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Design and Analysis of Transmit-Beamforming based
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Abstract—This paper deals with design and performance anal-
ysis of transmit beamformers for multiple-input multiple-output
(MIMO) systems based on bandwidth-limited information that
is fed back from the receiver to the transmitter. By casting the
design of transmit beamforming based on limited-rate feedback
as an equivalent sphere vector quantization (SVQ) problem,
multiantenna beamformed transmissions through independent
and identically distributed (i.i.d.) Rayleigh fading channels
are first considered. The rate-distortion function of the vector
source is upper-bounded, and the operational rate-distortion
performance achieved by the generalized Lloyd’s algorithm is
lower-bounded. Although different in nature, the two bounds
yield asymptotically equivalent performance analysis results. The
average signal-to-noise ratio (SNR) performance is also quantified.
Finally, beamformer codebook designs are studied for correlated
Rayleigh fading channels, and a low-complexity codebook design
that achieves near-optimal performance is derived.

Index Terms—Beamforming, generalized Lloyd algorithm,
Grassmannian line packing, limited rate feedback, multiple-input
multiple-output (MIMO), partial channel state information,
rate-distortion function, vector quantization, Welch bound.

1. INTRODUCTION

RANSMIT beamforming can improve considerably the

performance of multiple-input multiple-output (MIMO)
systems [6], [17], [20]. Channel state information (CSI), how-
ever, has to be furnished to the transmitter in order to enable the
beamforming operation. The question is what kind of CSI can
be made practically available to the transmitter in a constantly
changing wireless setting, especially for frequency-division du-
plex (FDD) systems where the downlink and uplink channels
are not reciprocal. The various system imperfections that are
present include channel estimation errors, feedback delay, as
well as limited feedback bandwidth, and give rise to partial (im-
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perfect) CSI at the transmitter (CSIT). Certain CSI imperfec-
tions, such as feedback delay and estimation errors, can be cap-
tured by a statistical channel mean information model, out of
which the beamforming vector is derived (see [10], [20], [25],
and [29] and the references therein).

Another important CSI imperfection in practice is the band-
width constraint over the feedback link, which conveys to the
transmitter only finite bits per fading block. For such cases,
the transmitter and the receiver need to maintain a common
beamformer codebook, i.e., a finite collection of beamforming
vectors (codewords). For each received codeword index, the
transmitter chooses the corresponding beamforming vector
for data transmission. Codebook design criteria include maxi-
mizing the average signal-to-noise ratio (SNR) at the maximum
ratio combining (MRC) output [16], [20], maximizing the
average mutual information [15], or minimizing the outage
probability [19]. In general, the codebook design can be viewed
as a vector quantization (VQ) problem, and the generalized
Lloyd algorithm can be employed to actually construct the code-
book. Specifically for independent and identically distributed
(i.i.d.) Rayleigh fading channels, it can be readily shown that
designing beamformer codebooks reduces to a sphere vector
quantization (SVQ) problem, where the codewords are vectors
constrained on the unit hypersphere and the vector source input
is uniformly distributed on the unit hypersphere. Different
from the conventional Euclidean distance, special to this SVQ
problem is the distortion metric, which is a projective distance
from the source input vector to the codeword vector. Besides
the SVQ approach, achieving the maximum Welch bound
(or, equivalently, Grassmannian line packing) has also been
pursued recently in an effort to obtain near-optimal codebook
designs [16], [19], [27] for i.i.d. Rayleigh fading channels.
Specifically, [27] provides an analytic codebook construction
method, which leads to constant modulus transmissions as well
as low-complexity quantization enabled by the fast Fourier
transform (FFT) operation.

A main issue in source coding and quantization has been the
optimal tradeoff between distortion and rate (number of bits
used to describe the random source), “both in theory and in ac-
tual codes” [11]. The study of such optimal tradeoffs for the
special SVQ problem arising in the design of transmit beam-
formers under limited-rate feedback constitutes the major goal
of this paper. We are interested in theoretical performance limits
of this SVQ problem, i.e., the rate-distortion function of the
vector source input that specifies the ultimate limit on the min-
imum number of bits required to achieve a certain distortion
level. Also to our interest is the operational rate-distortion per-
formance, i.e., number of feedback bits versus average SNR
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Fig. 1.

degradation, achieved by the generalized Lloyd algorithm ap-
plied to our problem at hand. As usual, a certain performance
gap exists between the theoretical performance and the opera-
tional performance, since the former generally requires infin-
itely long sequence-by-sequence quantization, while the latter
is achieved via the simplest vector-by-vector quantization.! It is
thus of interest to investigate the relationship between theoret-
ical and operational performance.

Regarding performance analysis of the SVQ problem, the fol-
lowing are the contributions of this paper .

1) Relying on rate-distortion theory tools, we upper-bound
the rate-distortion function of the vector source input,
using as a distortion metric a suitable projective distance
(Section III-B). We also explore the bound-achieving con-
ditional distribution.

