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Abstract—With transmit power spectra strictly limited by
regulatory spectral masks, the emerging ultra-wideband (UWB)
communication systems call for judicious pulse shape design
in order to achieve optimal spectrum utilization, spectral mask
compatibility, and coexistence with other wireless services. Mean-
while, orthogonal pulse sets are often desired in order to apply
high-rate multidimensional modulation and (carrier-free) or-
thogonal frequency-division multiple access. Motivated by these
considerations, we suggest a digital finite impulse response (FIR)
filter approach to synthesizing UWB pulses and propose filter
design techniques by which optimal waveforms that satisfy the
spectral mask can be efficiently obtained. For single pulse design,
we develop a convex formulation for the design of the FIR filter
coefficients that maximize the spectrum utilization efficiency in
terms of both the bandwidth and power allowed by the spectral
mask. For orthogonal pulse design, a sequential strategy is derived
to formulate the overall pulse design problem as a set of convex
subproblems, which are then solved in a sequential manner to
yield a set of mutually orthogonal pulses. Our design techniques
not only provide waveforms with high spectrum utilization and
guaranteed spectral mask compliance but also permit simple mod-
ifications that can accommodate several other system objectives.

Index Terms—Digital pulse design, finite impulse response (FIR)
filter, ultra-wide-band communications.

I. INTRODUCTION

WITH the release of the U.S. Federal Communica-
tions Commission (FCC) spectral masks in 2002 [1],

ultra-wideband (UWB) radios have attracted great interest for
their potential application in short-range high-data-rate wireless
communications [19]. With its enormous bandwidth, UWB sig-
naling provides fine temporal resolution and offers the potential
for ample multipath diversity. Baseband UWB systems also
enable simple transceiver structures with system-on-chip (SoC)
implementations. However, the benefits of UWB signaling
may be offset by the interference to and from existing systems
operating over the same frequency bands. For spectrum overlay
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Fig. 1. DSP-based UWB pulse design.

control, the FCC regulations imposed a spectral mask that
strictly constrains the transmission power of a UWB signal to
be well below the noise floor in all bands. On the other hand,
the transmission reliability of a UWB system is determined by
the received signal-to-noise ratio (SNR). Given the stringent
transmission power limitations, maximization of the received
SNR requires efficient utilization of the bandwidth and power
allowed by the FCC mask. Since the spectrum of the transmitted
signal is effectively determined by that of the underlying UWB
pulse, the choice of the pulse shape is a key design decision in
UWB systems.

Unfortunately, the widely adopted Gaussian monocycle pulse
[20], [25] exhibits a poor fit to the FCC spectral mask and thus
is not desirable for practical usage. Recently, [17] proposed that
the pulses be based on the dominant eigenvectors of a channel
matrix that is constructed by sampling the spectral mask. Pulses
generated from different eigenvectors are mutually orthogonal,
and conform to the FCC spectral mask. However, they do not
achieve the optimal spectral utilization, and require a high sam-
pling rate (64 GHz) that could lead to implementation difficul-
ties. Digital FIR filter solutions based on the Parks–McClellan
(PM) algorithm [14] have also been exploited for shaping UWB
pulses under mask-fitting requirements [13]. The PM design fa-
cilitates good approximations of the FCC spectral mask in a
minimax sense but does not directly optimize the spectral uti-
lization of the pulse. Moreover, trial-and-error may be required
to find suitable values for the parameters implicit in a PM de-
sign, such as the edges tolerances of the pass- and stopbands,
and the frequency weighting of the approximation error.

In this paper, we develop optimal design techniques for wave-
forms synthesized by the digital FIR filter structure proposed
in [13]; see also Fig. 1. A convenient basis pulse, such as a
Gaussian monocycle, is used as the building block. Prior to mod-
ulating this basis pulse, the channel symbols are passed through
a linear FIR prefilter, whose filter tap coefficients are carefully
designed to generate the desired synthesized pulse. Rather than
resorting to the PM algorithm, we seek digital filter designs
that maximize the power utilization efficiency while complying
with the spectral mask and employ efficient algorithms with
well-behaved convergence properties. For the single pulse de-
sign, our approach formulates an optimization problem which
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has the spectral utilization as its objective and explicitly im-
poses all design constraints, including the spectral mask con-
straint. The autocorrelation properties of a pulse shape are then
exploited to precisely transform the initial, nonconvex, opti-
mization problem into a convex problem from which a glob-
ally optimal filter can be efficiently obtained using general-pur-
pose convex cone optimization tools, e.g., [22]. The resulting
design method yields pulses that maximize the spectral utiliza-
tion and are guaranteed to conform to the spectral mask, and
hence there is no need to interactively search for suitable pa-
rameter values (as there is in the PM approach). Achieving op-
timality also offers the potential for using a lower sampling fre-
quency than competing methods, which may simplify practical
hardware realization.

