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Abstract—In this paper, the problem of joint channel and carrier
frequency offset (CFO) estimation is studied in the context of mul-
tiple-input multiple-output (MIMO) communications based on or-
thogonal space-time-block codes (OSTBCs). A new blind approach
is proposed to jointly estimate the channel matrix and the CFO pa-
rameters using a relaxed maximum likelihood (ML) estimator that,
for the sake of simplicity, ignores the finite alphabet constraint.
Although the proposed technique can be applied to the majority
of OSTBCs, there are, however, a few codes that suffer from an
intrinsic ambiguity in the joint channel, CFO, and symbol esti-
mates. For such specific OSTBCs, a semiblind modification of the
proposed approach is developed that resolves the aforementioned
estimation ambiguity. Our simulation results demonstrate that al-
though the finite alphabet constraint is relaxed, the performance of
the proposed techniques approaches that of the informed (fully fre-
quency-synchronized and coherent) receiver, provided that a suffi-
cient number of data blocks is available for each channel realiza-
tion.

Index Terms—Blind channel and carrier frequency offset esti-
mation, multiple-input multiple-output (MIMO) communications,
orthogonal space-time block codes.

I. INTRODUCTION

SPACE-TIME coding has recently gained much interest be-
cause of its ability to combat fading by means of exploiting

spatial diversity provided by multiple-input multiple-output
(MIMO) communication channels [1]–[3].

Among different space-time coding techniques proposed so
far, orthogonal space-time codes (OSTBCs) are of great interest
as they collect full diversity at low decoding complexity. The
optimal ML decoder for OSTBCs amounts to a simple linear
matched filter (MF) receiver followed by a symbol-by-symbol
decoder. It has recently been shown in the literature that for the
majority of OSTBCs, the MIMO channel is blindly identifiable
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[4], [5]. Therefore, employing OSTBCs as the underlying space-
time coding scheme can potentially reduce the system training
requirements and, therefore, improve its bandwidth efficiency.

For flat fading links, a blind method has been developed in [5]
to estimate the channel matrix. The approach of [5] has been
shown to be equivalent to a joint channel and symbol ML es-
timator after relaxing the finite alphabet constraint on the in-
formation symbols. Interestingly, neglecting the finite alphabet
property in this case does not seriously affect the performance
of the resulting decoder. This surprising fact is due to the unique
structural properties of the OSTBCs [6].

The technique of [5] assumes that no carrier frequency offset
(CFO) is present between the transmitter and receiver. Unfortu-
nately, the latter assumption may be often violated in practice.
For example, even if the frequency synchronization between the
transmitter and receiver is perfect, such frequency offsets can be
caused by mobility-induced Doppler effects.

The problem of estimating CFO parameters has been studied
for different communication schemes including training based
MIMO systems [7], orthogonal frequency-division multi-
plexing (OFDM)-based SISO and MIMO systems [8], [9], and
joint CFO and symbol timing recovery schemes exploiting
cyclostationarity [10]. However, to the best of our knowledge,
the CFO estimation problem has not been studied in application
to OSTBC-based MIMO communication systems. Therefore,
in this paper (see also [11] and [12]), we extend the work of
[5] to the problem of joint blind channel and CFO estimation.
Assuming constant modulus constellations, we use the ML
approach to obtain joint estimates of the channel matrix and the
CFO parameters, and to detect the information symbols based
on these estimates. The proposed approach, in essence, relaxes
the finite alphabet constraint and reformulates the original
problem as a simpler non-linear optimization problem with a
single unknown CFO parameter. It is shown that this parameter
can be estimated by maximizing the principal eigenvalue of a
certain data-dependent matrix and, once the CFO estimate is
obtained, the channel matrix estimate can be easily recovered
from the principal eigenvector of the same matrix. The obtained
CFO and channel matrix estimates can then be used along with
the conventional (coherent) OSTBC symbol detector to recover
the transmitted symbols.

Although the proposed blind method is applicable to the ma-
jority of existing OSTBCs, there are, however, a few codes (in-
cluding the celebrated Alamouti’s code [2]) that suffer from an
intrinsic ambiguity in joint channel, CFO, and symbol estimates.
For these OSTBCs, a semiblind modification of the proposed
method is developed that resolves the above-mentioned estima-
tion ambiguity by means of using a few training blocks.
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Simulation results validate the performance of the proposed
blind and semiblind methods as compared to the informed (i.e.,
perfectly synchronized channel-coherent) receiver and to the
training-based technique of [7]. It is demonstrated that despite
the relaxed finite alphabet constraint, the performances of the
proposed techniques closely approach that of the informed re-
ceiver provided that there is a sufficient number of informa-
tion-bearing data blocks available for each particular channel
realization. It is also shown that since the proposed semiblind
technique uses the information-bearing data in addition to the
training data, it substantially outperforms the method of [7].

