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Abstract—Relative to designs assuming no channel knowl-
edge at the transmitter, considerably improved communications
become possible when adapting the transmitter to the intended
propagation channel. As perfect knowledge is rarely available,
transmitter designs based on partial (statistical) channel state
information (CSI) are of paramount importance not only because
they are more practical but also because they encompass the
perfect- and no-knowledge paradigms. In this paper, we first
provide a partial CSI model for orthogonal frequency division
multiplexed (OFDM) transmissions over multi-input multi-output
(MIMO) frequency-selective fading channels. We then develop
an adaptive MIMO-OFDM transmitter by applying an adaptive
two-dimensional (2-D) coder-beamformer we derived recently
on each OFDM subcarrier, along with an adaptive power and
bit loading scheme across OFDM subcarriers. Relying on the
available partial CSI at the transmitter, our objective is to
maximize the transmission rate, while guaranteeing a prescribed
error performance, under the constraint of fixed transmit-power.
Numerical results confirm that the adaptive 2-D space-time
coder-beamformer (with two basis beams as the two “strongest”
eigenvectors of the channel’s correlation matrix perceived at
the transmitter) combined with adaptive OFDM (power and bit
loaded with -ary quadrature amplitude modulated (QAM)
constellations) improves the transmission rate considerably.

Index Terms—Adaptive modulation, beamforming, MIMO
OFDM, partial channel state information.

I. INTRODUCTION

TRANSMITTER designs adapted to the intended propaga-
tion channel are capable of improving both performance

and rate of communication links. The resulting channel-adap-
tive transmissions adjust parameters such as power levels,
constellation sizes, coding schemes, and modulation types,
depending on the channel state information (CSI) that is
assumed available to the transmitter [2], [9], [14]. The potential
improvement increases considerably when multiple transmit-
and receive-antennas are deployed [7], [25]. However, as
symbol rates increase in broadband wireless applications, the
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underlying multi-input multi-output (MIMO) channels exhibit
strong frequency selectivity. By transforming frequency-selec-
tive channels to an equivalent set of frequency-flat subchannels,
orthogonal frequency division multiplexing (OFDM) has
emerged as an attractive transmission modality because it
comes with low-complexity (de)modulation, equalization, and
decoding to mitigate frequency-selective fading effects [3],
[27].

These considerations motivate well adaptive MIMO OFDM,
but the challenge is on whether and what type of CSI can
be made practically available to the transmitter in a wireless
setting, where fading channels are randomly varying. Certainly,
this is less of an issue in wireline links, where the counterpart
of adaptive OFDM, known as discrete multi-tone (DMT), has
been standardized for digital subscriber line modems. Both
single-input single-output (SISO) and MIMO versions of DMT
[5], [20] assume that perfect CSI is available at the transmitter.
Although it is reasonable for wireline links, perfect-CSI-based
adaptive transmissions developed for SISO [14] and MIMO
OFDM wireless systems [28] can be justified only when the
fading is sufficiently slow. On the other hand, the proliferation
of space-time coding research we have witnessed lately testifies
to the efforts put toward the other extreme: nonadaptive (and
thus conservative) designs requiring no CSI to be available at
the transmitter.

As no-CSI leads to robust but rather pessimistic designs, and
perfect CSI is probably a utopia for most wireless links, recent
efforts geared toward quantification and exploitation of partial
(or statistical) CSI promise to have great practical value be-
cause they are capable of offering the “jack of both trades.” As
with perfect CSI, partial CSI is made available either through a
feedback channel from the receiver to the transmitter or when
the transmitter acts also as receiver in a time- or frequency-
division duplex operation. The difference is that outdated CSI
(caused e.g., by feedback delay), uncertain CSI (induced e.g.,
by channel estimation or prediction errors), and limited CSI (ap-
pearing e.g., with quantized feedback), are all accounted for sta-
tistically under partial CSI but are ignored when perfect CSI is
assumed. Using terms such as mean or covariance feedback to
specify the type of partial CSI, existing designs have focused on
MIMO transmissions over flat fading channels and adapt trans-
mitter parameters based either on capacity-based [17], [18], [26]
or performance-based criteria [12], [32]. Very recently, partial
CSI has also been considered for SISO OFDM systems over
frequency-selective channels [21], [29].

Building on our recent work on adaptive modulation over
MIMO flat-fading channels [31], [33], we design in this paper
adaptive MIMO-OFDM transmissions over frequency-selective
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Fig. 1. Discrete-time equivalent baseband system model.

fading channels, based on partial CSI. The transmitter here
applies the adaptive 2-D space-time coder-beamformer of
[31]–[33] on each OFDM subcarrier, with the power and bits
adaptively loaded across subcarriers, to maximize transmission
rate under performance and power constraints. This problem
is challenging because information bits and power should be
optimally allocated over space and frequency, but its solution
is equally rewarding because high-performance high-rate
transmissions can be enabled over MIMO frequency-selective
channels. Our novelties include the following:

• quantification of partial CSI for frequency-selective
MIMO channels and formulation of a constrained opti-
mization problem with the goal of maximizing rate for a
given power budget and a prescribed BER performance
(Section II);

• design of an optimal adaptive MIMO OFDM transmitter
as a concatenation of an adaptive modulator and an adap-
tive 2-D coder-beamformer (Section III-A);

• identification of a suitable threshold metric that encapsu-
lates the allowable power and bit combinations and en-
ables joint optimization of the adaptive modulator-beam-
former (Section III-A);

• unification under the umbrella of adaptive MIMO OFDM
based on partial CSI of many existing SISO and MIMO
designs based on partial- or perfect-CSI (Section III-A).