Motivated by the need for high data rates, orthogonal fre-
quency multiplexing, and high spectral efficiency multidimen-
sional modulations, we extend the FIR filter approach to design
spectrally efficient orthogonal pulses. The goal is to design a set
of mutually orthogonal pulses, each of which occupies the entire
spectrum allowed by the spectral mask. Each pulse so designed
represents an independent dimension of the signal space. Al-
though they have a digital signal-processing (DSP) implemen-
tation similar to that for the single pulses, the design of multiple
orthogonal pulses cannot directly borrow the formulation used
in single-pulse designs.1 However, we still wish to express the
design problem in terms of a manageable (preferably convex)
objective and constraints on the filter tap coefficients. To do so,
we propose a sequential design strategy in which the design of
any new pulse is formulated as an FIR filter design problem with
linear constraints imposed to ensure that the new pulse is orthog-
onal to all previously designed pulses. By doing so, a set of
orthogonal pulses can be generated by solving convex sub-
problems formulated in a sequential manner. We demonstrate
that this sequential filter design approach is able to generate sets
of orthogonal pulses that attain large spectrum utilizations under
the spectral mask.

The rest of this paper is organized as follows. Section II
describes the signal model, problem statement, and FIR filter
structure for UWB waveform synthesis. Convex formulations
of the single pulse design problem are derived in Section III,
and orthogonal pulse design is addressed via a sequential
design strategy in Section IV. Some design examples with
comparisons to existing algorithms are provided in these two
sections. Concluding remarks are provided in Section V.

II. SIGNAL MODEL

In a UWB impulse radio, each information symbol is
conveyed over a train of repeated basic pulses, with
one pulse per frame of duration . Each unit-energy
pulse has an ultrashort duration at the
nanosecond scale. The equivalent symbol signature waveform
is and has symbol duration

, where the sequence represents the
user-specific pseudorandom time-hopping (TH) code with

1The single-pulse designs depend on the power spectrum of the filter, whereas
the design of multiple orthogonal pulses with large spectral utilization concerns
both the magnitude and phase of the frequency response of the filter.

, . Let be independent
identically distributed binary data symbols with energy
spread over frames. When pulse amplitude modulation
(PAM) is used, the transmitted PAM UWB waveform is given
by

(1)

The power spectral density (PSD) of is then given by

(2)

where is the Fourier transform (FT) of and depends
on both and the TH code . Specifically,
can be expressed as

(3)

where is the FT of . Equation (2) now becomes

(4)

When the TH code is independent and uniformly dis-
tributed over with integer values, can be ap-
proximated as [24]

(5)

where is a constant. A similar result is also derived
in [13] for pulse position modulation (PPM) UWB waveforms.
In both cases, a UWB transmitter can be treated as a linear am-
plifier of the pulse shaper . Hence, the UWB pulse design
problem is equivalent to designing the basic pulse to meet
the relevant system requirements.

The FCC regulatory requirements for UWB communication
systems state that the power measured across the UWB spec-
trum must lie below a specified spectral mask. In order to sat-
isfy this requirement, the UWB pulse should be designed
so that , where is an appropriately
scaled version of the regulatory mask. In practice, one typically
imposes a tighter spectral mask, say, , on in the
design phase in order to ensure that the regulatory requirements
are satisfied in practical implementations, such as those in which
nonlinearities in the transmission path cause spectral regrowth.
That is, setting for all , we impose

(6)

We consider a DSP-based pulse design scheme that builds
upon a basis pulse readily available from a UWB pulse gen-
erator. Examples of include the widely promoted Gaussian
monocycle and the sinc pulse. Suppose is of duration
and has a Fourier transform . Our synthesized pulse
to be transmitted over a wireless channel can be written as [13]

(7)
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where is the sampling interval and the set contains
the (real) coefficients to be designed so that (6) is satisfied.
The clock rate of the transmitter is , and the pulse
duration of is . If we view the
design parameters as the tap coefficients of an -tap FIR
filter, our approach to shaping the waveform reduces to FIR
linear prefiltering, as illustrated in Fig. 1; see also [13].

For notational convenience, we will stack the impulse re-
sponse of into a vector .
Similarly, the autocorrelation of , namely,

, will sometimes be represented by
. To concisely describe the

frequency components of an -tap FIR filter, we define

(8)

(9)

where and form the basis of complex-phase and
linear-phase components, respectively. Consequently, the fre-
quency response of can be written as

. The power spec-
trum of is ,
where is the power spectrum of and

.

III. OPTIMAL UWB SINGLE PULSE DESIGN

In this section, we study various formulations of the single
pulse design problem. Our goal is to find a synthesized wave-
form that maximizes the spectral utilization efficiency,
while at the same time respecting the spectral mask .
The spectral utilization efficiency can be measured in terms
of the normalized effective signal power (NESP), which is the
ratio of the power transmitted in the designated “passband”
of the spectral mask over the total power that is permissible
under the given mask. Formally stated, if denotes the band
(or collection of bands) that constitute the passband, then the
NESP is defined as . Because

is independent of our design parameters, maximizing
is equivalent to maximizing

(10)

where . If has a suf-
ficiently simple analytic form over the passband, then can
be calculated analytically; e.g., when is constant over the
passband. In other cases, can be computed numerically, even
when we only know samples of rather than its functional
form.

