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Space-Time-Multipath Coding Using Digital Phase
Sweeping or Circular Delay Diversity

Xiaoli Ma, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—We design novel space-time multipath (STM) coded
multi-antenna transmissions over frequency-selective Rayleigh
fading channels. We develop STM coded systems that guarantee
the maximum possible space-multipath diversity, along with large
coding gains, and high bandwidth efficiency for any number
of transmit-receive antennas. By incorporating subchannel
grouping, we also enable desirable tradeoffs between performance
and complexity. Our designs rely on digital phase sweeping or
block circular delay operations and apply to both single- and
multi-carrier systems. Their merits are confirmed by corrobo-
rating simulations and comparisons with existing approaches.

Index Terms—Coding, diversity, frequency-selective fading,
multi-carrier transmission, phase sweeping.

I. INTRODUCTION

B ROADBAND wireless communications call for high data
rates and high performance. As high rates imply reduced

symbol duration relative to the channel delay spread, frequency-
selective propagation effects become more pronounced. There-
fore, it is important for broadband wireless applications to de-
sign single- or multi-antenna systems that account for (and if
possible exploit) frequency-selective multipath fading.

Space-time (ST) coding has been proved effective in com-
bating fading and enhancing data rates. Taking advantage of
the space diversity offered by multiple transmit (and possibly
multiple receive) antennas, ST-coded transmissions over flat
fading channels have well documented merits; see, e.g., [16]
and [17]. Frequency-selective channels, on the other hand, pro-
vide multipath diversity [21]. Multi-antenna transmissions over
frequency-selective channels have thus the potential to achieve
joint space-multipath diversity [12], [13], [24]. ST coding
for frequency-selective channels has been pursued recently
both for single-carrier [2], [10], [11], [19], [24], as well as for
multi-carrier transmissions [3], [4], [12], [13]. Specifically, [1],
[3], and [13] adopt the trellis coded modulation (TCM) codes
of [16], without full space-multipath diversity gain guarantees,
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while [4] enables the maximum diversity gains at the expense
of bandwidth efficiency. The ST designs in [12] and [24] (which
also subsumes [2], [10], and [19]) guarantee full diversity, but
as they rely on the ST block codes of [17], they incur rate loss
up to 50%, when the number of transmit antennas and
complex constellations are used. In fact, all schemes relying
on the orthogonal ST block codes of [17] suffer from this
inherent rate limitation. ST trellis codes do not necessarily
incur rate loss [16]. However, as increases, designing ST
trellis codes to guarantee certain diversity and coding gains
becomes increasingly difficult.

Delay diversity schemes offer a simpler design option.
They were originally developed for flat-fading channels [15],
but they have been extended recently to frequency-selective
ones by transmitting one symbol over two antennas in dif-
ferent time-slots [5], [14], [15]. Similarly, a so-termed phase
sweeping transmission that creates time-variations to an origi-
nally slow-fading channel was introduced in [6]. Unfortunately,
existing analog phase-sweeping and delay-diversity approaches
[5], [6], [14], [15] consume extra bandwidth, and they do not
enable joint space-multipath diversity gains.

Starting from a multi-antenna OFDM transmission, we de-
velop in this paper a multi-carrier space-time multipath (STM)
coded system, which guarantees full space-multipath diversity
and large coding gains with high bandwidth efficiency for any
number of transmit antennas. Our STM codec comprises a prop-
erly designed digital phase-sweeping (DPS) scheme. Unlike [6]
and [8], DPS renders the set of frequency-selective fading chan-
nels equivalent to a single channel. Furthermore, we show that
our DPS design is equivalent to a block circular-delay (BCD)
design. Our DPS and BCD designs do not consume extra band-
width. Combined with the subcarrier grouping method [12],
[20], our STM codec is also flexible to tradeoff desirable per-
formance for affordable decoding complexity.

The rest of the paper is organized as follows. Section II intro-
duces a general linearly coded system model and derives perfor-
mance criteria for STM coding. Section III deals with our STM
encoder and decoder. The performance of STM is analyzed in
Section IV. Section V shows why our STM design amounts to
circular delay diversity and describes single-carrier extensions.
Section VI verifies our STM performance claims by simula-
tions, and Section VII concludes this paper.