2) Using the bounding technique developed in [19] and [30],
we lower-bound the operational rate-distortion perfor-
mance, and thus the average SNR degradation, achieved
by the generalized Lloyd algorithm (Section III-C).
Numerical examples confirm that this lower bound is
universally tight, implying that it also serves as a very
close performance approximation.

3) We also quantify the average SNR performance achieved
by the so-designed beamformer codebook over i.i.d.
Rayleigh fading channels.

Investigating the SVQ problem related to transmit beam-
forming from the rate-distortion function perspective is novel
and useful. On the other hand, the lower-bounding technique
in Section III-C is similar to that used initially by [19] to
lower-bound the outage probability for delay-sensitive appli-
cations, and later by [30] to lower-bound the symbol error
probability for phase-shift keying (PSK)/quadrature amplitude
modulation (QAM) constellations. We find that using SNR
degradation as performance metric allows one to quantify the
achieved SNR performance, and is thus attractive for most
applications. Interestingly as we will see, although different
in nature, the two bounds yield asymptotically equivalent per-
formance analysis results. Finally, we study codebook designs

Here, a vector is the smallest unit to perform sphere VQ under the special
distortion metric.
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for correlated Rayleigh fading channels. Based on a proper
codebook designed for i.i.d. Rayleigh fading channels, we
develop a beamformer codebook that achieves near-optimal
performance in the correlated scenario, while enjoying very
low design complexity. Throughout the paper, we adopt the
following notational conventions.

Notation:: Bold upper and lower case letters denote matrices
and column vectors, respectively; (-)7 and ()’ denote trans-
pose and Hermitian transpose, respectively; IE[-] denotes the en-
semble average; C™V denotes the complex IV -dimensional space;
QY denotes the unit hypersphere in the complex NN -dimensional
space; U(-) denotes the uniform distribution; and CA/ (a, X) de-
notes a complex Gaussian distribution with mean a and covari-
ance matrix X.

II. SYSTEM MODEL AND SPHERE VECTOR
QUANTIZATION PROBLEMS

We will deal with i.i.d. Rayleigh fading channels in this
section and the next, and consider a wireless communication
system with multiple (V) transmit antennas and a single receive
antenna, as depicted in Fig. 1. Beamformer codebooks designed
for such multiple-input single-output (MISO) systems can be
directly applied to i.i.d. Rayleigh MIMO channels without
loss of optimality [16]. Also, as we will show in Section III-E,
performance analysis of MISO systems with optimal transmit
beamforming can be used for MIMO systems with only minor
modifications. In short, focusing on MISO systems incurs no
loss of generality.

Our focus will be on narrowband block transmissions where
the wireless channel is frequency nonselective. Let hj denote
the channel coefficient between the kth transmit and the single
receive antenna, and h := [hy,ha,...,hy|T, where N is
the number of transmit antennas. The channel coefficients Ay
are uncorrelated and zero mean circularly complex Gaussian;
ie., hy ~ CN(O,J%), Vk. This assumption corresponds to
a rich scattering environment and transmit antennas placed
sufficiently far apart from each other. We further consider
channel realizations that do not vary within a block but can
change from block to block, which corresponds to the so-called
block fading channel model that has been adopted by many
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practical wireless systems [24]. We also suppose that CSI is
perfectly available at the receiver, which allows one to isolate
the partial CSI effects due to the limited-rate feedback [20]. As
in [15], [16], [19], and [20], the feedback channel is assumed
to be error and delay free, but limited in bandwidth, thus
conveying to the transmitter only B feedback bits per block.
The error-free assumption can be well approximated through
the use of sufficiently powerful error control codes over the
feedback link, whereas the delay-free assumption is accurate
when the processing and feedback delays are small relative to
the channel’s coherence time.

Corresponding to each B-tuple, the transmitter selects a unit-
norm beamformer (steering vector) w and transmits through the
multiple antennas the information symbol s with average energy
E. The received symbol in noise is thus expressed as

y=w"hs+n (€))

where n is additive white Gaussian noise (AWGN) with zero
mean and variance Ny/2 per real and imaginary dimension.
Without loss of generality, we set E5/Ny = 1 throughout the
paper.

Both transmitter and receiver maintain a common codebook
W comprising M := 28 beamforming vectors (codewords)
W := {wy,...,wys}. Following ideal channel estimation, the
receiver chooses the best (in the maximum instantaneous SNR
sense) beamforming vector

W, = arg max |w’th|?
wew
= in (|h”> — |wth|? 2
arg min (|h|* — [w’h/?) @)

and feeds back the B-tuple of the corresponding codeword
index. By matching the steering vector with a quantized channel
codeword, transmit beamforming is implemented using only
partial CSI obtained through the limited-rate feedback channel.