• incorporation of existing algorithms for joint power and
bit loading across MIMO OFDM subcarriers, based on
partial CSI (Section III-B);

• illustration of the tradeoffs emerging among rate, com-
plexity, and the reliability of partial CSI, using simulated
examples (Section IV).

Throughout the paper, we will adopt the following notational
conventions.

Bold upper and lower case letters denote matrices and column
vectors, respectively; and denote transpose and Her-
mitian transpose, respectively; stands for the Frobenius
norm; denotes the ensemble average; denotes the th
entry of a vector, and denotes the th entry of a ma-
trix; denotes a complex Gaussian distribution with
mean and covariance matrix .

II. SYSTEM MODEL AND PROBLEM STATEMENT

We deal with an OFDM system equipped with sub-
carriers and transmit and receive antennas signaling
over a MIMO frequency-selective fading channel. Per OFDM
subcarrier, we deploy the adaptive two-dimensional (2-D)
coder-beamformer developed in [31]–[33] that combines
Alamouti’s space time block coding (STBC) [1] with transmit
beamforming.1 We should state at the outset that higher di-
mensional coder beamformers based on orthogonal STBC with

[24] can be also applied, as we detail in Appendix C.
However, we will demonstrate in Section IV that the 2-D
coder-beamformer strikes desirable performance-rate-com-
plexity tradeoffs, and for this reason, we focus our design on
the 2-D case, which being simpler hits the “sweet spot” also in
practice.

To apply the 2-D coder-beamformer per subcarrier, we pair
two consecutive OFDM symbols to form one space-time-coded
OFDM block. Due to frequency selectivity, different subcarriers
experience generally different channel attenuation. Hence, in
addition to adapting the 2-D coder-beamformer on each sub-
carrier, the total transmit-power should also be judiciously allo-
cated to different subcarriers, based on the available CSI at the
transmitter. Fig. 1 depicts the equivalent discrete-time baseband
model of the system under consideration, which we will specify
next.

We reserve to index space-time-coded OFDM blocks (pairs
of OFDM symbols), and let denote the subcarrier index, i.e.,

. If stands for the power allo-
cated to the th subcarrier of the th block, then depending on

, we will select a constellation (alphabet) , con-
sisting of constellation points. In addition to square
QAMs with that have been used extensively
in adaptive modulation [9], we will also consider rectangular
QAMs with . We will focus on those rect-
angular QAMs that can be implemented with two independent
PAMs: one for the In-phase branch with size and the
other for the Quadrature-phase branch with size ,

1In our context, a beam toward a particular direction is formed by a set of
steering weights (coefficients) multiplying the information symbols to be trans-
mitted per antenna; see also [12], [18], [26], and [32].
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as those studied in [30]. Thanks to the independence between
I-Q branches, this type of rectangular QAM incurs modulation
and demodulation complexity similar to square QAM. This will
facilitate the adaptive transmitter implementation.

For each block time-slot , the input to each 2-D coder-beam-
former used per subcarrier entails two information symbols
( and ) drawn from , with each one
conveying

(1)

bits of information. These two information symbols will be
space-time coded, power-loaded, and multiplexed by the 2-D
beamformer to generate an space-time (ST) matrix as

(2)

where is the well-known Alamouti ST code ma-
trix; is the multiplexing matrix formed by two
basis-beam vectors and ; and is the cor-
responding power allocation matrix on these two basis-beams
with , , and .
In the two time slots corresponding to the two OFDM symbols
involved in the th ST coded block, the two columns of
are transmitted on the th subcarrier over transmit antennas.

We suppose that the MIMO channel is invariant during each
space-time coded block but is allowed to vary from block to
block. Let be the base-
band equivalent FIR channel between the th transmit and the

th receive antenna during the th block, where ,
, and is the maximum channel order of all

channels. With , the
frequency response of on the th subcarrier is

(3)

Let be the matrix having as its
th entry. To isolate the transmitter design from channel

estimation issues at the receiver, we suppose the following.

AS0) The receiver has perfect knowledge of the channel
, , .

With denoting the th received block on the th sub-
carrier, we can express the input-output relationship per subcar-
rier and ST coded OFDM block as

(4)

where stands for the additive white Gaussian noise
(AWGN) at the receiver with each entry having variance

per real and imaginary dimension. Based on (4), one
can view our coded-beamformed MIMO OFDM transmis-
sions per subcarrier as an Alamouti transmission with ST

matrix passing through an equivalent channel matrix
. With knowledge of this

equivalent channel and maximum ratio combining (MRC) at
the receiver, it is not difficult to verify that each information
symbol is thus passing through an equivalent scalar channel
with I/O relationship

(5)

where in our case, the equivalent channel is (c.f. [1])

(6)

Having introduced the system model, we next specify the par-
tial CSI at the transmitter.