Notation: Upper (lower) bold face letters will be used for ma-
trices (column vectors). Superscript will denote Hermitian,
conjugate, transpose, and pseudo-inverse. We will reserve

for the Kronecker product and for expectation. We will
use to denote the st entry of a matrix ,
tr for its trace, and to denote the st entry of the
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Fig. 1. Discrete-time Tx-Rx model of linearly coded ST designs.

column vector ; will denote the identity matrix and
the normalized (unitary) FFT matrix; diag will

stand for a diagonal matrix with on its main diagonal.

II. PRELIMINARIES

A. System Model

Fig. 1 depicts the discrete-time baseband equivalent model
of a multi-antenna wireless system with transmit and
receive antennas. The information bearing symbols are
drawn from a finite alphabet and are parsed into blocks of
size . Since, in the following, we consider block-by-block
transmissions, without loss of generality, we take one block:

. The linear encoder in Fig. 1 maps
to a codeword

(1)

where and are vectors. As symbols and their
complex conjugates are linearly combined to form the codeword

transmitted from the th antenna during each block interval,
we call the mapping in (1) a linear ST coder. The fading channel
between the th transmit and the th receive antenna is as-
sumed to be frequency-selective. The sampled baseband equiv-
alent impulse response vector (that includes transmit and re-
ceive filters) is given by ,

, where is the maximum delay among
all paths (delay spread), is the symbol (equal to the sam-
pling) period, and denotes the maximum order of all
channels. We assume ideal carrier synchronization, timing, and
symbol-rate sampling. At the th receive antenna, the symbol
rate sampled sequence at the receive-filter output is

(2)

where , and is complex additive white
Gaussian noise (AWGN) with mean zero and variance .

The symbols are serial-to-parallel (S/P) converted to
form blocks . The matrix-
vector counter part of (2) is

(3)

where is a lower triangular Toeplitz matrix with entries
, is an upper triangular

Toeplitz matrix with entries ,

is the interblock interference from the previous block, and
is the AWGN vector.

Our goal is to develop a linearly ST-coded system capable of
collecting the maximum joint space-multipath diversity as well
as large coding gains with high bandwidth efficiency .

B. Design Criteria

We will first introduce criteria for designing our STM codes
based on the following assumptions.

A1) Channel taps are zero-mean, complex
Gaussian random variables.

A2) Channel state information (CSI) is available at the re-
ceiver but unknown to the transmitter.

A3) High SNR is considered for deriving the STM diversity
and coding gains.

When transmissions experience rich scattering, and no line-of-
sight is present, the central limit theorem validates A1). Notice
that we allow not only for independent random channel coeffi-
cients but also for correlated ones. A2) motivates the use of ST
coding altogether. A3) will be used for asserting optimality of
our designs, but it will not be required for the system operation.

Since our design will allow for correlated channels, we will
denote the channel correlation
matrix and its rank, respectively, by

and rank (4)

where the channel vector is
.

With these definitions, we can summarize our performance re-
sults for the linearly coded systems as follows (see Appendix A
for a proof).

Proposition 1: At high SNR, the maximum space-multipath
diversity order achieved by maximum likelihood (ML) decoding
any linearly coded ST transmission through frequency-selective
channels of order is

(5)

When has full rank, the maximum coding gain for any lin-
early ST-coded system is

(6)

where is the minimum Euclidean distance of the constel-
lation points in the finite alphabet .

The space-multipath diversity order of multi-antenna trans-
missions over frequency-selective channels has also been de-
rived in [12], [13], and [24]. The novelty of Proposition 1 is
threefold.
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Fig. 2. Discrete-time Tx-Rx model of DPS-based STM designs.

a) It quantifies the diversity order for any linearly
coded ST system and can, in fact, be generalized to also
include Galois–Field coded symbols.

b) It derives in closed-form the maximum coding gain
of all linearly coded ST transmissions.

c) It allows for correlated channels, which is important
since practical frequency-selective channels are corre-
lated with an exponential power profile.

Together, and offer valuable performance met-
rics to benchmark all linearly coded ST systems. In the ensuing
section, we will derive our STM design that guarantees
in (29) and approaches in (6) as increases. Compared
with [12] and [24], a distinct feature of our STM design here is
that no rate loss is incurred .