A. Direct Maximization of NESP

The direct statement of our design problem is as follows.
Problem 1: Given , , , and , find a filter

of length that maximizes , subject to the spectral mask con-
straint for all , or show that none exists.

To formulate this problem better, let denote the set of non-
negative real numbers, and define the extended function

as

if
if

(11)

The spectral mask constraint is equivalent to

for all (12)

To establish a more explicit formulation of (12), we define
, where and

denote the real and imaginary parts, respectively. By
recognizing that and defining2

(13)

over the domain , Problem 1 can be formulated
as

(14a)

subject to for all

(14b)

The feasible set in (14) is defined by the intersection of an in-
finite number of second-order cone constraints on linear trans-
formations of , one for each ; see (14b). Hence, it is convex
[8]. However, (14b) defines an infinite number of constraints
that must be rendered finite. One way to approximate (14b) is
to sample it uniformly in frequency and replace it by

for all (15)

Typically is chosen to be on the order of . The parameter
can be chosen such that satisfaction of (15) guarantees

satisfaction of (14b) even for (e.g., [26]), or it can be
chosen to be a smaller number. If is chosen to be zero, then
(15) is a direct relaxation of (14b). Depending on the choice of

, the feasible set of the discretized problem will be slightly
smaller, or slightly larger, than that of the original problem. Nev-
ertheless, the feasible set remains convex.

Unfortunately, the objective in (14a) is a convex quadratic
function of , and since it is to be maximized under cone con-
straints, (14) is a nonconvex optimization problem. Therefore,
any algorithm for the solution of (14) must be able to deal with
the intricacies of locally optimal solutions.3 However, both the
objective and the constraints in (14) are linear functions of the
autocorrelation of . In particular, by exploiting the fact that

, it
can be shown that , where

2In many cases we will have M(f) = �M(f) for all f 2 [0; 1=(2T )].
3Rigorous methods (e.g., [2]) are effective but tend to be computationally

expensive, and simpler techniques, such as running a local optimization routine
from multiple starting points, are less expensive but may not be as effective.
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and . Therefore, Problem 1 can be re-
formulated as the following convex optimization problem in the
autocorrelation of the filter:4

(16a)

such that for all (16b)

for all (16c)

This problem is a semi-infinite linear program (SILP; e.g., [15])
in which there are two constraints for each . The linear con-
straint set in (16c) is a necessary and sufficient condition for
to represent a valid autocorrelation sequence. The semi-infinite
constraints can be discretized to form a finite linear program
whose solution can be efficiently found [15], [16]. While that
solution is an approximation to the true solution, discretization
strategies exist that ensure this approximation to be a good one;
e.g., the direct analogy of (15). As an alternative to discretiza-
tion, the constraint in (16c) can be precisely enforced using
a single linear matrix inequality (LMI) constraint (e.g., [10]),
which will result in a (convex) semidefinite programming (SDP;
[6], [23]) formulation of the design problem (e.g., [9]–[11]). If

is a piecewise trigonometric polynomial, the mask con-
straint in (16b) can also be precisely enforced using LMI con-
straints [4], [10]. Once the optimal autocorrelation has been
found, an optimal filter can be found via spectral factor-
ization; e.g., [12], [26]. A design example of the precise SDP
implementation for solving (16) appears in [27].

B. Constrained Power Spectrum Approximation

An alternative to directly maximizing the NESP is to take an
indirect approach in which the objective is to keep the power
spectrum of the pulse as close to the spectral mask
as possible over the specified passband. While it may appear to
be unnecessary at this point, we discuss indirect approaches here
because they will provide a method for extending our design
technique to the case of multiple orthogonal pulses.

To formalize the notion of closeness, we will use functional
norms of the form

(17)

where

for

for
(18)

Since is real, and since we will constrain it so that
, we can neglect the absolute-value operator

in (18). Using this notation, the constrained power spectrum
approximation problem can be written as follow.

Problem 2: Given , , , , and , find a filter
of length that achieves

(19a)

subject to for all (19b)

or show that none exists.

4Several related pulse design problems can also be cast as convex optimiza-
tion problems in ~r; e.g., [9], [11], and references therein.

The feasible set defined by (19b) is the same as that in
Problem 1. Depending on the choice of , different formula-
tions of Problem 2 arise. In particular, since (19b) holds, the
unnormalized NESP is . Therefore,
when , Problem 2 is equivalent to Problem 1, and the
formulations in (14) and (16) can be used to solve (19).

Another interesting case arises when the choice is
made. By writing the minimization of an infinity norm in its
epigraph form (e.g., [6, p. 293]), we can formulate Problem 2
for as

(20a)

such that for all (20b)

for all (20c)

Unfortunately, (20c) is a set of nonconvex quadratic constraints,
and hence (20) is not convex. However, using the techniques of
the previous subsection, the problem in (20) can be recast as the
following semi-infinite linear program in

(21a)

such that for all (21b)

for all (21c)

for all (21d)

Here, (21d) ensures that is a valid autocorrelation sequence.