The remainder of the paper is organized as follows. In
Section II, the data model is presented. Section III introduces
the concept of time-varying OSTBC in the case when frequency
offsets are present. Section IV develops our joint channel and
CFO estimation techniques. Simulation results are presented in
Section V and conclusions are drawn in Section VI.

II. SIGNAL MODEL

Let us consider a MIMO system with transmit and re-
ceive antennas. In the flat block-fading channel case, its input-
output relationship can be written as [13]

(1)

where is the complex channel matrix, is the CFO
between the transmitter and receiver, and

are the complex row-vectors of the received signal, transmitted
signal, and additive noise, respectively. It is assumed that the
noise is temporally and spatially white complex Gaussian with
variance .

Assuming a block transmission scheme with block length ,
the th received data block can be expressed as

(2)

where

...
...

...

are the th blocks of the received signals, transmitted signals,
and additive noise, respectively; the complex diagonal
matrix is defined as

and denotes the transpose. Hereafter, we assume a slow
fading channel whose coherence time is much longer than the
data block length .

The matrix can be viewed as a mapping
that transforms the th symbol block to a complex matrix
of transmit signals, where
is the th symbol vector of length . The entries of are
assumed to be randomly drawn from a constant modulus con-
stellation, that is, . Using this assumption, the need
for estimating the norm of the channel matrix can be alleviated
[5].

Note that where is the
symbol vector alphabet of the size , that is, the set of all pos-
sible symbol vectors.

The matrix is called an OSTBC [3] if all ele-
ments of this matrix are linear functions of the complex vari-
ables and their complex conjugates,
and if for any arbitrary , it satisfies the following property:

where is the identity matrix, is the Euclidean
norm, and stands for Hermitian transposition.

From the definition of OSTBCs, it directly follows that the
matrix can be expressed as [6], [14], [15]

(3)

where

for
for

(4)

, and denote the real and imaginary
parts, respectively, and the 1 vector is defined as the th
column of the identity matrix . It is worth noting that any
OSTBC is completely defined by its basis matrices ,
for example, see [6].

For any matrix , let us define the “underline” operator as

(5)

where is the vectorization operator that stacks all
columns of a matrix on top of each other.

If there is no CFO ( ), then, using (3) and (5), we can
rewrite the model (2) in the following vectorized form [6], [15]

(6)

where, for the sake of notational simplicity, and
, and the real-valued matrix

captures both the effects of the OSTBC and the channel.
It is readily verifiable that, regardless of the value of the

channel matrix , the matrix obeys the so-called decou-
pling property, that is, all its columns have identical norms and
are orthogonal to each other [6]

(7)

where denotes the Frobenius norm of a matrix.
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III. TIME-VARYING OSTBCS

In the presence of CFO, the matrix

obeys the orthogonality property

and, therefore, is a legitimate OSTBC regardless of the value of
. It is easy to verify that

(8)

where

(9)

From (9), it follows that the basis matrices of
are time varying. Because of this, we will refer

to as time-varying OSTBC.
Using (8), we have that in the presence of CFO, (6) should be

modified as

(10)

where

As is a legitimate OSTBC, the matrix
satisfies the decoupling property regardless

of the values of and , that is

(11)

Introducing the equivalent channel vector as

(12)

let us hereafter with a small abuse of notation replace
with . As is linear in

, we have

(13)

where is a matrix whose th column
can be defined as

(14)

where stands for the th column of a matrix and is the
th column of the identity matrix . We stress here that in

(14), the size of is different as compared to used in (4).

However, for the sake of simplicity the same notation is used
in (4) and (14).