III. STM CODEC DESIGN

At a high-level view, our STM system consists of three
stages, as shown in Fig. 2. The outer codec includes a linear
constellation precoding (LCP) matrix and the corresponding
deprecoder . The middle codec implements a digital phase
sweeping (DPS) operation. It includes a power splitter along
with a set of matrices at the transmitter and a max-
imum ratio combiner (MRC) at the receiver. The inner codec
performs orthogonal frequency division multiplexing (OFDM).
In the following, we will detail these three stages, starting with
inner stage.

A. Inner Codec: OFDM

At the transmitter, the inner encoder comprises an OFDM
module performing inverse fast Fourier transform (IFFT) op-
eration (via the matrix ), followed by cyclic-prefix (CP)
insertion. At the receiver, the inner decoder performs two
mirror operations: The CP is removed, and the FFT is taken. It
is well known that by (inserting) removing the CP and (I)FFT
processing, a frequency-selective channel becomes equivalent
to a set of flat-fading subchannels. Based on these steps, the

input–output relationship from to (see Fig. 2) can be
expressed as

(7)

where is a power-normalizing constant
accounting for the CP length ; the ’s are independent
identically distributed (i.i.d.) AWGN vectors, is the output
of the middle encoder , and diag

, with
. Comparing (7) with (3), we confirm that the

inner codec (OFDM) removes the interblock interference (IBI)
and diagonalizes the channel matrices.

B. Middle Codec: DPS

The middle encoder relies on the phase sweeping idea (a.k.a.,
intentional frequency offset [8]), which was introduced in [6].
In the two transmit-antenna analog implementation of [6], the
signal of one antenna is modulated by a sweeping frequency
in addition to the carrier frequency that is present in
both antennas. This causes bandwidth expansion by Hz. In
the following, we will derive a digital phase sweeping (DPS) en-
coder. Combined with OFDM, DPS will convert frequency-
selective channels, each having taps, to a single longer
frequency-selective channel with taps. Toward this
objective, let us rewrite the diagonal channel matrix as

(8)

where diag
. Equation (8) discloses that different channels may

have different channel taps , but they all share common
delay lags that manifest themselves as common shifts in
the FFT domain. Suppose that we shift the taps of each
channel corresponding to one of the transmit antennas so
that all channel taps become consecutive in their delay lags.
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Fig. 3. Three channels are equivalent to one longer channel.

Then, we can view the channels to each receive antenna as
one longer frequency-selective channel with taps.
To realize this idea digitally, we select matrices

diag (9)

where . Based on (8) and (9), we
can easily verify that

(10)

Let us now define the equivalent longer channel vector
corresponding to the th receive antenna as

, with the th entry of given
by . Since has
length , we can view it as coming from a single
frequency-selective channel. According to (10), let us also
define the diagonal matrix of this longer equivalent channel as

(11)

In essence, the DPS matrix shifts the delay lags of the
th channel (c.f. (10)) from to

. For example, when , ,
and then, diag , where
denotes the first columns of . When

, diag , where
denotes the st up to st columns

of . Proceeding likewise with all DPS matrices (see
Fig. 3), we can also obtain (11). We summarize this observation
in the following.

Property 1: DPS converts the transmit-antenna system,
where each frequency-selective channel has taps, to a
single transmit-antenna system, where the equivalent channel
has taps.

Equation (11) and Fig. 3 hint toward a possible relationship
between our DPS codec and the delay diversity schemes of [5]
and [14]. We will elaborate further on this in Section V.

Remark 1: To avoid overlapping the shifted bases, we should
make sure that our block size . From the def-
inition of the channel order , we have that for
fixed and , we can adjust the sampling period to sat-
isfy this condition, or equivalently, for fixed and , we can
adjust the block size . Since, for each receive antenna, we have

unknown channel taps corresponding to channels

every symbols, this condition guarantees that the number of
unknowns is less than the number of equations. Therefore, this
condition is reasonable, even from a channel estimation point of
view.

Using the DPS matrices (9), we will normalize (power split)
to obtain the middle encoder output ,

. The input–output relationship (7) can then be rewritten
as [c.f. (11)]

(12)

To collect the full diversity and large coding gains, we not
only need to design the transmitter properly, but we must also
select a proper decoder at the receiver. Since the received blocks

from all receive antennas contain the information block
, we need to combine the information from all received blocks

to decode . To retain decoding optimality, we perform max-
imum ratio combining (MRC). The MRC amounts to combining

in (12) to form using the matrix

(13)
with . Existence of the inverse in (13) re-

quires the channels to satisfy the following coprimeness
condition:

A4) .
Assumption A4) is more technical rather than restrictive since

it requires that the equivalent channels do not have common
channel nulls. Indeed, for random channels, A4) excludes an
event with probability measure zero.