C. Constrained Frequency Response Approximation

Problem 2 can be viewed as designing a filter so that the
power spectrum of the pulse approximates the mask

, but never exceeds it. Such problems typically lead to non-
convex optimization problems in , but, as we have shown, they
can often be precisely transformed into convex problems in .
An alternative approach, which can lead to design problems
which are convex in , is to optimize an approxima-
tion of the pulse frequency response ,
rather than its power spectrum. Given that we want the power
spectrum to be close to , the desired pulse frequency re-
sponse is given by , where is a phase
component chosen by the designer. The accuracy of the approx-
imation of the frequency response will be measured by

(22)

The approximation error in (22) involves both magnitude and
phase components of the frequency response, whereas that in
(17) involves only the magnitude (squared) components. Filter
design problems in the complex domain, e.g., via incorporating
the complex domain error in (22), are often convex in [7]. One
compromise that we have made to obtain convexity in is that
the design is now dependent on the choice of . However,
in certain circumstances, such as those in Section III-D below,
there are natural choices for . We now formalize the de-
sign problem:
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Problem 3: Given , , , , and , find a
filter of length that achieves

(23a)

such that (23b)

or show that none exists.
Since the choice in Problem 2 is equivalent to Problem

1, and since the components of the argument of the norm in (22)
are “square roots” of the components of the argument of the
norm in (17), a natural choice for in Problem 3 is . For
that choice, the objective in Problem 3 can be written as

(24)

where was defined after (10),
, and the

constant is not required in the design

problem. If we choose a matrix such that , then
when , Problem 3 can be explicitly formulated as

(25a)

(25b)

for all (25c)

This is a convex optimization problem with a linear objective,
a rotated second-order cone constraint (25b), and an infinite
number of convex quadratic constraints (25c). Discretization of
(25c) results in a formulation that can be efficiently solved for
a (globally) optimal using general purpose convex cone opti-
mization tools; e.g., [22]. Although solutions to (25) do not gen-
erate waveforms that explicitly maximize the NESP, they effi-
ciently generate pulses with large NESPs, without the need for
the spectral factorization post-processing step that is required
for the efficient solution of Problem 1 [via (16)].

D. Constrained Frequency Response Approximation
With Linear Phase Filters

The solution of Problem 3 can often be simplified if is
(further) constrained to have linear phase. While this additional
constraint usually incurs a performance penalty, it leads to fil-
ters that have reduced storage requirements for their implemen-
tation. For brevity, we will focus on the case where the filter
length is odd, and its impulse response is sym-
metric. In that case

(26)

where For such filters, the
problem in (25) simplifies to

(27a)

subject to (27b)

for all (27c)

where and

. It is clear from the expression for
that a natural choice for in a such a design is

. We also point out that (27c)
is a set of linear constraints (two for each ), whereas (25c)
is a set of convex quadratic constraints. Once again, (27) can
be efficiently solved using general purpose convex optimiza-
tion tools, e.g., [22]. The problem in (27) is also particularly
amenable to solution methods that employ multiple exchange
techniques; e.g., [3] and [21].

The case of is also of interest because of its rela-
tionship with the PM designs. If we choose

, then for linear phase filters with a positive gain in the
passband, we have the formulation (in epigraph form)

(28a)

for all (28b)

for all (28c)

for all

(28d)

where we have used the fact that (28b) implicitly constrains to

be positive, and the fact that
for all . The constraint in (28c) is required to
ensure that the spectral mask is satisfied throughout the pass-
band. The problem in (28) is an SILP in and , and hence it
can be efficiently solved.

The formulation in (28) solves the following problem for an
odd-length symmetric filter:

(29a)

subject to (29b)

where is the “phase centered”
version of . It is interesting to compare this problem
to that solved in a previous approach to DSP-based UWB pulse
design [13]. The design problem considered in [13] can be para-
phrased as: given a set of frequency bands , known as
stopbands, which are separated from by so-called transition
bands, find a linear phase filter which achieves

(30)

where is a small positive constant to account for “ripples” in
the passband and is a set of weights. This problem is di-
rectly solvable using the conventional Parks–McClellan algo-
rithm [14]. While (29) emphasizes the fact that the waveform
generated by the solution to (28) fully complies with the spec-
tral mask, (30) illustrates that the equiripple nature of the fil-
ters designed by the PM algorithm may result in the mask being
violated. In order to ensure mask compatibility of waveforms
designed via the PM algorithm, the stopbands , the ripple
tolerance , and the weights must be carefully selected. The
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Fig. 2. Power spectrum of the Gaussian monocycle; System 1: complying to
FCC mask only at UWB passband. System 2: strictly complying to FCC mask
at all bands. System 3: strictly complying to the stricter mask at all bands.

search for appropriate values for these parameters would typi-
cally involve repeatedly solving (30) with different parameter
values in an interactive fashion, until an acceptable waveform is
found. In contrast, each of our proposed designs requires the so-
lution of only one optimization problem, and that problem can
be efficiently solved for a globally optimal waveform.