The design task now becomes finding an appropriate code-
book W in order to optimize a certain objective. Maximizing
the average receive SNR, IE[|[w'h|?] has been widely accepted
[16], [20] and will also be adopted in this paper. To facilitate
performance analysis, we equivalently minimize

B b} - [win|’] 3)

which expresses the average SNR degradation due to quantiza-
tion, while IE[|h|?] is the achievable average SNR in presence of
perfect CSIT. Our codebook design can thus be formally stated
as

min IE [|h|2 - |W;’:‘h|2:|
w
H

subjectto w;"'w; =1, V. (@)

Codebook design is straightforward when M < N, and the op-
timal codebook WV can be chosen as any M orthogonal columns
of an arbitrary N x N unitary matrix [16], [19]. In this paper, we
focus on the more difficult M > N case, which can be viewed
as a VQ problem with

h ~ CN (0,071y)
W:{le"'7wl\1}7|wi|:17 Vi
distortion metric : dy(h, w;) := |h|2—|w,z{h|2, Vh,i. (5)

source input :

codebook :
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Notice that this distortion measure is valid for N > 2 only, since
for N = 1, the distance is trivially zero. To cast the problem (5)
in a more convenient form, consider the normalized version of
the average SNR degradation in (3)

E Ib[ - |wlb|’]

E[lhf]
where g := h/|h| is the direction of h, and the equality in (6)
is due to the fact that with h complex i.i.d. Rayleigh distributed,
g and |h| are independent [20]. Since IE[|h|?] = No? is fixed,
one can equivalently maximize (6), instead of optimizing the

average SNR degradation in (3). In accordance with this new
objective function, the original VQ interpretation in (5) becomes

~E 1= W] ©

g ~UQY)
W = {Wl, ..
distortion metric : d;(g,w;) =1 — |wzig|2, Vg, i (7)

source input :

codebook : LWy h Wil =1, Vi

i.e., the source input is replaced by g, while the distortion
measure becomes d; (g, w;). Notice that the codewords {w,}
are vectors constrained on the unit hypersphere QV, while
the source input g is uniformly distributed on Q~ [20]. The
problem formulations in (5) and (7) constitute what are known
as SVQ problems. Unique to the SVQ problem under consid-
eration is the distortion metric, which is a projective distance
from the source input vector to the codeword vector, instead
of the Euclidean distance adopted by conventional codebook
designs in source coding.

III. ALGORITHM AND PERFORMANCE ANALYSIS FOR i.i.d.
RAYLEIGH FADING CHANNELS

In this section, we first briefly outline the generalized Lloyd
algorithm that solves our SVQ problem at hand. Subsequently,
we derive an upper bound to the rate-distortion function of the
vector source input (Section III-B), along with a lower bound
to the operational rate-distortion performance achieved by the
generalized Lloyd algorithm (Section III-C). We further iden-
tify a simple and valuable relationship between the theoretical
performance and the operational performance and also quantify
the achievable average SNR performance, which offers a useful
guideline for practical system designs.

A. Generalized Lloyd Algorithm

Associated with every quantizer is a partition of the input
space C" into M regions A, As, ..., Ay, with A; denoting
the neighborhood (or cluster region) of the codeword w;. De-
signing a quantizer amounts to finding a codebook and a par-
tition rule that jointly minimize the overall average distortion
measure, which is exactly the average SNR degradation in (3).
Two necessary conditions prove to be essential for the quantizer
design [8]. First, necessary to the optimality of the codebook,
is the so-called centroid condition, which decrees that for each
region, the optimal codeword should be chosen to minimize the
distortion measure averaged over that region, or the local av-
erage distortion. Take the ith region A;, for example, whose
local channel correlation matrix is R; := IE[hh’!|h € A4;]. The
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. . t ..
optimal beamforming vector w*" should maximize w*R,;w;,

subject to the unit norm constraint. Therefore

t
w;?" = arg max wliR;w; = u; 8)
whw,=1

where u; is the eigenvector corresponding to the largest eigen-
value of R;. In other words, for each region A;, the optimal
beam points along the principal eigenvector of R;, which is
also known as eigen beamforming [10], [20], [25], [29]. Second,
necessary to the optimality of the channel space partition is the
nearest neighbor rule

h e Ai iff d]_(h7 Wz) S dl(h,W]')7
which dictates that all input vectors that are closer to the code-
word w; than to any other codeword be assigned to the neigh-
borhood of w; or region A;. The generalized Lloyd algorithm
repeatedly examines the two necessary conditions to find the op-
timal codebook and the channel space partition.

Generalized Lloyd Algorithm [8]
sl) Initialize with any valid code-

book.

s2) For the given codebook, use the
nearest neighbor rule (9) to find
the optimal regions.

s3) For the given regions, use the
centroid condition (8) to deter-
mine the optimal codewords.

s4) Loop back to s2) until conver-

gence.