A. Partial CSI for Frequency-Selective MIMO Channels

For flat-fading multiantenna channels, the notion of mean
feedback has been introduced in [26] to account for channel
uncertainty at the transmitter, where the fading channels are
modeled as Gaussian random variables with nonzero mean, and
white covariance. In this paper, we will adopt this mean feed-
back model on each OFDM subcarrier. Specifically, we adopt
the following model.

AS1) On each subcarrier , the transmitter obtains an unbi-
ased channel estimate either through a feed-
back channel, during a duplex mode operation, or by
predicting the channel from past blocks. The trans-
mitter treats this “nominal channel” as deter-
ministic, and in order to account for CSI uncertainty, it
adds a “perturbation” term. The partial CSI of the true

MIMO channel at the transmitter is
thus perceived as

(7)

where is a random matrix Gaussian distributed
according to . The vari-
ance encapsulates the CSI reliability on the

subcarrier.
The “nominal-plus-perturbation” or “mean feedback” model

of AS1) has been documented for flat-fading channels [18],
[26], [32]. However, it has not been considered for frequency-se-
lective fading channels. We next illustrate a practical scenario
that justifies AS1).

Motivating Example (delayed channel feedback): Suppose
that the FIR channel taps have been acquired perfectly at the
receiver and are fed back to the transmitter with a certain
delay but without errors thanks to powerful error control codes
used in the feedback. Let us also assume that the following
conditions hold true.

i) The taps in are un-
correlated but not necessarily identically distributed
(to account for e.g., exponentially decaying power
profiles). Each tap is zero-mean Gaussian with vari-
ance . Hence, , where
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diag . This assumption has
also been adopted in, e.g., [16].

ii) The FIR channels between different
transmit- and receive-antenna pairs are independent. This
requires antennas to be spaced sufficiently far apart from
each other.

iii) All FIR channels have the same total energy on the av-
erage: , , . This is reasonable in prac-
tice since the multiantenna transmissions experience the
same scattering environment.

iv) All channel taps are time varying according to Jakes’
model with Doppler frequency .

At the th block, suppose we obtain the channel feedback
that corresponds to the true channels

blocks earlier, i.e., . Suppose each space
time coded block has time duration seconds. Then, is
drawn from the same Gaussian distribution as but
seconds ahead. Let denote the correlation
coefficient specified by the Jakes’ model, where is the
zeroth-order Bessel function of the first kind. The MMSE pre-
dictor of , based on and i), is .
To account for the prediction imperfections, the transmitter
forms an estimate as

(8)

where is the prediction error. Under i), it is easy to verify
that

(9)

The mean feedback model (8) on the channel taps is
easily translated to the CSI in (7) on the channel frequency
response per subcarrier. Based on (8), we obtain the ma-
trices in (7) with th entries: ,

, and . Using
i), ii), and (9), we can also verify that has covariance
matrix . Notice that in this case, the uncer-
tainty indicators are common to all
subcarriers.

Notwithstanding, the partial CSI described by AS1) has also
unifying value. When , it boils down to the partial CSI
for flat fading channels [18], [26], [31]–[33]. With , it
reduces to the perfect CSI of the MIMO setup considered in
[20], [28]. When , it simplifies to the partial CSI
feedback used for SISO FIR channels [21], [29]. Furthermore,
with and , it is analogous to perfect CSI
feedback for wireline DMT channels [3], [5].

B. Formulation of a Constrained Optimization Problem

Our objective in this paper is to optimize the MIMO-OFDM
transmissions in Fig. 1 based on partial CSI available at the
transmitter. Specifically, we want to maximize the transmission
rate subject to a power constraint while maintaining a target
BER performance on each subcarrier. Let BER denote the
perceived average BER at the transmitter on the th subcarrier
of the th block, and let BER stand for the prescribed target
BER on the th subcarrier. The target BERs can be identical
or different across subcarriers, depending on system specifi-

cations. Recall that each space-time-coded block conveys two
symbols and and, thus, bits of infor-
mation on the th subcarrier. Our goal is thus formulated as the
following constrained optimization problem:

maximize

subject to C1. BER BER

C2.

and

C3. (10)

where is the total power available to the transmitter per
block.

The constrained optimization problem in (10) calls for joint
adaptation of the following parameters:

• power and bit loadings across sub-
carriers;

• basis-beams per subcarrier ;
• power splitting between the two basis-beams per subcar-

rier .
Compared with the constant-power transmissions over
flat-fading MIMO channels [31], [33], the problem here is
more challenging, due to the needed power loading across
OFDM subcarriers, which in turn depends on the 2-D beam-
former optimization per subcarrier. Intuitively speaking, our
problem amounts to loading power and bits optimally across
space and frequency, based on partial CSI.