E. Imperfect Knowledge of

The formulations of Problems 1 and 2 were based on precise
knowledge of . In the case where is not precisely
known, we can replace by an estimate that is also
an upper bound; i.e., for all . This replace-
ment is well motivated for design convenience, because
is typically fairly flat over the band of interest and because re-
placing by a constant , for all , enables
the integrals which constitute , , and to be analytically
evaluated. Also, if is constant for all , the pre-
cise transformation of some semi-infinite linear constraints into
(finite) linear matrix inequalities [10] takes a relatively simple
form. The natural formulations of Problem 3 depend on

, but as we demonstrated in our development,
judicious choice of results in a problem that depends
only on , and hence similar approximations can be applied
when is not precisely known.

F. Design Examples

We now apply our formulations to the design of UWB pulses
which satisfy the US FCC mask. We choose the basis pulse to
be the Gaussian monocycle [25],
with its peak frequency response located at GHz.
The clock rate is set to be a relatively low frequency of

GHz. Based on the FCC spectral mask
illustrated in Fig. 2, we observe that most of the UWB signal
power should be allocated to the band from 3.1 to 10.6 GHz,
while considerable attenuation is imposed in other regions of the
spectrum, especially for frequencies up to 3.1 GHz. These con-
straints are designed to avoid interference to legacy narrow-band
systems such as the Global Positioning System that resides in

the frequency band [0.96, 1.61] GHz. Accordingly, we define
GHz as the UWB passband. In

addition to designs that comply with the FCC mask ,
we also seek pulse designs that comply with a tighter mask

, given by (see Fig. 2)

dB GHz GHz
dB GHz
dB GHz

(31)

Enforcing the tighter mask allows some margin for “spectral
regrowth” due to nonlinearities in the transmitter.

To motivate the need for our design techniques, we first con-
sider how well the standard Gaussian monocycle is matched to
the spectral mask. For a Gaussian monocycle, we can scale the
amplitude to generate three system designs, as illustrated in
Fig. 2. System 1 complies with the FCC mask only in the UWB
passband, System 2 has the largest possible amplitude under
the FCC mask, and System 3 complies with the tighter mask

. Clearly, System 1 violates the FCC mask in the stop-
bands, whereas Systems 2 and 3 comply with their respective
spectral masks at the expense of very low spectrum utilization.

1) Spectral Utilization Problem: We now investigate the
power utilization efficiency of the proposed pulse designs.

• Design 1: Our first design is obtained by solving a version
of (16) in which (16b) is discretized and (16c) is precisely
transformed into linear constraints on an positive
semidefinite matrix (e.g., [10]). This transformation leads
to an SDP formulation which can be efficiently solved for
the optimal using a general purpose solver; e.g., [22].
Furthermore, there are some indications (e.g., [4]) that the
inherent structure in SDP can be exploited using specially
designed algorithms that are substantially more efficient
than general purpose methods. Spectral factorization [12],
[26] is then applied to extract the optimal coefficients .

• Design 2: In this case we design an odd-length, symmetric,
linear phase filter via (27) in which (27c) is discretized. The
resulting optimization problem has a linear objective, a set
of linear constraints, and a single rotated second-order cone
constraint.

We now compare the pulses generated by the above two de-
sign methods with those generated by several existing methods,
including the PM pulse shaper in [13], the “prolate-spheroidal”
(PS) pulse shaper in [17], and the Gaussian monocycle. All the
pulses are configured to operate at the highest spectrum uti-
lization while conforming to the relevant spectral mask. We
will take the PM-based design for the FCC spectral mask in
Section VI-A as the benchmark design. That design has a length

filter, and the spectrum of the synthesized pulse is pro-
vided in Fig. 3. The power spectrum of a length PS pulse
[17] is shown in Fig. 4. For the Gaussian monocycle, we employ
Systems 2 and 3 in Fig. 2, as they do not violate their respective
masks. The power spectra of the pulses emanating from Pro-
posed Designs 1 and 2 for length filters and the FCC
mask are provided in Fig. 5, from which the improved NESP
of the proposed designs is immediately apparent. (The power
spectrum of a pulse obtained from Proposed Design 1 with the
tighter mask and a different basis pulse appeared in [27].)
In order to quantify the improved NESPs of our designs, we have
tabulated the NESPs of the different design methods under each
spectral mask in Table I.
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Fig. 3. Power spectrum of the PM algorithm based pulse [13] under the FCC
mask S (f).

Fig. 4. Power spectrum of the “prolate-spheroidal” pulse [17].

TABLE I
NESPS OF VARIOUS WAVEFORM DESIGNS

As expected, Proposed Design 1 provides the largest NESP,
because it is based on direct maximization of the NESP (see
Problem 1). However, it is interesting to note that both this

Fig. 5. Power spectrum of the optimally synthesized pulse under the FCC
mask S (f): (a) Design 1 and (b) Design 2.

design and Proposed Design 2 (which is based on the indi-
rect method of Problem 3 with the linear phase constraint) pro-
vide considerably larger NESPs than the PM pulse and substan-
tially larger NESPs than the PS design and the Gaussian mono-
cycle. This performance advantage is more pronounced when
the FCC mask is selected rather than the tighter mask .
These comparisons demonstrate the flexibility of our design ap-
proach in accommodating different pulse design requirements
while achieving the largest possible NESPs. The proposed de-
signs (and the PM-based pulses) also enjoy an implementation
advantage in terms of their low sampling frequency requirement
compared to that of the PS pulses (64 GHz) [17].