Due to the centroid condition and the nearest neighbor rule,
the overall average distortion monotonically decreases, or at
least does not increase after each step. Normally it takes only
five to eight iterations for the algorithm to converge. For a
detailed discussion of practical issues about the algorithm,
including global/local optimality properties of the codebook,
and training-sequence-based implementation, the reader is re-
ferred to [8, Ch. 11]. We emphasize that the generalized Lloyd
algorithm is applicable to arbitrary fading channels. In contrast,
alternative design approaches to be discussed in Section III-D
generally work for i.i.d. Rayleigh fading channels only. We
will present a low-complexity codebook design method for
correlated fading channels in Section IV.

B. Upper Bounding the Information Rate-Distortion Function

Describing any continuous-valued random source input
h using only finite bits entails distortion. Given the source
distribution and a proper distortion measure, the rate-distortion
function of h specifies the ultimate limit on the minimum
number of bits required to achieve a certain distortion level.
Naturally, this function limit depends on the source input
statistics and the distortion measure. For different distortion
measures, the function limits are different even for the same
source input. In this subsection, we derive an upper bound of
this function limit.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 5, MAY 2006

Recall that the codeword w; is constrained on the unit hy-
persphere Q. Although this unit norm constraint is necessary
to fix the transmit energy, it complicates the analysis of the
rate-distortion function. Fortunately, as far as the rate-distortion
performance is concerned, this constraint can be relaxed, pro-
vided that a proper distortion metric can be devised to be scale

invariant. Specifically, for any codebook W = {w,...,was},
we can define a scaled version of it
V.= {Vl = O1W1,..., V) i= QA,[W]\,[} (10)

where aq,...,ap > 0 are arbitrary positive real scalars. It
is easy to show that the distortion metric do(h,v;) := |h|? —
|vIth|?/|v;|? is scale invariant

da(h,vi) = di (b, w;), Vi, (11)

for any codebook W, source input realization h, and arbitrary
positive real numbers a4, . . ., aps. Designing YV under the unit-
norm constraint is equivalent to designing 1 without any code-
word constraint in the sense that they both provide identical
rate-distortion performance.

In a nutshell, for the SVQ problem under consideration, we
can safely remove the unit norm constraint and use da(h, v;) as
the distortion metric describing the projective distance from h
to the unconstrained codeword v;. The rate-distortion function
under this distortion metric, is defined as [5], [7]

R(D):= inf Z(h:
(D) Jnf (h;x)

st Bpmyp(xin) [d2(h, )] < D (12)

where p(x|h) is any conditional distribution of x given h over
which the infimum is taken, p(h) is the known input distribution
(zero mean i.i.d. complex Gaussian here), and Z(h;x) is the
mutual information between h and x. Naturally, if Euclidean
distance is used as the distortion measure, the corresponding
rate-distortion function would be different from the so-defined
R(D) in (12).

Because it is difficult to find the optimal conditional distri-
bution p(x|h) and the rate-distortion function, we next derive
an upper bound of it. Such an upper bound, together with the
bound-achieving test channels, will prove to be very useful, as
they bear a close relationship with the operational rate-distor-
tion performance in Section III-C.

To this end, we first construct a reverse test channel as in
Fig. 2, where n ~ CN/(0, O’%IN), x ~ CN(0,02Iy), n is un-
correlated with x, and 072] + 02 = 7. For such a reverse test
channel, the mutual information between x and h is given by

(13)

where H(h) is the differential entropy of the complex Gaussian
random vector h, the second equality is due to independence of
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m~ C’]\T(O.O'?7 L\r)

x and 1 independent

h=x+77 <':@<:l XNCN(O,O’?ZIN)

Fig. 2. Reverse test channel.
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S

h and & independent

h ~ CN(0.07 Ty) :><—B:>®:> x = c(h + )

Fig. 3.

x and 7, and the third equality is due to independence among
the coefficients of x and 7).

We next evaluate the average distortion between h and x for
this test channel. Notice that

HpymH H oy H
]E w :]E trace M
xHx xHx
H oy H
= trace (]E [’7’7# >
xtx

= trace (]E[nnH] -IE {—

= trace (IE[nnH] .

1
= trace (a%IN . NIN) =o; (14

where trace(-) is the matrix trace operator, the second equality
is due to the interchangeability of the trace and the expecta-
tion operators, the third equality is due to independence of
and x, and the fourth equality is due to the independence of
the vector length |x| and the vector direction x/|x| for complex
i.i.d. Gaussian vectors, i.e., E[xx"] = E[|x|?] - E[xx"/|x|?].
Therefore, the average distortion is

x"h?
T
o 2 |XH"7|2
‘E['"' TG }
=(N —1)o;. (15)

Letting o7 = D/(N — 1), the mutual information becomes

N -1
Z(h;x) = N log, <TU’2L>

while the average distortion is simply D.