With the MRC of (13), the vector is given by [c.f. (12)]:

(14)

where . Under A4), we can verify
that satisfies . Since the ’s are uncorrelated
AWGN blocks, the noise vector retains their whiteness.
From (7) and (14), we deduce that the middle codec has con-
verted a multi-input multi-output system into a single-input
single-output system with longer impulse response.

To achieve full diversity, we still need to design the outer
codec properly. If there is no precoding, i.e., , the diversity
order is one even if ML decoding is used. To enable the full
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space-multipath diversity established by Proposition
1, we also need to design the precoder judiciously.

C. Outer Codec: Linear Constellation Precoding

We will design using the Grouped Linear Constellation
Precoding (GLCP) scheme introduced in [12] and [23]. GLCP
provides a means of reducing decoding complexity without
sacrificing diversity or coding gains. To apply GLCP, we
select the transmitted block size and demul-
tiplex the information vector into groups: ,
with each group having length , e.g., the th group
contains the symbols collected in a vector as follows:

, . Corre-
spondingly, we define the th linearly precoded group as

(15)

where is an matrix. To enable the maximum
diversity, we select from the algebraic designs of [23]. The
overall transmitted block consists of multiplexed subblocks

:

(16)
It is not difficult to verify that can be obtained from

’s via a block interleaver with depth . Equiva-
lently, we can also relate to as

... (17)

where is the th row of . Equations (15) and (16), or
equivalently (17), summarize how the GLCP encoder is applied
to our DPS-based STM design.

To decode GLCP transmissions, we split in (14) into
groups:

(18)

where ;

is the corresponding diagonal submatrix from
for the th group, and similarly defined, is the

corresponding AWGN vector from . ML decoding of can
then be implemented by applying the Sphere Decoding (SD)
algorithm [18] on subblocks of small size . Compared
with the exponentially complex ML decoder, the SD offers
near-ML performance at complexity of order , with

. The SD complexity depends on the block size ,
but unlike ML, it is independent of the constellation size at
least for pulse amplitude modulated and quadrature amplitude
modulated constellations [18].

Before we proceed to check the performance of STM, we
summarize our DPS-based STM scheme as follows:

At the transmitter, do the following:

T1) Given , , and , choose the number of groups
and the group size depending on affordable

complexity; and select .

T2) Design the linear constellation precoder
as in [23].

T3) Form the precoded vector according to (15) and (16),
and split the power to form .

T4) Apply DPS via to , and obtain ,
.

T5) Modulate each block using OFDM.

At the receiver, do the following:

R1) Implement OFDM demodulation.
R2) Perform MRC of blocks from all receive antennas as

in (14).
R3) Split the MRC output block into groups.
R4) Implement ML (or sphere) decoding for each reduced

size group as in (18).

IV. PERFORMANCE ANALYSIS

In Section II, we benchmarked the performance of any lin-
early coded ST system with transmit and receive an-
tennae. It is not difficult to verify that our STM codec design in
Section III belongs to this class of linearly coded ST systems.
Thus, the diversity and coding gain results for our STM can be
summarized in the following proposition.

Proposition 2: The maximum achievable space-multipath
diversity order is guaranteed by our STM design,
provided that we select . When the channel
correlation matrix has full rank , our
STM design achieves (as ) the
maximum possible coding gain among all linearly coded ST
systems. The coding gain of our STM scheme is given in closed
form by . The
transmission rate of STM is symbols/s/Hz, ,

.
Note that in order to achieve the maximum possible coding

gain using STM, one needs to design carefully; in addi-
tion, the channel correlation matrix must have full rank. No-
tice, however, that our maximum diversity claim holds even for
channels with rank-deficient correlation matrices. Our choice
of the group size determines whether the maximum di-
versity order can be achieved. In fact, offers flexibility to
tradeoff between performance and decoding complexity. When

, as decreases, the decoding com-
plexity decreases, while at the same time, the diversity order de-
creases. By adjusting , we can balance the affordable com-
plexity with the prescribed performance. This is important be-
cause for a large number of transmit-receive antennae, or large
delay spreads, one does not have to strive for diversity orders
greater than four (which in fact show up for unrealistically high
SNRs). In such cases, small sizes (two or four) are rec-
ommended because they allow for ML decoding with reduced
complexity.