2) Pulse Duration Problem: Instead of maximizing the
NESP over filters of a given length, an alternative design
problem is to find the shortest pulse that achieves a given
NESP requirement, subject to satisfaction of the spectral mask.
Since the pulse duration is essentially determined by the filter
length , we can cast this design problem as: Given , ,

and , find a filter that has the minimum length ,
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Fig. 6. Maximum achievable NESP  versus L under the tighter mask
S (f).

subject to and for all . By defining
, this problem can be formulated in terms of

the autocorrelation as follows:

(32a)

(32b)

for all (32c)

for all (32d)

This problem is quasi-convex (in the sense of [6, Section 4.2.5]),
and hence it can be solved by a bisection search on for the fea-
sibility/infeasibility boundary of (32). [The smallest for which
(32b)–(32d) are simultaneously satisfiable is the solution.] At
each stage of this search we solve efficiently the semi-infinite
linear feasibility problem in (32) for the current value of .

To demonstrate the application of this approach, we deter-
mined the shortest filter that can generate a pulse with an NESP
of at least 80% under the (tighter) mask constraint . (Re-
call that when , the maximum achievable NESP is
82.08%.) After the bisection search, we found that when

, one has ; and when , .
Choosing , we obtain our optimally synthesized pulse

of duration ns. Similarly, the minimum length
filter required to achieve the NESP of 72.41% that was achieved
by the length 33 PM filter is mere . In order to gain fur-
ther insight, in Fig. 6 we have plotted the tradeoff between the
filter length and the NESP for the tighter mask . No point
above the curve is achievable, and filters which achieve points
on the curve can be efficiently obtained by solving Problem 1 via
(16). Fig. 6 is instrumental in striking a balance between perfor-
mance (spectral utilization efficiency ) and complexity (filter
length ). The NESP increases rapidly for small to medium
lengths but increases fairly slowly for longer filters.

3) Extension to Multiband Pulse Design: An alternative sig-
naling format to single-band UWB impulse radio is to use multi-
band (MB) UWB waveforms, which have been proposed for
wireless personal area networks (WPANs) under IEEE 802.15

[5]. In a multiband system, multiple bands of bandwidth greater
than or equal to 500 MHz are employed, with each band being
occupied by a distinct pulse. With the entire bandwidth divided
into several nonoverlapping subbands, multiband UWB systems
allow flexibility in efficiently “filling up” the spectral mask, and
facilitate coexistence with legacy systems and worldwide de-
ployment by enabling some subbands to be turned off in order to
avoid interference and comply with different regulatory require-
ments. In addition, multiband systems provide another dimen-
sion for multiple access via frequency division. Different users
can use different pulses for multiple access, and frequency hop-
ping can also be easily implemented by switching among those
baseband pulses to acquire greater frequency diversity.

Fortunately, pulse design for an MB system can directly
borrow the results from single-pulse design. The only differ-
ence lies in the different specifications of passband and the
corresponding spectral mask constraint. We assume that the
passband is equally divided into subbands, each of band-
width of GHz. For the pulse that occupies the

th subband, , we impose a spectral mask
that satisfies the global spectral mask and has low stopband
levels in order to avoid significant interband interference. In
particular, we impose

dB GHz
dB GHz

dB GHz
(33)

The filter tap coefficients for the th pulse can be obtained
by efficiently solving Problem 1 via the formulation in (16).
As an example, we suppose that the UWB passband is equally
divided into three subbands. Setting , we obtain the
synthesized pulses by replacing in Problem 1
with in (33), , respectively. The power spectra
of the synthesized multiband pulses are shown in Fig. 7.

IV. OPTIMAL UWB ORTHOGONAL PULSE DESIGN

Although they are (almost) orthogonal to each other, each of
the pulses in a multiband UWB system can only utilize a portion
of the power allowed by the FCC mask, since each of them occu-
pies only a portion of the entire bandwidth. The need for higher
data rates requires higher transmission power, which, in turn,
calls for orthogonal pulse sets with better spectrum utilization.
In addition to offering enhanced multipath diversity, orthogonal
pulses with overlapping spectra stand out as a promising alter-
native to fulfill the need for both orthogonal multiple access and
high data rates. In this section, we extend our FIR prefiltering
structure to deal with the orthogonal pulse design problem.

A. Orthogonality Formulation

Let us consider two pulses and that are gener-
ated by two different sets of filter coefficients and , each
of length . For these two pulses to be orthogonal, they have
to satisfy the time-domain constraint ,
which can be equivalently written in the frequency domain as

. In a matrix-vector form, the orthog-
onality constraint can be written as

(34)
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Fig. 7. Results for a three-band multiband UWB system. (a) First subband;
(b) second subband; (c) third subband.

where was defined after (10). Suppose that a filter has been
designed via a single pulse method, such as Problem 1. The

problem of directly maximizing the NESP of subject to
the orthogonality constraint (34) can be formulated as follow.