Following the reverse test channel, we can construct a for-
ward test channel, as shown in Fig. 3, where € ~ CN(O0, agIN)
with Ug = (0707)/(07 + 07 ), € uncorrelated with h, and the

scaling constant ¢ (o7 — o2)/op. It can be readily veri-

(16)

Forward test channel.

fied that (13), (15), and (16) also hold true for the forward test
channel. These two test channels are actually equivalent, which
can be seen from the facts that for both test channels, h and x
are jointly Gaussian, and IE[h**h] and IE[x"*h] are the same.

The reverse and the forward test channels demonstrate that
a mutual information as shown in (16) is achievable subject
to the average distortion constraint [E[ds(h, x)] < D in (12).
Equation (16) therefore serves as an upper-bound to the source
input’s rate-distortion function, when the aforementioned pro-
jective distance da(h, x) is used as the distortion measure. Sum-
marizing, we have Theorem 1.

Theorem 1: For a complex i.i.d. Gaussian source input h ~
CN(0,021y) with the distortion metric d2(h,x) = |[h/* —
|x"*h|?/|x|?, an upper bound to the rate-distortion function of
the source input h is given by

_ [ Nlog, (*5tap), 0<D<(N-1)
(D) = {0, D> (N —1)02.

Notice that when the required distortion D > (N — 1)o7, no
feedback bit is needed. Actually, it can be readily shown that in
the worst beamforming case where the beam-steering vector is
arbitrarily chosen, the average SNR is exactly o2, resulting in
an average SNR degradation of (N — 1)o7. Thus, the average
SNR degradation can not exceed (N — 1)o7.

An important dual to the rate-distortion function is the source
input’s distortion-rate function, defined as [11]

% a7

D(R) = inf ]Ep(h)p(x\h) [dg(hx)]
p(x|h)
st. Z(h;x) <R. (18)

Due to the forward and the reverse test channels, an upper bound
to the distortion-rate function can be similarly found as
Du(R) = (N —1)02-27% . (19)

For both bounds in (17) and (19), the bound-achieving con-
ditional distribution p(x|h) is indeed specified by the forward
test channel

p(x/h) ~ CN (ch, cZggIN) (20)
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a=3

-3 -2 -1 1 2 3

Fig. 4. Probability density function of the codeword direction 6.

which is complex normal distributed with mean proportional to
h and covariance proportional to the identity matrix. Because
the beamforming vector in practice is unit-norm constrained,
we are particularly interested in the distribution of the codeword
direction x/|x|. A tractable expression for the latter is not avail-
able in general. In the following, we give a simple example that
provides useful insight to the distribution of the codeword di-
rection.

Example: For illustration purpose, let us consider a two-di-
mensional real-valued example. Without loss of generality, let
h := [h1,0]7, a := |h1]|/(co¢), and x := [z1,22]. In this
example, the direction of x is fully represented by the phase
6 := tan=!(z2/x1). According to (20), the conditional distri-
bution of the phase, or codeword direction, given channel real-
ization h = [hy,0]%, is

—a? ) 1_|_Erf(ac059)
e 1 _a2sinZ0 V2
h) = — 2 R N
p(f]h) +\/2ﬂ_acosﬁe 5

2

2y
where Erf(-) is the standard error function. Fig. 4 plots this
conditional distribution for several values of a. The phase 6 is
uniformly distributed when @ = 0; as a increases, the phase
distribution becomes more and more concentrated around the
given channel realization h. In fact, when a is large enough, the
conditional distribution of the codeword direction approaches a
Gaussian density function with variance 1/a?

my a  _a20%
R e =

p(6|h) W

This can be justified because when « is large, the values of ¢ for
which the density function (21) has significant values are getting
very small, and thus sin(f) = 6 and cos(f) = 1. The larger a
is, the more clustered the conditional distribution is around the
channel vector h.

(22)

C. Quantifying the Operational Rate-Distortion Performance

It is well known that in order to achieve the rate-distor-
tion function limit, quantization should be performed on a
sequence-by-sequence basis, with the sequence length going
to infinity [5], [7]. For the SVQ problem under consideration,
the distortion measure between an input vector sequence and a
codeword vector sequence can be defined as

L
dohw) =13 d (W0 w") @
=1
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where L is the sequence length, h := {h® ... h(P)}
is an input sequence containing L input vectors, and
w, = {wl(l), e 7W§L)} is the ith codeword sequence
containing L codeword vectors. The associated computational
complexity and delay are prohibitively large, making the se-
quence-by-sequence quantization practically impossible.