IV. JOINT BLIND CHANNEL AND FREQUENCY OFFSET

ESTIMATION

Let data blocks be available for each channel realization.
Treating the channel vector , the CFO parameter , and the
information symbols as unknown deterministic pa-
rameters, let us use the ML approach to jointly estimate these
parameters. To obtain the ML estimates of all these parame-
ters, the log-likelihood (LL) function needs to be maximized.
Hence, the parameter estimates can be obtained by solving the
following optimization problem:

(15)

where is the likelihood
function computed for snapshots ,

, and is the finite set of all pos-
sible values of . Note, however, that it is extremely difficult to
solve (15) because its computational cost grows exponentially
in . To simplify the optimization problem in (15), let us
relax the finite alphabet constraint , that is, assume that

. Then, the optimization problem in (15) can be
rewritten as

(16)

As the noise vectors are zero-mean independent
identically distributed (i.i.d.) Gaussian with the covariance
matrix

the likelihood function for any can be expressed as

(17)

where denotes the statistical expectation. Taking into ac-
count that all are independent random vectors, we
obtain

(18)
Using (17) and (18), the problem in (16) can be reformulated as

(19)

Note that the th term of the sum in (19) is minimized with

(20)

where (20) follows from the fact that satisfies the
decoupling property (11).
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Using (20), the objective function in (19) can be concentrated
with respect to and, after such concentration, the
latter optimization problem can be expressed as

(21)

The objective function in (21) can be further simplified as (22),
shown at the bottom of the page, where denotes the trace
of a matrix. We also note that

(23)

where (13) was used, and denotes the Kronecker matrix
product. Inserting (23) into (22), the concentrated optimization
problem in (21) can be expressed as

(24)

where

(25)

is a real matrix which depends on the received
data vectors and the CFO parameter .

For any value of , the maximization over yields

(26)

where denotes the normalized principal eigenvector of a
matrix, and it is assumed that there is no multiplicity in the
largest eigenvalue of . Substituting (26) into (24), we ob-
tain that the CFO parameter can be estimated as

(27)

where denotes the largest eigenvalue of a matrix. Sub-
stituting (27) into (26), we obtain that, given the estimate of ,
the channel vector estimate can be expressed as

(28)

The CFO estimate in (27) has to be obtained through a one-di-
mensional search, that is, the matrix and its principal
eigenvalues and eigenvectors have to be calculated for all pos-
sible values of . The value of which results in the maximal
principal eigenvalue is referred to as the CFO estimate, and the
corresponding eigenvector in (28) gives the channel estimate.

We stress that the channel estimate in (28) suffers from a real
scalar ambiguity because the norm of the channel remains un-
known. However, as we assumed that the symbol constellation
is constant modulus, the symbol decoder will not be affected
by such an ambiguity. As the data are real-valued, there is no
phase ambiguity, but the channel estimate in (28) may suffer
from the sign ambiguity. However, the latter type of ambiguity
is common to all blind detectors and can be resolved by appro-
priate decoding of each symbol sequence [16].

It should be also stressed that we have not been able to prove
that the CFO estimate in (27) is unique. Note that the non-
uniqueness of blind CFO estimates in wireless communications
is a common issue [17]. However, throughout extensive simu-
lations, we have not observed any single case where the CFO
estimate is not unique.

Once the CFO parameter and the channel vector are estimated
using (27) and (28), respectively, the information symbols can
be straightforwardly decoded by replacing and in (20) with
their estimates and to obtain the estimate of , and
then by computing the estimate

(29)

of the symbol vector . Finally, the th information symbol
can be recovered by comparing the th entry of with all
the points in the corresponding constellation and using nearest
neighbor decoding.

V. SEMIBLIND EXTENSION OF THE PROPOSED ESTIMATOR

In the previous section, we have assumed that the largest
eigenvalue of has no multiplicity (i.e., its multiplicity

(22)



706 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 2, FEBRUARY 2008

order is equal to one). This assumption1 holds true for the ma-
jority of OSTBCs with a few exceptions that include the Alam-
outi’s code [5]. For those specific OSTBCs that result in
with multiple largest eigenvalues, belongs to the subspace
spanned by the corresponding multiple principal eigenvectors
of and, as a result, the blind technique proposed in the
previous section is not applicable. Therefore, to enable joint
channel and CFO estimation in the latter case, we will develop
a semiblind modification of the proposed approach2 that uses a
small number of training blocks. Let the multiplicity order of the
largest eigenvalue of be and the corresponding
orthonormal principal eigenvectors be . As belongs to
the subspace spanned by , we have

(30)

where and . The
key idea of the proposed semiblind method is to obtain the esti-
mate of in a blind way, while estimating the vector using a
few training symbols. As the number of entries in is much less
than that in , such a semiblind estimator will require much less
training data than the direct training-based channel estimator
obtaining all entries of in a nonblind way.

Assuming that the first blocks contain training symbols
and using (30), for any th training block ( ) we
have

(31)

where the third equality in (31) follows from the fact that
is linear in , and the th column of a

real-valued matrix is defined as

(32)

Defining

...
...