Orthogonal Pulse Design 1: Given , , , , and
, find that achieves

(35a)

such that (35b)

(35c)

or show that none exists.
The linear equality constraint in (35b) and the set of convex

quadratic constraints in (35c) describe a convex feasible set, but,
as in (14), the objective is to maximize a convex function of

, and hence (35) is a nonconvex optimization problem. Un-
fortunately, it is not possible to transform (35b) into a func-
tion of the autocorrelation vector , and therefore we cannot
directly borrow the direct single pulse design techniques from
Section III-A, as we did for the multiband designs. In order to
avoid the intricacies of having to deal with the potential for lo-
cally optimal solutions in the solutions of (35), we now seek for-
mulations of an indirect design problem that is easier to solve.
Our indirect formulations are based on the frequency response
approximation problem discussed in Section III-C.

As shown in Section III-C, a pulse with a large NESP can
be efficiently obtained by making close to a desired fre-
quency response . When designing
multiple orthogonal pulses, the desired response is constructed
so that each has the same power spectrum but a
distinct phase . To impose orthogonality among different
pulses, we can select the design parameters such that
the desired are mutually orthogonal. That is

for any (36)

If the desired frequency responses are orthogonal, then the
designed pulses will (essentially) inherit this property if the
achieved approximation error is sufficiently small.5 We can
formulate the resulting design problem as follows.

Orthogonal Pulse Design 2: Given , , , , a
filter designed via (23), and that is orthogonal to

according to (36), find that achieves

(37a)

such that (37b)

or show that none exists.
An approximation of the orthogonality constraint in (36) can

significantly simplify the design of (essentially) orthogonal
pulses. In particular, since is the passband (or bands) of the
spectral mask, then the constraint in (36) can be approximated
by taking the integral over , where is the mirror

5During the pulse shape design phase, if the channel information is available
at the transmitter, it can be incorporated into (36). By doing so, we can ensure
orthogonality among pulses even at the receiver’s end.
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image of in the negative frequencies. If is constant
over , then (36) can be approximated by

for any (38)

If that integral is (further) approximated by its -point centred
Riemann sum and is large, then the desired responses will be
(essentially) orthogonal if

for any (39)

where the th element of the phase vector is
, , with ,

being the lower band edge of and being the width of the
Riemann rectangle, which is (1 )th of the bandwidth of .
For convenience, we will define to be the set of such ’s.
A sufficient condition for (39) is that for any .

B. Sequential UWB Pulse Design

Having understood the orthogonality requirements, we
now propose a sequential (SEQ) strategy for (essentially)
orthogonal pulse design. The procedure starts with the design
of the first pulse subject to the mask constraint only.
Subsequent pulses , , are then designed
one by one to fit into the desired spectral mask, as well as to
be (essentially) orthogonal to all previously designed pulses.
To describe mathematically, we suppose that (essen-
tially) mutually orthogonal pulses are already
in place. Rather than directly minimizing the approximation
error of the th pulse , we minimize
the -norm of an -element vector whose th element is

, . When , this corresponds to
minimizing the -point centred Riemann sum approximation of

. Since ,
the subproblem in the SEQ strategy can be formulated as
follows.

SEQ Pulse Design: Given , , , , , , and
previously selected filter phase vectors of mutually

orthogonal pulses , find vectors of length and
of length that satisfy

(40a)

such that

(40b)

(40c)

(40d)

or show that none exists.
In this formulation, the objective (40a) [and (40b)] indirectly

seeks a pulse with a large NESP, while (40c) and (40d) en-
sure spectral mask compatibility and mutual orthogonality of
the target spectra, respectively.

To reduce the complexity of searching for , a convenient
approach is to select mutually orthogonal phase vectors prior to
the SEQ procedure. Treating as a length- codeword with
complex-valued elements, we can use the fast Fourier transform
(FFT) matrix to design an example of codewords as follows.

Complex Orthogonal Phase Vectors via FFT: A set of
mutually orthogonal phase vectors can be obtained
by setting , , for

.
With the phase vectors selected this way, we now

mimic (25) to propose the following convex formulation of the
SEQ pulse design subproblem with :

(41a)

such that (41b)

(41c)

where .

C. Sequential UWB Pulse Design With Linear Phase Filters

The formulation in (41) allows the FIR filters to have non-
linear phase characteristics. The design can be simplified if
is further constrained to have linear phase, which in turn simpli-
fies the selection of the orthogonal phase vectors . In the case
of odd-length symmetric linear phase filters, (40b) simplifies to

(42)

Since is real, a natural choice for is
, where . That

is, the orthogonal codewords can be constructed from binary
orthogonal codewords, . If we choose to be a power of
two, with , such binary codewords can be selected
from the set of length Hadamard codewords; e.g.,
[18, p. 424]. When , one must select elements from this
set. In the Appendix, we argue that an appropriate method is to
select Hadamard codewords in ascending order of the number
of sign transitions in the codeword.