On the other hand, the generalized Lloyd algorithm in Sec-
tion III-A implements quantization on a vector-by-vector basis.
Justifiably, a performance gap is always present between the
rate-distortion function and the operational rate-distortion per-
formance that is measured by the number of feedback bits versus
average SNR degradation achieved by the generalized Lloyd
algorithm. We next derive a lower bound to this operational
rate-distortion performance. Interestingly, as we show next, a
simple and important relationship emerges between the opera-
tional rate-distortion performance lower-bound and the rate-dis-
tortion function upper bound we derived in Section III-B.

Consider any codebook W and define the normalized SNR
degradation

_ [0 — [win[*
TP

2 —1—|wlg|’ (24)
where z is a random variable taking values between 0 and 1.
Let F'(z) denote the cumulative distribution function (CDF) of
z. Even though F'(z) depends on the specific codebook, a code-
book-independent upper bound is available [19], [30], as fol-
lows:

- N-1 -5
F) < Floy = { MV OS2 <M70
1 1>2>M ™D,

(25)

Let R,(D) denote the operational rate-distortion perfor-
mance and D, (R) denote the dual operational distortion-rate
performance. Based on (25)

Do(R) =T [|h|2 - |w;*fh|2]

— [ 2ir () B 0]

> [ 2df () 1 [InP]
=(N —1)032" 7

(26)

where the second equality follows from the independence of |h|
and g, and the inequality fol 2dF(z) > fol zdF(z) is due to the
fact that F'(z) < F(z), which can be verified using integration
by parts. Thus

Dy(R) == (N — 1)o22” %7 27)

serves as a lower bound to the operational distortion-rate per-
formance D,(R). Inverting (27), we obtain

Ry(D) = { (N —1)log, (N5t02), if0 <D < (N—;)U,ZL
0, if D> (N —1)oj

(28)

which is a lower bound to the operational rate-distortion perfor-

mance R,(D). We emphasize that the lower bounds in (27) and
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Fig. 6. Rate distortion performance, N = 3.

(28) are independent of the actual codebook design, and thus
applicable to any beamformer codebook.

To investigate the tightness of the performance bounds in (27)
and (28), we carry out Monte Carlo simulations for N =2 up to
4 and plot the operational rate-distortion performance R, (D) in
Figs. 5-7, respectively. The training sequence size of the gener-
alized Lloyd algorithm was set to 100 000, the number of itera-
tions to 20, and the channel covariance was U}ZL = 1/N. The per-
formance lower-bound R;(D), and the source input’s rate-dis-
tortion function upper bound R, (D) are also plotted for com-
parison. It is observed for all the numerical examples that with
the codebook obtained from the generalized Lloyd algorithm,
the lower bound R;(D) is sufficiently tight throughout the en-
tire distortion range; and thus, the lower bound R;(D) indeed
serves as a close approximation to R, (D).

Surprisingly, the operational rate-distortion performance
lower bound (28) is nothing but a simple, scaled version of the
source input’s rate-distortion function upper bound in (17)
(N

;D-Rll(D).

Ri(D) = N

(29)
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The scaling factor (N — 1)/N steadily approaches 1 as
N increases. As we can see, the two performance analysis
approaches, although very different in their nature, yield
asymptotically equivalent results. To the best of our knowledge,
such a simple relationship has not been identified before.

Summarizing, we have the following important result.

Proposition 1: For a complex i.i.d. Gaussian input
h ~ CN(0,0%Iy) with distortion metric da(h,x) =
|h|? — |x"*h|?/|x|?, the operational rate-distortion perfor-
mance achieved by the generalized Lloyd algorithm can be
closely approximated by its lower bound in (28), which is a
simple scaled version of the source’s rate-distortion function
upper bound in (17), as follows:

R,(D) = Ri(D)

N-—-1
= —R,(D
L)
N -1
= (N —1)log, (—o?) (30)
D
when 0 < D < (N — 1)o7 and R,(D) = 0 when D >

(N-1)o3.

On the other hand, the dual operational distortion-rate per-
formance achieved by the generalized Lloyd algorithm is also
closely related to its lower bound (27) and the source’s distor-
tion-rate function (19) as follows:

D,(R) ~ Dy(R) = D, <(NN4_1)R> = (N —1)o22 71,
(D

More important, we are able to quantify the achieved average
SNR by the so-designed beamformer codebook.

Proposition 2: For the considered V-dimensional transmit
beamforming system operating over an i.i.d. Rayleigh fading
link, with the size-2” beamformer codebook designed by the
generalized Lloyd algorithm, the achieved average SNR +, can
be closely approximated by

B

Yo(B) = Noi — Do(B) = No} — (N — 1)o;2 51, (32)

Proposition 2 provides a very important guideline for system en-
gineering: Given a desired average SNR, it provides the number
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of feedback bits required to achieve it; conversely, given a fixed
number of feedback bits, it quantifies the achievable average
SNR.