III. ADAPTIVE MIMO-OFDM WITH 2-D BEAMFORMING

For notational brevity, we drop the block index since our
transmitter optimization is going to be performed on a per block
basis. Our transmitter includes an inner stage (adaptive beam-
forming) and an outer stage (adaptive modulation). Instrumental
to both stages is a threshold metric , which determines al-
lowable combinations2 of ( , ) so that the prescribed
BER is guaranteed.

A. Adaptive 2-D Beamforming Based on Partial CSI

In this subsection, we determine the basis beams , ,
and the corresponding percentages , of the power

, for a fixed (but allowable) combination of ( , ).
Let be the OFDM symbol duration with the cyclic prefix
removed, and without loss of generality, let us set .
With this normalization, the constellation chosen for the th
subcarrier has average energy and
contains signaling points. If denotes the
minimum square Euclidean distance for this constellation, we
will find it convenient to work with the scaled distance metric

because for QAM constellations, it holds
that [31], [33]

(11)

2It should be intuitively clear at this point that with finite power, one cannot
allow arbitrarily large constellation sizes.
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where the constant depends on whether the chosen constel-
lation is rectangular or square QAM:

(12)

Notice that summarizes the power and constellation (bit)
loading information that the adaptive modulator passes on to
the coder beamformer. The latter relies on and the partial
CSI to adapt its design to meet constraint C1. To proceed with
the adaptive beamformer design, we therefore need to analyze
the BER performance of the scalar equivalent channel per sub-
carrier, with input and output , as described by (5).
For each (deterministic) realization of , the BER when
detecting in the presence of AWGN in (5) can be approx-
imated as

BER (13)

where the validity of the approximation has also been confirmed
in [31] and [33]. Based on our partial CSI model in AS1), the
transmitter perceives as a random variable and evaluates
the average BER performance on the th subcarrier as

BER (14)

We will adapt our basis beams , to minimize
BER for a given based on partial CSI. To this end, we
consider the eigen decomposition of the “nominal channel” per
subcarrier (here, the th)

with

diag (15)

where is unitary, and contains on its diagonal the
eigenvalues in a nonincreasing order:

. As proved in [31]–[33], the optimal and mini-
mizing the BER in (14) are

(16)

Notice that the columns of are also the eigenvectors of the
channel correlation matrix

that is perceived by the transmitter based on partial
CSI [32]. Hence, the basis beams and adapt to the
two eigenvectors of the perceived channel correlation matrix,
corresponding to the two largest eigenvalues.

Having obtained the optimal basis beams, to complete our
beamformer design, we have to decide how to split the power

between these two basis beams.
With the optimal basis beams in (16), the equivalent scalar

channel is [c.f. (5)]

(17)
For 1, 2, the vector in (17) is Gaussian dis-

tributed with . Furthermore, we

have that . For an arbitrary vector
, the following identity holds true [23, eq. (15)]:

(18)

Substituting (17) into (14) and applying (18), we obtain

BER

(19)

Equation (19) shows that the power splitting percentages
, depend on , , and . Their optimum

values can be found by minimizing (19) to obtain, as in [32,
eq. (54)]

(20)

where, with and
, 1, 2, we have

(21)

The solution in (20) guarantees that ,
and . Based on the partial CSI ( , ,
(16) and (20) provide the 2-D coder-beamformer design with
the minimum BER that is adapted to a given output of
the adaptive modulator. Because this minimum BER depends
on , the natural question at this point is the following: For
which value of , call it , will the minimum BER
reach the target BER ?

1) Determining the Threshold Metrics : Before
addressing this question, we first establish that BER in (19),
with specified in (20), is a monotonically decreasing
function of .

Lemma: Given partial CSI as in AS1), the BER in (19) is a
monotonically decreasing function of . Hence, there exists
a threshold for which BER BER if and only if

. The threshold is found by solving (19) with
respect to when BER BER .

Proof: A detailed proof requires the derivative of BER
with respect to over two possible scenarios: ,
and , as indicated by (20). We have verified that this
derivative is always less than zero for any given . However,
we will skip the lengthy derivation and provide an intuitive jus-
tification instead. Suppose that and are optimized as
in (20) for a given . Now, let us increase by an amount

. Even when and are fixed to previously optimized
values (i.e., even if the 2-D coder-beamformer is nonadaptive),
the corresponding BER decreases since signaling with larger
minimum distance always leads to better performance. With the
minimum constellation distance , optimizing
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and will further decrease the BER. Hence, increasing
decreases BER monotonically.

This lemma implies that we can obtain the desirable
by solving BER BER with respect to . However,
since no closed-form solution appears possible, we have to rely
on a 1-D numerical search.

To avoid the numerical search, we next propose a simple,
albeit approximate, solution for . Notice that (19) is
nothing but the average BER of an -branch diversity
combining system, with branches undergoing Rician fading
with Rician factor , whereas the
other branches are experiencing Rician fading with Rician
factor . Approximating a Rician
distribution by a Nakagami- distribution [22, pp. 49–50], we
can approximate the BER in (19) by (see also [32, eq. (38)])

BER

(22)
where is defined after (20). It can be easily verified that
BER in (22) is also monotonically decreasing as in-
creases. Setting BER BER , we can solve for
using the following two-step approach.