...

we can rewrite (31) for all as

(33)

1According to our simulations, the occurrence of having multiplicity of prin-
cipal eigenvalue does not depend on the value of the CFO, but only depends on
the structure of the underlying OSTBC.

2For the perfect CFO case, a semiblind approach to MIMO channel estimation
has recently been developed in [18].

Using (33), the ML estimate of the vector can be written as

(34)

This estimate can be used to obtain the coefficients
from a few training symbols to resolve the ambiguity in the
channel vector estimate.

To ensure that the ML estimate in (34) is unique, it is required
that . However, for known nonidentifiable OS-
TBCs holds true and, therefore, as , the condition

is satisfied for any number of receive antennas.
The following lemma is useful for simplifying (34).
Lemma 1: The matrix satisfies the following property:

(35)

Proof: See Appendix A.
The orthogonality property of that follows from this lemma

can be used to reduce the complexity of computing the ML es-
timator in (34). Using (35), we can rewrite (34) as

(36)

which enables to estimate in a very simple way that is devoid
of matrix inversion.

VI. SIMULATION RESULTS

We have considered three scenarios with three different OS-
TBCs and different numbers of transmit and receive antennas.
Throughout our simulations, the SNR is defined as where

is the variance of the elements of the channel matrix . In
all figures except for Figs. 9 and 10, the elements of are inde-
pendently drawn in each run from a Gaussian distribution with
variance and are assumed to be fixed during that run (i.e.,
the channel remains constant over the number of data blocks
that are used to estimate the CFO and the channel matrix).

In all examples, we compare our blind algorithm (or its semi-
blind modification) with the informed (clairvoyant) ML decoder
that enjoys perfect knowledge of the MIMO channel and the
CFO parameter. Note that the latter decoder does not correspond
to any practical case, but it is used in our simulations as a bench-
mark. In all figures but Figs. 7 and 8, it is assumed that .
Throughout our simulations, the QPSK modulation is used.

To quantify the performance of the methods tested in esti-
mating the CFO parameter, we use the CFO estimation mean
squared error (MSE)

(37)

To quantify the performance of the methods tested in terms of
the channel estimation accuracy, we use the normalized MSE
(NMSE) of channel estimates that is defined as

(38)

Note that in (38), we compare our channel estimate with the
normalized true channel vector because our channel es-
timate in (28) corresponds to one of the orthonormal eigen-
vectors of and, therefore, the norm of is equal to one.
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Fig. 1. CFO-MSE versus SNR for different values of n ; first example.

Fig. 2. C-NMSE versus SNR for different values of n ; first example.

In the first example, we assume the 3/4-rate OSTBC of [13]
with , , and . As the largest eigen-
value of has no multiplicity for this code, the proposed
blind estimator is compared with the informed receiver in this
example. Figs. 1–3 show the CFO-MSE, C-NMSE, and symbol
error rate (SER), respectively, versus SNR for different values
of .

In the second example, we assume the half-rate OSTBC of
[3] with , , , and . Similar to
the first example, the largest eigenvalue of has no mul-
tiplicity for this OSTBC and, therefore, the proposed blind re-
ceiver and the informed receiver are compared. Figs. 4–6 display
the CFO-MSE, C-NMSE, and SER, respectively, versus SNR
for different values of . Figs. 7 and 8 show the CFO-MSE
and C-NMSE, respectively, versus for for and

. Figs. 9 and 10 study the performance of the proposed
method in the time-varying channel case. In contrast to all the
other figures, in these two plots it is assumed that the channel
fluctuates in each data block around its mean value with the vari-
ance . Figs. 9 and 10 display the CFO-MSE and C-NMSE,
respectively, versus for and .

Fig. 3. SER versus SNR for different values of n ; first example.

Fig. 4. CFO-MSE versus SNR for different values of n ; second example.

As can be observed from Figs. 1–6, our blind channel and
CFO estimator provides a very good performance that rapidly
improves with increasing or SNR. In particular, Figs. 1 and
4 demonstrate that the CFO estimates remain very accurate even
for low values of SNR and/or .

Figs. 3 and 6 show that the SER performance of our blind
receiver approaches that of the informed ML receiver when in-
creasing . For instance, even for the performance
of our technique in both examples is approximately within 1 dB
from that of the informed ML receiver.

Figs. 7 and 8 clearly demonstrate that the performance of the
CFO and channel estimation in our method does not signifi-
cantly depend on the value of .