Binary Orthogonal Phase Vectors via Hadamard Partition:
In a SEQ pulse design problem with linear phase filters, the
binary codewords of length should be selected
from the set of length-2 Hadamard codewords as follows.

1) Arrange all Hadamard codewords in ascending order of
the number of sign transitions in the codeword.

2) Set to be the th Hadamard codeword.
This choice (essentially) minimizes the loss of NESP due to

the “crossing bands” between bands of positive and negative
gain in the passband of the filter. As an example, if we have

discretization points (i.e., eight Riemann rectangles) and
we want to design pulses, the Hadamard partition result
suggests the following choices:

(43a)

(43b)

(43c)
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Fig. 8. Three orthogonal pulses designed via the SEQ strategy. (a) First pulse;
(b) second pulse; (c) third pulse.

For the larger values of that would be used in practice, the
first three codewords have a similar sign structure.

Fig. 9. Correlation properties of the designed orthogonal pulses.

With odd-length symmetric linear phase filters and the phase
vectors chosen as described above, (40) simplifies to

(44a)

(44b)

(44c)

from which explicit formulations for and can be
easily obtained.

D. SEQ UWB Pulse Design Example

As an example, we have designed three orthogonal UWB
pulses using the sequential design strategy with linear phase
filters described in the previous section, including the proposed
selection of the Hadamard codewords. We chose length
filters, length codewords, and the filters were designed
using a formulation of (44) with . Under the tighter mask
constraint , the power spectra of the resulting (essen-
tially) orthogonal pulses are provided in Fig. 8. The correlation
properties of these pulses with are provided in Fig. 9. The
NESPs of these three pulses are 76.51%, 51.31%, and 49.97%,
respectively, and hence all three pulses provide higher spectral
utilization efficiency than the pulse from the PS orthogonal
set [17] with the largest spectral utilization efficiency. (The PS
pulse has an NESP of 32.11%, and its power spectrum is shown
in Fig. 4.)

V. CONCLUSION

In this paper, we developed efficient methods for the design
of FIR prefiltering structures that synthesize single pulses and
sets of (essentially) orthogonal pulses for UWB systems that
must satisfy a spectral mask constraint, such as that imposed
by the U.S. FCC. Some algebraic transformations facilitated the
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formulation of various single pulse design problems as convex
optimization problems, from which a globally optimal solution
can be efficiently obtained. Related techniques were used to
generate efficiently solvable formulations of a range of other
UWB pulse design problems, including a minimum duration
single-pulse design, multiband pulse design, and multiple or-
thogonal pulse design. For the orthogonal pulse design problem
a sequential strategy was proposed, along with an optimal proce-
dure for the selection of the phase of the desired responses. This
approach was shown to generate a set of (essentially) orthogonal
pulses with high spectral utilization. Compared to other existing
pulses, our pulses provide better spectrum utilization and have
a lower sampling frequency requirement.

APPENDIX

NESP OF LINEAR PHASE FILTERS WITH HADAMARD

DESIRED PHASE VECTORS

In Section IV-C, we described a procedure for selecting the
phase vectors of the desired frequency response for linear
phase filters that generate a set of (essentially) mutually or-
thogonal UWB pulses. To investigate how the proposed selec-
tion from the set of Hadamard codewords affects the achievable
NESP for each pulse, we introduce the following definitions.
First, we let be a small positive value which represents the
magnitude of the allowable passband ripple of the pulse. For
the th filter we have the following.

• A band of frequencies is said to con-

stitute a positive passband if

for all .
• That band is said to be a negative passband if

for all .
• Any band between a positive passband and a negative pass-

band is said to be a crossing band.
• The frequencies at edges of that are not in positive or

negative passbands are said to be a transition band.

Given these definitions, it is clear from (44b) that the presence
of a crossing band corresponds to a sign transition in .

Since , the total NESP of
a waveform is the sum of the NESPs generated by the positive
and negative passbands of the filter, plus that generated by the
crossing and transition bands of the filter. Since the power spec-
trum of the pulse is close to the mask in the bands which corre-
spond to the passbands of the filter, we have almost perfect spec-
tral utilization in those bands. Therefore, the contributions of the
passbands to the NESP is approximately ,
where is a small positive number, and is the fraction of
the passband occupied by the positive (negative) passbands; i.e.,

, where is the sum of the bandwidths of the
positive/negative passbands and is the bandwidth of . In
contrast, the power spectrum of the pulse is some distance from
the mask in the bands corresponding to the crossing and transi-
tion bands of the filter, and hence the contribution of these bands
to the NESP can be approximated by , where is
a small number and and are the sums of the fractional

bandwidths of the crossing and transition bands. Therefore, the
overall NESP can be approximated by

(45)

where we have used the fact that .
Typically, the bands corresponding to the crossing bands will
be about the same width, and hence , where
is the number of crossing bands and is the fractional band-
width of one crossing band. Hence

(46)

and therefore an appropriate ordering for the Hadamard codes
is one which minimizes the number of crossing bands. Since
the crossing bands are associated with a sign transition in the
Hadamard code [see (44b)], an appropriate ordering of the codes
is in ascending order of the number of sign transitions.
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