Step 1) Suppose that can be found with .
Substituting (21) into (22), we obtain

BER

(23)
where

(24)

To verify the validity of the solution in (23), let us
substitute into (21). If is satisfied,
then (23) yields the desired solution. Otherwise, we
go to Step 2.

Step 2) When Step 1 fails to find the desired with
, we set . Substituting

and into (22), we have

BER
(25)

This approximate solution for avoids numerical search,
thus reducing the transmitter complexity. We will compare the
approximate solution with the exact solution found via numer-
ical search in Section IV.

2) Special Cases: We next detail some important special
cases.

Special Case 1—MIMO OFDM with 1-D beamforming
based on partial CSI: The 1-D beamforming is subsumed
by the 2-D beamforming if one fixes a priori the power

percentages to , and . In this case,
can be found in closed-form as in (25).
Special Case 2—SISO-OFDM based on partial CSI: The
single-antenna OFDM based on partial CSI [21], [29] can
be obtained from (7) by setting . In this case,

, where is the “nominal channel” on
the th subcarrier. Hence, (25) yields in this case too,
after setting , and .
Special Case 3—MIMO-OFDM based on perfect CSI:
With , the adaptive beamformer on each OFDM
subcarrier reduces to the 1-D beamformer with .
This corresponds to the MIMO-OFDM system studied in
[28], when cochannel interference (CCI) is absent. In this
special case, no Nakagami approximation is needed, and
the BER performance in (19) simplifies to

BER (26)

which leads to a simpler calculation of the threshold met-
rics as

BER (27)

Special Case 4—Wireline DMT systems: The conventional
wireline channel in DMT systems [5], [13] can be incorpo-
rated in our partial CSI model3 by setting , ,
and . In this case, the threshold metric is
given by (27) with .

B. Adaptive Modulation Based on Partial CSI

With encapsulating the allowable ( , ) pairs per
subcarrier, we are ready to pursue joint power and bit loading
across OFDM subcarriers to maximize the data rate. It turns out
that after suitable interpretations, many existing power and bit
loading algorithms developed for DMT systems [4], [11], [15]
can be applied to our adaptive MIMO-OFDM system based on
partial CSI. We first show how the classical Hughes-Hartogs al-
gorithm (HHA) [11] can be utilized to obtain the optimal power
and bit loadings.

1) Optimal Power and Bit Loading: As the loaded bits in
(10) assume finite (nonnegative integer) values, a globally op-
timal power and bit allocation exists. Given any allocation of
bits on all subcarriers, we can construct it in a step-by-step
bit loading manner, with each step adding a single bit on a
certain subcarrier, and incurring a cost quantified by the addi-
tional power needed to maintain the target BER performance.
This hints toward the idea behind the Hughes Hartogs algorithm
(HHA) [11]: At each step, it tries to find which subcarrier sup-
ports one additional bit with the least required additional power.
Notice that the HHA belongs to the class of greedy algorithms
(see, e.g., [6, ch. 16]) that have found many applications such as
the minimum spanning tree and Huffman encoding.

Recalling our results in Section III-A, the minimum required
power to maintain bits on the th subcarrier with threshold

3One major difference is that our additive noise is white, whereas in DMT
systems, the noise variance is subcarrier dependent.
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metric is . Therefore, the power cost incurred
when loading the th bit to the th subcarrier is

(28)

For , we set , and thus, .
In the following algorithm, we will use to record the re-
maining power after each bit loading step, to store the
number of bits already loaded on the th subcarrier, and to
denote the amount of power currently loaded on the th subcar-
rier. Now, we are ready to describe the greedy algorithm for joint
power and bit loading of our adaptive MIMO-OFDM based on
partial CSI.

The Greedy Algorithm
1) Initialization: Set . For each subcarrier, set

, and compute .
2) Choose the subcarrier that requires the least power to load

one additional bit, i.e., select

(29)

3) If the remaining power cannot accommodate it, i.e., if
, then exit with , and

. Otherwise, load one bit to subcarrier , and
update state variables as

(30)

(31)

(32)

4) Loop back to step 2.

The greedy algorithm yields a “1-bit optimal” solution since
it offers the optimal strategy at each step when only a single bit
is considered. In general, the 1-bit optimal solution obtained by
a greedy algorithm may not be overall optimal [6]. However, for
our problem at hand, we establish, in Appendix A, the following.

Proposition 1: The power and bit loading solution
to which the greedy algorithm converges in a

finite number of steps is overall optimal.
Notice that the optimal bit loading solution may not be

unique. This happens when two or more subcarriers have
identical under their respective (and possibly different)
performance requirements. However, a unique solution can
be always obtained, after establishing simple rules to break
possible ties arising in (29).