Corollary 1: When has full rank, i.e., ,
our STM achieves diversity order when

and when .
Due to space limitations, we omit the proofs for Corollary

1 and Proposition 2. Note that different from the group size
of in [12], maximum diversity in STM is enabled using

. However, for the design in [12], the size of
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TABLE I
SD, VA, AND MF STAND FOR SPHERE DECODING, VITERBI’S ALGORITHM, AND MATCHED FILTER, RESPECTIVELY; r DENOTES THE RATE OF

THE ORTHOGONAL ST BLOCK CODE IN [15]. NOTE ALSO THAT [12] HAS BEEN SHOWN AS A MULTICARRIER REPRESENTATIVE, [24] AS A

SINGLE-CARRIER ONE (RECALL THAT [24] ALSO SUBSUMES [2], [10], AND [19]), AND DD [5], [14] ARE USED TO REPRESENT THE EXISTING

DELAY DIVERSITY SCHEMES THAT HAVE BEEN DEVELOPED FOR (N ;N ) = (2; 1)

Fig. 4. Circular delay.

only needs to be greater or equal to . The reason is
that our method renders channels (each with length )
equivalent to a single channel with length . The idea
is consistent with the one in [12]. In the context of existing ST
codes for frequency-selective channels [4], [10], [12], [14], [19],
[24], STM offers the following attractive features:

1) STM enables full space-multipath diversity gain
.

2) STM guarantees large coding gains.
3) STM is flexible to strike desirable performance-com-

plexity tradeoffs.
4) Compared with ST block codes, STM suffers no rate

loss , .
5) Compared with ST trellis codes, STM affords easier

code construction and constellation-independent de-
coding complexity.

More quantitative comparisons of STM with existing alterna-
tives (both single- and multi-carrier ones) are given in Table I.

V. BLOCK CIRCULAR DELAY DIVERSITY INTERPRETATION

In this section, we will reinterpret and modify our DPS-based
STM design to gain further insights, as well as establish appli-
cability of STM coding to both multi-carrier and single-carrier
systems.

A. Multi-carrier Systems

Recalling in (9), it is easy to show using the IFFT matrix
definition that

...
... (19)

where is the th row of . Equation (19) shows that left
multiplying matrix by the IFFT matrix is equivalent to
permuting the rows of circularly. Therefore, there exists an

permutation matrix such that

(20)

where

(21)
Defining , and based on the definition of in (21),
we find that

(22)

We infer from (22) that the transmitted block on the th an-
tenna is nothing but a circularly delayed version of the previous
ones (see Fig. 4). We summarize this observation as follows.

Property 2: A DPS-based transmission (Fig. 2) is equivalent
to a block circular delay diversity (BCDD) transmission (Fig. 5).

Different from the delay diversity designs of [5] and [14],
our DPS-based (or equivalently BCDD-based) STM scheme for
frequency-selective channels does not sacrifice bandwidth effi-
ciency. Compared with the STM design in Fig. 2, our equiva-
lent model in Fig. 5 has lower complexity because it requires
only one IFFT operation (instead of IFFT operations). Fur-
ther comparisons with [5] and [14] are given in Table I.

B. Single-Carrier Systems

From Fig. 5, we notice that if we do not perform IFFT at
the transmitter, i.e., if we eliminate the box, we obtain
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Fig. 5. Discrete-time Tx-Rx model of multi-carrier STM designs.

a single-carrier transmission. This implies that our DPS (or
BCDD) scheme is also applicable to single carrier transmissions
that are known to be less sensitive to carrier frequency offsets
and nonlinear power amplifier effects than their multi-carrier
counterparts.

Without going into details, we will summarize the steps for
single-carrier systems as follows.

At the transmitter, do the following:

T1) Given , and , choose the block size
.

T2) Design the linear constellation precoder ac-
cording to [24].

T3) Form the precoded vector , and split the power
to form .

T4) Apply a circular delay (via ) per antenna to obtain
, .

T5) Insert CP before transmitting each block .
At the receiver, do the following.

R1) Remove the CP, and take the FFT of each block.
R2) Perform MRC of blocks from all the receive antennas,

as in (14).
R3) Implement ML decoding using SD or Viterbi’s algo-

rithm for each block, as in (18).