Another important figure of merit is the average SNR im-
provement relative to the worst beamforming case, i.e., beam-
forming with an arbitrary beam-steering vector, which is simply
given by

A(B) = 70(B) = 1(0) = (N = 1)} (1-277) . (33)

D. Alternate Codebook Design Approaches

As we have seen, to minimize the average SNR degradation
in (3), the codebook design problem amounts to solving an SVQ
problem, using the generalized Lloyd algorithm. Interestingly,
the SVQ problem we dealt with is closely related to another
interesting problem.

Consider a complex-valued codebook W of size M x N asin
(7), where every codeword has unit norm. The maximum cross-
correlation amplitude of such a codebook is defined as

o H
and Welch’s lower bound on [,,,, is given by [26]
(M —-N)
Imax(w) Z Al 7737 A\ Ar (35)
(M —1)N)

As shown in [16] and [19], codebooks that achieve this max-
imum Welch bound? provide near-optimal solutions to the orig-
inal SVQ problem for i.i.d. Rayleigh fading channels. We will
call YW a maximum Welch bound with equality (MWBE) code-
book if it satisfies (35) as an equality [22].

Finding MWBE codebooks or achieving the maximum Welch
bound, however, is not easy analytically or numerically [16],
[22]. Analytical constructions are possible in certain cases [23],
[27], while in other cases, one has to resort to numerical search
algorithms in order to obtain near MWBE codebooks. In partic-
ular, a discrete Fourier transform (DFT)-based codebook search
algorithm can be used [12]. As recently shown in [27], such a
construction will also lead to desirable low-complexity quanti-
zation enabled by the FFT. In the following, we will not differen-
tiate between codebooks designed using the generalized Lloyd
algorithm, and those (near) MWBE codebooks designed as de-
tailed in [12], [27], because both design approaches yield code-
books of similar performance (see, e.g., [16, Fig. 4] for an illus-
trating example). We will call these designs collectively proper
codebooks for the SVQ problem under consideration. The max-
imum cross-correlation amplitude of such a proper codebook
closely approaches, if not achieves, the maximum Welch bound
(35).

E. From MISO to MIMO

Beamformer codebooks designed for MISO systems can be
directly applied to i.i.d. Rayleigh MIMO channels without any

2The problem of achieving the maximum Welch bound is also known as
Grassmannian line packing in mathematics.
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loss of optimality [16]. To shed more light in the performance
over i.i.d. Rayleigh fading MIMO channels, let H be the N x K
channel matrix, with K being the number of receive antennas,
and its entries i.i.d. Gaussian distributed as h;; ~ CN(0,0%).
Other assumptions are identical to the MISO setup. For the con-
sidered MIMO systems, an upper bound to the average SNR
degradation is given by [16]

S)

where A, v are the largest eigenvalue and the corresponding
eigenvector of H"*H. Because H"*H follows the Wishart dis-
tribution, A and v are independent, with v uniformly distributed
on the unit hypersphere Q7 [28]. Furthermore, IE[\] = o2 and
can be calculated through integration [6, eq. (23)].

Comparing (36) with the objective function in (6), A and v
play exactly the roles of |h|? and g in the MISO case. Therefore,
it is clear that the performance analysis in Section III-B and
Section III-C for i.i.d. Rayleigh MISO systems carries over to
the i.i.d. Rayleigh MIMO case as well. Specifically, with o}
replaced by o2, (30) serves as an approximate upper bound to
the average SNR degradation, and (32) serves as an approximate
lower bound to the achievable average SNR.

(36)

IV. CODEBOOK DESIGNS FOR CORRELATED
RAYLEIGH FADING CHANNELS

So far, we have developed transmit beamformers for i.i.d.
Rayleigh fading channels. In this section, we pursue transmit
beamformer designs for correlated Rayleigh fading MISO chan-
nels, where h ~ CN/(0,R) and R is the channel correlation
matrix that depends on the relative geometry of the propaga-
tion environment; see also [9] for a detailed justification of this
channel model. Matrix R is known both to the transmitter and
to the receiver, and as before, the feedback link can support only
B bits per block.

For such a correlated fading scenario, it is still desirable to
maximize the average receive SNR. The problem though is dif-
ferent from that in (4), and its solution does not bear a close re-
lationship with MWBE codebooks. Nevertheless, the problem
can still be interpreted as a VQ problem, although no longer a
spherical one. The generalized Lloyd algorithm can thus be em-
ployed to find the optimal codebook, called W,. The optimal
solution, however, has to be reevaluated whenever the propaga-
tion geometry changes, which is rather complex and motivates
an alternative approach.

To this end, we consider a proper (or near MWBE) codebook
W; = {w;1,...,w;ps} originally designed for i.i.d. Rayleigh
fading channels, with a codebook matrix W; = [w;1 ... W;as].
As shown in the Appendix, we have the result in Lemma 1.