Allowing for both rectangular and square QAM constella-
tions, the greedy algorithm loads one bit at a time. However,
only square QAMs are used in many adaptive systems. If only
square QAMs are selected during our adaptive modulation
stage, we can then load two bits in each step of the greedy
algorithm and thereby halve the total number of iterations. It
is natural to wonder whether restricting the class to square
QAMs has a major impact on performance. Fortunately, as the
following proposition establishes, limiting ourselves to square
QAMs only incurs marginal loss (see Appendix B for a proof).

Proposition 2: Relative to allowing for both rectangular and
square QAMs, the adaptive MIMO-OFDM with only square
QAMs incurs up to one bit loss (on the average) per transmitted
space-time coded block that contains two OFDM symbols.

Compared with the total number of bits conveyed by two
OFDM symbols, the one bit loss is negligible when using only
square QAM constellations. However, reducing the number of
possible constellations by 50% simplifies the practical adaptive
transmitter design. These considerations advocate only square
QAM constellations for adaptive MIMO-OFDM modulation
(this excludes also the popular BPSK choice).

The reason behind Proposition 2 is that square QAMs are
more power efficient than rectangular QAMs [c.f. (12)]. With
subcarriers at our disposal, it is always possible to avoid usage of
less efficient rectangular QAMs and save the remaining power
for other subcarriers to use power-efficient square QAMs. Inter-
estingly, this is different from the adaptive modulation over flat
fading channels considered in [31] and [33], where the transmit
power is constant and considerable loss (one bit every two sym-
bols on average) is involved, if only square QAM constellations
are adopted.

2) Practical Considerations: The complexity of the optimal
greedy algorithm is on the order of , where is
the total number of bits loaded, and is the number of subcar-
riers. In addition, it is considerable when and are large.
Alternative low-complexity power and bit loading algorithms
have been developed for DMT applications; see, e.g., [4], [15],
and [19]. Notice that [4] and [19] study a dual problem: optimal
allocation of power and bits to minimize the total transmission
power with a target number of bits. Interestingly, the truncated
water-filling solution in [4] can be modified and used in our
transmitter design, whereas the fast algorithm of [19] cannot,
since it requires knowledge of the total number of bits to start
with. In spite of low-complexity, the algorithm in [4] is sub-
optimal and may result in a considerable rate loss due to the
truncation operation. The most interesting algorithm is the fast
Lagrange bi-sectional search proposed in [15] that provides an
optimal solution, while having complexity as low as [4]. Hence,
for our adaptive transmissions, we recommend [15] in practice.

Before we conclude this section, we briefly summarize the
overall adaptation procedure for our adaptive MIMO-OFDM
design based on partial CSI.

1) Basis beams per subcarrier are
adapted first using (16) to obtain an adaptive 2-D coder-
beamformer for each subcarrier.

2) Power and bit loading is then jointly per-
formed across all subcarriers, using the algorithm in [15]
that offers optimality at complexity lower than the greedy
algorithm.

3) Finally, power splitting between the two basis beams on
each subcarrier is decided using (20).

IV. NUMERICAL RESULTS

We present numerical results in this section, based on the
delayed-feedback paradigm of Section II-A. We set
and and assume that the channel taps are i.i.d. with
covariance matrix . We allow for
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both rectangular and square QAM constellations in the adap-
tive modulation stage. Throughout this section, the average
transmit-signal-to-noise ratio (SNR) across subcarriers is
defined as SNR . The transmission rate (the
loaded number of bits) is counted every two OFDM symbols
as .

Test Case 1—Comparison between exact and approximate so-
lutions for : We simulate typical MIMO multipath chan-
nels with , , and . For a certain channel
realization, assuming 2-D beamforming on each subcarrier, we
plot in Fig. 2 the thresholds obtained via numerical search
(19), and from the closed-form solution based on (22), with

, 0.8, 0.9 and a target BER . Fig. 3 is the coun-
terpart of Fig. 2 but with target BER . The non-neg-
ative eigenvalues and of the nominal channels are
also plotted in dash-dotted lines for illustration purposes. We ob-
serve that the solutions of obtained via these two different
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approaches are generally very close to each other, and the dis-
crepancy decreases as the feedback quality increases or as the
target BER increases. Notice that the suboptimal closed-form
solution tends to underestimate . To deploy the suboptimal
solution in practice, some SNR margins may be needed to en-
sure the target BER performance. Nevertheless, we will use the
suboptimal closed-form solution for in our ensuing nu-
merical results.

Figs. 2 and 3 also reveal that on subchannels with large eigen-
values (indicating “good quality”), the resulting is small;
hence, large size constellations can be afforded on those sub-
channels.

Test Case 2—Power and bit loading with the Greedy algo-
rithm: We set , , , SNR , and
BER . For a certain channel realization, we plot the
power and bit loading solutions obtained via the greedy algo-
rithm in Figs. 4 and 5, respectively. For illustration purposes,
we also plot the threshold metrics . We observe that when-
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ever there is a change in the bit loading solution in Fig. 5 from
one subcarrier to the next, there will be an abrupt change in the
corresponding power loading in Fig. 4. Furthermore, for those
subcarriers with the same number of bits, the power loaded by
the greedy algorithm is proportional to the threshold metric. In
addition, from the bit loading of the greedy algorithm in Fig. 5,
we see that all subcarriers are loaded with an even number of bits
(with the exception of one subcarrier at most), which is consis-
tent with Proposition 2.