From Figs. 9 and 10, it follows that even though the proposed
method is developed under the assumption that the channel is
fixed at the interval of blocks, its performance remains ac-
ceptable in the time-varying channel case, provided that the pa-
rameter is sufficiently small.

In the last example, we consider the half-rate OSTBC of [3]
with , , , and . This code is known to
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Fig. 5. C-NMSE versus SNR for different values of n ; second example.

Fig. 6. SER versus SNR for different values of n ; second example.

suffer from ambiguity [5] because the multiplicity of the prin-
cipal eigenvalue of is equal to four ( ). There-
fore, the proposed blind channel estimation scheme is not ap-
plicable to this scenario and we have to resort to our semiblind
method. We compare the latter method with a single training
block to the training-based technique of [7]. Once the CFO pa-
rameter and the channel vector are estimated either using our
semiblind technique or the method of [7], the resulting channel
and CFO estimates are substituted to (20) in lieu of and
to obtain , and then the symbols are estimated using (29).
Figs. 11–13 display the CFO-MSE, C-NMSE, and SER, respec-
tively, versus SNR for different values of .

It can be observed from the latter three figures that our semi-
blind technique substantially outperforms the method of [7]. As
follows from Fig. 13, the SER performance of the latter ap-
proach is much worse than that of the informed ML receiver
at high SNRs, whereas the SER penalty of the proposed semi-
blind estimator with respect to the informed receiver is quite
moderate for any SNR value tested. For example, for
the latter SER penalty does not exceed 1.6 dB for any SNR
value in this figure, while the penalty of the method of [7] may

Fig. 7. CFO-MSE versus! forSNR = 0dB andn = 30; second example.

Fig. 8. C-NMSE versus ! for SNR = 0 dB and n = 30; second example.

Fig. 9. CFO-MSE versus � =� for different values of n ; second example.

exceed 5 dB. These performance improvements over the tech-
nique of [7] can be explained by the fact that our approach is
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Fig. 10. C-NMSE versus � =� for different values of n ; second example.

Fig. 11. CFO-MSE versus SNR for different values of n ; third example.

Fig. 12. C-NMSE versus SNR for different values of n ; third example.

Fig. 13. SER versus SNR for different values of n ; third example.

based on the channel model which is more parsimonious than
that of [7]. Moreover, the proposed technique uses both the in-
formation-bearing and training data, whereas the method of [7]
is based only on the training data.

VII. CONCLUSION

A new joint blind channel and carrier frequency offset es-
timator has been developed for orthogonally space-time block
coded MIMO systems. The proposed technique is based on the
relaxed maximum likelihood estimator that does not take into
account the finite alphabet constraint. Although the proposed
technique can be applied to the majority of orthogonal space-
time codes, there are several codes that suffer from an intrinsic
ambiguity in the joint channel, CFO, and symbol estimation. For
such codes, a semiblind modification of our technique has been
developed that estimates the “channel subspace” in a blind way,
while extracting the channel matrix from this subspace using a
few training symbols.

APPENDIX

PROOF OF LEMMA 1

First, let us show that for any value of , the columns of
the matrix are orthogonal. More specifically, we
show that

(39)

To prove (39), let us recall that the matrix is linear
in . Using this fact, we can write the th column of
as

where for any fixed and , ( ) are
real-valued matrices that satisfy:

if ,
if .

(40)
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To prove (40), we use the decoupling property (11) which im-
plies that for any channel vector , and regardless of the values
of and

(41)

or, equivalently

(42)

As (42) holds true for any and is a sym-
metric matrix, we conclude that

To prove the second part of (40), we use the fact that different
columns of are orthogonal to each other, that is, for
any

(43)

(44)

As the matrices and
in (43) and (44) are not symmetric, the latter equations
do not necessarily imply that

where stands for a zero ma-
trix of compatible dimension.

Adding (43) and (44) side-by-side yields

(45)
As (45) holds true for any vector and

is a symmetric matrix, we conclude that

This completes the proof of (40). To prove (39), we note that the
th element of is given by

(46)

Note that for , the right-hand side (RHS) of (46) can be
written as

(47)

which follows from the decoupling property. Let us denote the
th element of as . Then, for , the RHS of (46) can

be written as

(48)

where (40) has been used. Therefore, we obtain that for

(49)

holds true and the proof of (39) is complete. Using (39), we can
write

(50)

With (50), Lemma 1 is proven.
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