√

EppR (t + Ts − τ̌0)] + η̄(t)

= (−1)q
√

EppR (t − τ̌0) + (−1)q
√

EppR (t − Ts − τ̌0)

+ (−1)q+1
√

EppR (t + Ts − τ̌0) + η̄(t), t ∈ [0, 2Ts ].

(53)

The coefficients (−1)q and (−1)q+1 produce a sign ambiguity
in r̄(t) which should be resolved so that the correct template is
recovered for use in DA-TDT based demodulation. However, as
far as acquisition performance is concerned, this sign makes no
difference because it cancels out. So, without loss of generality,
we can assume that τ0 ∈ [0, Ts) and q = 0; and thus, (6) is valid.

APPENDIX II

PROOF OF (8)

The proof for E[ζ2(τ)] can be found in [ [23], (11) and Ap-
pendix II]. A similar one for E[ζ̇2(τ)] is derived here. In (7),
ζ(τ) is defined as:

ζ(τ) :=
∫ Ts +τ

τ

r̄s(t − Ts)η̄(t) dt +
∫ Ts +τ

τ

r̄s(t)η̄(t − Ts) dt

+
∫ Ts +τ

τ

η̄(t − Ts)η̄(t) dt. (54)

Differentiating ζ(τ) in (54) with respect to τ yields:

ζ̇(τ) = r̄s(τ)η̄(τ + Ts) − r̄s(τ − Ts)η̄(τ)

+ r̄s(τ + Ts)η̄(τ) − r̄s(τ)η̄(τ − Ts)

+ η̄(τ + Ts)η̄(τ) − η̄(τ − Ts)η̄(τ). (55)

After squaring (55) and taking expected values, the following
terms remain:

E[ζ̇2(τ)]

= r̄2
s (τ)E[η̄2(τ + Ts)] + r̄2

s (τ − Ts)E[η̄2(τ)]

− r̄s(τ − Ts)r̄(τ + Ts)E[η̄2(τ)]

+ r̄2
s (τ + Ts)E[η̄2(τ)] + r̄2

s (τ)E[η̄2(τ − Ts)]

+ E[η̄2(τ)]E[η̄2(τ + Ts)] + E[η̄2(τ)]E[η̄2(τ − Ts)]

(56)

where we used that E[η̄(τ − Ts)η̄(τ)] = E[η̄(τ + Ts)η̄(τ)] =
E[η̄(τ − Ts)η̄(τ + Ts)] = 0. These expressions hold, since
Ts 
 Tp ≈ 1/B. Using the two facts: r̄2

s (τ − Ts) = r̄2
s (τ) =

r̄2
s (τ + Ts), and E[η̄2(t)] = Bσ2/K, we can simplify (56) to

E[ζ̇2(τ)] = 3
(

Bσ2

K

)
r̄2
s (τ) + 2

(
Bσ2

K

)2

. (57)

However, r̄s(τ0) = 0 from (6). Using this fact in (57) we arrive at
the desired result for E[ζ̇2(τ0)]. The expression for E[ζ(τ)ζ̇(τ)]
follows along similar steps.

APPENDIX III

PROOF OF (18)

We wish to evaluate E[J̇2
DA(τ0)]. From (7), J̇2

DA(τ) can be
written as

J̇2
DA(τ)|τ =τ0 = 4χ2χ̇2 + 4χ2ζ̇2 + 4χ̇2ζ2 + 16χχ̇ζζ̇

+ S.N.T. + H.O.P. (58)

where the τ -dependence of terms in (58) is dropped, for brevity;
S.N.T. denotes single noise terms and H.O.P. denotes higher or-
der perturbations, meaning terms containing three or four noise
factors. Considering expected values of both sides of (58) and
using χ̇(τ0) = 0, we arrive at

E
[
J̇2

DA(τ0)
]

= 4χ2(τ0)E[ζ̇2(τ0)].

Substituting for χ(τ0) and E[ζ̇2(τ0)] from (11) and (8) com-
pletes the proof of (18).
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