Test Case 3—Adaptive MIMO OFDM based on partial CSI:
In addition to the adaptive MIMO-OFDM based on 1-D and
2-D coder-beamformers, we derived in Appendix C an adap-
tive transmitter that relies on higher dimensional beamformers
on each OFDM subcarrier; we term it any-D beamformer here.
With BER , we compare nonadaptive transmission
schemes (that use fixed constellations per OFDM subcarrier)
and adaptive MIMO-OFDM schemes based on any-D, 2-D, and
1-D beamforming in Fig. 6 with , , in Fig. 7
with , , and in Fig. 8 with , .
The Alamouti codes [1] are used when , and the rate
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3/4 STBC code in [24] is used when . The transmission
rates for adaptive MIMO-OFDM are averaged over 200 feed-
back realizations.

With in Fig. 6, the any-D beamformer reduces to the
2-D coder-beamformer since there are at most two basis beams.
With in Figs. 7 and 8, we observe that the adaptive
transmitter based on 2-D coder-beamformer achieves almost the
same data rate as that based on any-D beamformer, for variable
quality of the partial CSI (as varies), and various size MIMO
channels (as varies). Thanks to its reduced complexity, 2-D
beamforming is thus preferred over any-D beamforming. On the
other hand, 1-D beamforming is considerably inferior to 2-D
beamforming when low-quality CSI is present at the transmitter.
However, as CSI quality increases (e.g., ), the trans-
mitter based on 1-D beamforming approaches the performance
of that based on 2-D beamforming.

With and in Fig. 6, the adaptive
MIMO-OFDM based on the 2-D coder-beamformer always
outperforms nonadaptive alternatives. With and
in Fig. 7, the nonadaptive transmitter could outperform the
adaptive 2-D beamforming transmitter at the low SNR range,
with extremely low feedback quality . However, as
the SNR increases or the feedback quality improves, the adap-
tive 2-D transmitter outperforms the nonadaptive transmitter
considerably. As the number of receive antennas increases to

in Fig. 8, the adaptive 2-D beamforming transmitter is
uniformly better than the nonadaptive transmitter, regardless of
the feedback quality.

V. CONCLUDING SUMMARY

We designed MIMO-OFDM transmissions capable of
adapting to partial (statistical) channel state information (CSI).
Adaptation takes place in three (out of four) levels at the
transmitter:

1) the power and (QAM) constellation size of the informa-
tion symbols;

2) the power splitting among space-time coded information
symbol substreams;
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TABLE I
POWER REQUIRED TO LOAD THE iTH BIT ON THE kTH SUBCARRIER

i 1 2 3 4 5 6 7 8 . . .

d
2
0 [k]/g(i) d

2
0 [k] 2d 

2
0 [k] 6d

2
0 [k] 10d

2
0 [k] 26d

2
0 [k] 42d

2
0 [k] 106d

2
0 [k] 170d

2
0 [k] . . .

c(k;i) d
2
0 [k] d

2
0 [k] 4d

2
0 [k] 4d

2
0 [k] 16d

2
0 [k] 16d

2
0 [k] 64d

2
0 [k] 64d

2
0 [k] . . .

3) the basis-beams of two- (or generally multi-) dimen-
sional beamformers that are used (per time slot) to
steer the transmission over the flat MIMO subchannels
corresponding to each subcarrier.

These subchannels are created by the fourth (inner most) level
that implements OFDM and enables design of our adaptive
transmitter per subcarrier.

For a fixed transmit-power and a prescribed bit error rate
performance per subcarrier, we maximize the transmission rate
for the proposed transmitter structure over frequency-selective
MIMO fading channels. The power and bits are judiciously allo-
cated across space and subcarriers (frequency), based on partial
CSI. Analogous to perfect-CSI-based DMT schemes, we estab-
lished that loading in our partial-CSI-based MIMO OFDM de-
sign is controlled by a minimum distance parameter (which is
analogous to the SNR-threshold used in DMT systems) that de-
pends on the prescribed performance, the channel information,
and its reliability, as those are partially (statistically) perceived
by the transmitter. This analogy we have established offers two
important implications: i) It unifies existing DMT metrics under
the umbrella of partial CSI, and ii) it allows application of ex-
isting DMT loading algorithms from the wireline (perfect CSI)
setup to the pragmatic wireless regime, where CSI is most often
known only partially.

Regardless of the number of transmit antennas, our adap-
tive 2-D coder-beamformer should be preferred in practice over
higher-dimensional alternatives since it enables desirable per-
formance-rate-complexity tradeoffs.