VI. SIMULATED PERFORMANCE

Here, we present simulations to test the performance of our
STM designs.

Test case 1 (Effects of multipath diversity): In order to
appreciate the importance of multipath diversity, we simulate
our DPS-based STM design with transmit and

receive antennae in the presence of multi-ray channels with
different channel orders: , 1, 2. The channel taps are
i.i.d. complex Gaussian distributed with zero mean and variance

. Quadrature phase shift keying (QPSK) modulation
is selected. The subblock size is , and the
number of subblocks is . The information block length

Fig. 6. Multipath diversity effects with increasing channel orders and fixed
(N ;N ) = (2; 1).

is . Fig. 6 depicts the average bit-error rate (BER)
versus SNR. We observe that as increases, our STM design
achieves higher diversity order.

Test case 2 (Diversity-complexity tradeoffs): To tradeoff di-
versity with complexity, we adjust the group size . The pa-
rameters and the channel model are the same as in Test case 1,
except that we now fix . In this case,

. Fig. 7 confirms that as decreases, the
achieved diversity decreases. Since the channel correlation ma-
trix has full rank, the achieved diversity order is . Com-
paring the slopes of BER curves in Figs. 6 and 7 confirms our
result. Recall that decoding complexity also decreases as
decreases. This shows that when the product is large,
we can reduce to lower complexity.

Test case 3 (Comparisons with [12] and [24]): In this
example, we have , , , and

, 5. We generate each channel correlation matrix
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Fig. 7. Performance-complexity tradeoffs.

Fig. 8. Comparisons with [12] and [24] (correlated channels).

, where is the “effective”
channel order, is an unitary matrix,
and is an diagonal matrix. The en-
tries of satisfy the realistic exponentially decaying power
profile. Here, we select . We consider the channels
corresponding to different antennas to be independent. Thus,
the full diversity order is . We

generate , where the entries of are
i.i.d. with zero mean and unit variance. We select [12] and [24]
to represent the multi-carrier and single-carrier ST schemes in
the literature, respectively.

When , we select QPSK for STM, which is the STF of
[12], and the zero-padding (ZP)-only scheme in [24]. For STM
and STF, we apply the Sphere-Decoding (SD) algorithm [18]
on subblocks of size for STM and

for STF. To maintain comparable decoding complexity,
we implement Viterbi’s Algorithm for the ZP-only scheme in
[24]. With denoting symbol power, Fig. 8 depicts the
BER performance of these three ST codecs. From the slope of
the BER curves for , we note that all three schemes

Fig. 9. Comparisons with [12] and [24] (coded case).

guarantee the maximum diversity order
. Fig. 8 also shows that STM outperforms STF by about

0.8 dB, whereas STF has lower computational complexity. The
ZP-only scheme of [24] has the best performance.

However, when , to maintain the same transmission
rate, we select binary phase shift keying (BPSK) for our STM
and QPSK for STF [12] and ZP-only [24], because STF and
ZP-only use the ST block code of [17], which has rate 1/2. When
we select for STM, from Fig. 8, we
observe that our STM outperforms both [12] and [24] by about
4 to 5 dB at . In this case, STM has higher decoding com-
plexity than ZP-only and STF. To lower complexity, we select

for STM. In this case, the achievable diversity is only
. However, even when , STM outperforms

ZP-only and STF over a large range of SNR values.
Test case 4 (Convolutionally coded designs): In this ex-

ample, we compare our STM against STF with coded trans-
missions. We select , , , and ,
5. The channel taps are independent and satisfy an exponen-
tially decaying power profile. Each channel tap is characterized
by Jakes’ model with mobile speed 3 m/s, carrier frequency
5.2 GHz, and sampling period 4 . When , we se-
lect a rate-1/2 convolutional code with generator [131, 171]
and memory 6 for STM, STF, and ZP-only. The depth of the
block interleaver is 40. Fig. 9 depicts BER performance of these
three schemes, where SNR is defined as the transmitted symbol
power over the noise power. When , we use the rate-1/2
ST block code of [17] for STF and ZP-only. To maintain the
same transmission rate, we select a rate-1/2 convolutional code
with 8-QAM for our STM design and a rate-3/4 convolutional
code (generator [5, 4, 3, 2; 4, 6, 5, 5; 6,1,4,3] and memory 6)
with 16-QAM for STF and ZP-only. From Fig. 9, we observe
that i) compared with Test case 3, the same schemes perform
worse here because the channels are time-varying; ii) as in-
creases, the diversity order increases; iii) when , STF
and ZP-only outperform STM by 1 dB; iv) when , STM
performs better than STF and ZP-only; and v) when we fix the
symbol energy, the coding gain depends on the constellation
size, which also confirms our result in Proposition 1.
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VII. CONCLUSIONS