Lemma 1: A proper (or near MWBE) codebook W; satisfies

Using the proper codebook W; and the factorization R =
AAH, we can first construct a transformed codebook

(37



XIA AND GIANNAKIS: DESIGN AND ANALYSIS OF TRANSMIT BEAMFORMING BASED ON LIMITED-RATE FEEDBACK

with codebook matrix AW;. According to Lemma 1, the
second-order sample moment of this transformed codebook is

M
1 1 1
(37) S awowiar=(5; ) awawrars( 1) v
j=1
(38)
approximately matching the ensemble correlation of the under-

lying channel. This kind of moment matching property is also
true for proper codebooks in i.i.d. Rayleigh fading channels

1\ & 1
(37) Lot = ()
j=1

and is consistent with the principle behind successful quan-
tization: construct a collection of codewords to represent the
random source input as close as possible.

Since codewords in such a transformed codebook (37) violate
the unit norm constraint on beamforming vectors, they have to
be properly normalized. For this reason, we select our beam-
former codebook for correlated Rayleigh fading channels as

w _{ Aw;y Aw;py }
" UAWall T [[Awale S

(39)

(40)

For illustration purposes, we plot a two-dimensional real-
valued codebook example in Fig. 8. The channel correlation
matrix is randomly set as [0.445 —0.027; —0.027 0.052], and
M = 8 is chosen. An optimal codebook WV, obtained using
the generalized Lloyd algorithm is compared with the proposed
codebook W,., and the proper codebook W; based on which W,
is constructed. As we can see, the proposed design W, comes
very close to the optimal codebook W, while W; is consider-
ably different from W,. We further compare the achieved av-
erage SNR performance by these different codebooks for com-
plex-valued fading channels. The correlation matrix is set as
diag(81 259 1)/@ and N = 4 is chosen. In Fig. 9, the
achieved average SNR is plot versus the number of regions M.
Clearly, the proposed codebook W, achieves most of the op-
timal performance associated with W, while the performance
gap between W; and W, is significant.

As corroborated by these numerical studies, the proposed
codebook achieves near optimal performance, while enjoying
extremely low complexity. The only thing required is to main-
tain a proper codebook for i.i.d. Rayleigh fading channels.
When the propagation geometry changes, a new beamformer
codebook is constructed easily from the stored proper codebook
and the channel correlation matrix.

V. CONCLUSION

We analyzed performance of transmit beamforming for i.i.d.
Rayleigh MIMO systems under limited-rate feedback. We first
established an upper bound to the rate-distortion function of the
vector source input and next derived a lower bound to the oper-
ational rate-distortion performance achieved by the generalized
Lloyd algorithm. Interestingly, these two performance analysis
approaches, although very different in nature, yield asymptoti-
cally equivalent results. We further quantified the achievable av-
erage SNR, which provides an effective guideline for practical
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system designs. Quantifying the performance provides a con-
crete basis for future analytical study of more general transmis-
sion schemes under limited-rate feedback, such as joint adaptive
modulation/beamforming. We also developed a low-complexity
beamformer codebook design for correlated Rayleigh fading
channels. Performance analysis of such beamformer codebooks
constitutes an interesting direction for future research.
Transmit beamforming offers great application potential in
wireless networks, and is currently being considered by the
IEEE 802.11n standard. In this paper, we considered transmis-
sions over flat-fading channels only. When the fading channel
is frequency selective, it is possible to pursue related designs
in the context of MIMO OFDM systems, where correlation is
typically present across subcarriers. In such cases, it may be
beneficial to combine the limited-rate beamforming scheme
with adaptive modulation schemes. In addition, it may not be
practical to feed back the same amount of bits for all subcarriers
as the number of carriers is usually very large. Allocating a
finite number of feedback bits to certain subcarriers depending
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on the channel conditions is well motivated. In practical system
designs, interference from adjacent cells or networks should
also be taken into account. In such cases, it may be interesting
to study limited-rate system designs for multiuser MIMO
channels, which is a direction that warrants future research.

APPENDIX

Lemma 1: A proper (or near MWBE) codebook W; satisfies
Proof: To see this, we introduce another Welch bound dif-
ferent than the bound in (35). Consider a complex-valued code-
book W, of size M x N as in (7), where every codeword is
of unit norm. For such a codebook, the root-mean-square cross-
correlation amplitude is defined as

M M
1 2
,_ } :} : Howr.

Irms(W) = m |wikw’L[ (41)

k=1 £k

and the Welch lower bound on I,.,,,5 is given by

M- N
Lims > . 42
W) 2 (M —-1)N (42)

If equality holds in (42), the codebook W; is said to meet the
Welch bound on I,,s with equality and will be referred to as
a WBE codebook. It can be readily shown that [18], [21], [22]
an MWBE codebook is also WBE and that a codebook W; is
WBE if and only if W;W/* = (M/N)Iy. Combining these
two facts and seeing that a proper codebook is approximately
MWBE, we arrive at Lemma 1, which has also been verified by
numerical results.
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