APPENDIX A
PROOF OF PROPOSITION 1

Based on (28) and (12), we have

for and

(33)

Table I lists the required power to load the th bit on the th
subcarrier. From Table I and (33), we infer that

(34)

Although the greedy algorithm chooses always the 1-bit op-
timum [6], (34) reveals that all future additional bits will cost no
less power. This is the key to establishing the overall optimality
because no matter what the optimal final solution is, the bits on
each subcarrier can be constructed in a bit-by-bit fashion, with
every increment being most power efficient, as in the greedy al-
gorithm. Hence, the greedy algorithm is overall optimal for our
problem at hand. Lacking an inequality like (34), the optimality
has not been formally established in [3] and [11].

APPENDIX B
PROOF OF PROPOSITION 2

An important observation from (33) is that
holds true for any and . Suppose at some interme-

diate step of the greedy algorithm, the st bit on the th
subcarrier is the chosen bit to be loaded, which means that the
associated cost is the minimum out of all possible
choices. Notice that has exactly the
same cost, and therefore, after loading the st bit on
the th subcarrier, the next bit chosen by the optimal greedy
algorithm must be the th bit on the same subcarrier, unless
power insufficiency is declared. Therefore, the overall proce-
dure effectively loads two bits at a time. As long as the power
is adequate, the greedy algorithm will always load two bits in
a row to each subcarrier. Let us denote the total number of bits
as when using only square QAMs
and when allowing for rectangular
QAMs as well. At most, on one subcarrier , it holds that

, which has probability 1/2, whereas
for all other subcarriers, . Hence, is
less than by at most one bit per space-time-coded OFDM
block.

APPENDIX C
HIGHER THAN TWO-D BEAMFORMING

For practical deployment of our adaptive transmitter, we
have advocated the 2-D coder-beamformer on each OFDM
subcarrier. With , however, higher than 2-D coder
beamformers have been developed in [12] and [32]. They
are formed by concatenating higher dimensional orthogonal
space-time block coding designs [24] with properly loaded
space time multiplexers. Collecting more diversity through
multiple basis beams, the optimal -dimensional beamformer
outperforms the 2-D coder beamformer from the minimum
achievable BER point of view. Hence, with more than two basis
beams, the threshold metric per subcarrier may improve, and
the constellation size on each subcarrier may increase under the
same performance constraint. However, the main disadvantage
of -dimensional beamforming is that the orthogonal STBC
design in [24] loses rate when . The important issue
in this context is how much one could lose in adaptive trans-
mission rate by focusing only on the 2-D coder beamformer
instead of allowing all possible choices of beamforming that
can use up to basis beams.

In the following, we use the notation to denote beam-
forming with “strongest” basis beams. With , two
symbols are transmitted over two time slots, as in (2). When

3, 4, the beamformer can be constructed based on the
rate 3/4 orthogonal STBC, with three symbols transmitted over
four time slots. When , the beamformer can be
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constructed based on the rate 1/2 orthogonal STBC, with four
symbols transmitted over eight time slots. Let us consider,
for simplicity, a maximum of eight directions even when

, i.e., . If we take a super block
with eight OFDM symbols as the adaptive modulation unit,
then each super block allows for different beamformers
on different subcarriers at each modulation adaptation step.
Specifically, in one super block, one subcarrier could place
four 2-D coder-beamformers, two 4-D beamformers, or one
8-D beamformer, depending on partial CSI. With constellation
size , the corresponding transmission rate for the
beamformer is per subcarrier per super block,
where for 1, 2, for 3, 4,
and for 5, 6, 7, 8. Furthermore, with power

on each subcarrier, the energy per information symbol is
. This includes (11) as a special

case with .
As with 2-D beamforming, we wish to maximize the trans-

mission rate of the MIMO-OFDM subject to the performance
constraint on each subcarrier. Mimicking the steps followed
in Section III, we first determine the distance threshold

on each subcarrier for the beamformer, where
. With the average BER expression for the

beamformer [32, eq. (38)], we find through 1-D
numerical search. Hence, if the assigned constellation has

, adopting the beamformer will lead to
the guaranteed BER performance thanks to the monotonicity
we established in our Lemma.

Having specified for each
, we can also modify our greedy algorithm to

obtain the optimal power and bit loading across subcarriers.
First, we define the effective number of bits when

-QAM is used together with beamforming. Second, we
constrain the effective number of bits to be integers in order
to facilitate the problem solving procedure. To achieve this,
noninteger QAMs are assumed to be temporarily available for
any (we will later on quantize them to the closet square or
rectangular QAMs). This entails a certain approximation error,
but our objective here is to quantify the difference between
2-D beamforming and any beamforming. The greedy
algorithm can be applied as in Section III-B1 but with each step
loading effectively one bit on a certain subcarrier. Specifically,
we need to replace in the original greedy algorithm
with , where

(35)

is the minimal power required to load one additional bit on top of
effective bits on the th subcarrier, given that all possible

beamformers can be arbitrarily chosen. Notice that the optimal
beamforming, based on as many as basis beams, includes
2-D beamforming as a special case with . Numer-
ical results demonstrate that the 2-D transmitter performs close
to any higher dimensional one in most practical cases. How-
ever, the 2-D transmitter reduces the complexity considerably,

which is the reason why we favor the 2-D coder beamformer in
practice.
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