We studied space-time multipath coding for frequency-selec-
tive MIMO channels. Novel digital phase sweeping (or block
circular delay) designs enable the maximum joint space-multi-
path diversity and large coding gains. They also afford a low-
complexity implementation when working with linearly pre-
coded small-size groups of symbols. Their unique feature is a
high rate symbols/s/Hz operation, regardless of
the constellation, and for any number of transmit- and receive
antennae.1

APPENDIX A
PROOF OF PROPOSITION 1

Similar to [8], [12], [16], and [24], we will resort to the pair-
wise error probability (PEP) to design our optimality criteria.
Define the PEP as the probability that
maximum likelihood (ML) decoding of erroneously decides

instead of the actually transmitted .
As in (3) depends on , we will use ML decoding to detect

from . Supposing we have estimated the previous and
removed the IBI perfectly, the Chernoff bound (conditioned on
the ’s) yields

(23)

where ,
and the distance in the exponent is

and . Using the commutativity between a Toeplitz

matrix and a vector, we can write ,
where is a Toeplitz matrix with first column .
With these definitions, we can rewrite as

, where is defined in (4), and

(24)

Eigenvalue decomposition of in (4) yields ,
where diag , and is an

unitary matrix satisfying . Define an
normalized channel vector with entries that are i.i.d.
Gaussian distributed with zero mean and unit variance. Vectors

and have identical distributions. Therefore, the PEP
remains statistically invariant when one replaces by .
To proceed, let us define the matrix

(25)

1The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Govern-
ment.

Since is Hermitian, there exists a unitary matrix and a real
non-negative definite diagonal matrix so that

. The diagonal matrix diag
holds on its diagonal the eigenvalues of that satisfy ,

. The vector has the same distribution
as , because is unitary. Thus, can be rewritten in
terms of the eigenvalues of the matrix as

(26)

Since we wish our STM coders to be independent of the par-
ticular channel realization, it is appropriate to average the PEP
over the independent Rayleigh distributed ’s. If
rank , then eigenvalues of are nonzero; without loss
of generality, we denote these eigenvalues as .
At high SNR, the resulting average PEP is bounded as follows
[c.f. (23)]:

(27)

where is the diversity order, and
is the coding gain for the error pattern

. Accounting for all possible pairwise errors, the
diversity and coding gains for our STM multi-antenna systems
are defined, respectively, as

and (28)

As the rank of a matrix cannot exceed its dimensionality,
checking the dimensionality of , we recognize that by ap-
propriately designing our transmission, it is possible to achieve

(29)

if and only if the matrix in (25) has full rank , .
However, it is not easy to express the coding gain in closed

form for linearly coded ST systems. However, we can bench-
mark it, when has full rank . In addition, it
is well known that at reasonably high SNR, the diversity order
plays a more important role than the coding gain when it comes
to improving the performance in wireless fading channels [16].
Thus, our STM coding will focus on maximizing the diversity
order first and then improving the coding gain as much as pos-
sible.

Suppose temporarily that in (29) has been achieved,
i.e., that has full rank . By (25), we obtain

(30)

Furthermore, using the definition of in (24), we find that if

with

...
. . .

...
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where stands for terms that are irrelevant at this point, and
. Based on Hadamard’s inequality [7, p. 117], we

can upper-bound in (30) as

(31)

To maintain a fixed transmit power, we set

(32)

where is the power per information symbol. Condition (32)
dictates equal power per antenna, which is well justified since
we assume no channel knowledge at the transmitter. Based on
(1), condition (32) is equivalent to

(33)
Arguing by contradiction, it follows readily from (33) that

(34)
Now, let be the finite alphabet set for the entries of .
Notice that the left-hand side of (34) is related to the minimum
Euclidean distance among the constellation points in .
If we let denote the same distance for the points in , we
deduce that

(35)

Based on (35), we can further upper bound in (31) by
. Note that the maximum

coding gain depends on the underlying constellation
through and is inversely proportional to the number of
transmit antennas because of the power splitting.
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