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Abstract—A cross-layer design along with an optimal resource
allocation framework is formulated for wireless fading networks,
where the nodes are allowed to perform network coding. The aim
is to jointly optimize end-to-end transport-layer rates, network
code design variables, broadcast link flows, link capacities, average
power consumption, and short-term power allocation policies. As
in the routing paradigm where nodes simply forward packets,
the cross-layer optimization problem with network coding is
nonconvex in general. It is proved, however, that with network
coding, dual decomposition for multicast is optimal so long as
the fading at each wireless link is a continuous random variable.
This lends itself to provably convergent subgradient algorithms,
which not only admit a layered-architecture interpretation, but
also optimally integrate network coding in the protocol stack. The
dual algorithm is also paired with a scheme that yields near-op-
timal network design variables, namely multicast end-to-end
rates, network code design quantities, flows over the broadcast
links, link capacities, and average power consumption. Finally, an
asynchronous subgradient method is developed, whereby the dual
updates at the physical layer can be affordably performed with a
certain delay with respect to the resource allocation tasks in upper
layers. This attractive feature is motivated by the complexity of the
physical-layer subproblem and is an adaptation of the subgradient
method suitable for network control.

Index Terms—Asynchronous subgradient methods, cross-layer
designs, multihop, network coding, optimization methods.

I. INTRODUCTION

T RADITIONAL networks have always assumed nodes ca-
pable of only forwarding or replicating packets. For many

types of networks, however, this constraint is not inherently
needed since the nodes can invariably perform encoding func-
tions. Interestingly, even simple linear mixing operations can
be powerful enough to enhance the network throughput, mini-
mize delay, and decrease the overall power consumption [1], [2].
For the special case of single-source multicast, which does not
even admit a polynomial-time solution within the routing frame-
work [3], linear network coding achieves the full network ca-
pacity [4]. In fact, the network flow description of multicast with
random network coding adheres to only linear inequality con-
straints reminiscent of the corresponding description in unicast
routing [5].
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This encourages the use of network coding to extend sev-
eral popular results in unicast routing framework to multicast
without appreciable increase in complexity. Of particular in-
terest is the resource allocation and cross-layer optimization
task in wireless networks [6], [7]. The objective here is to max-
imize a network utility function subject to flow, rate, capacity,
and power constraints. This popular approach not only offers
the flexibility of capturing diverse performance objectives, but
also admits a layering interpretation, arising from different de-
compositions of the optimization problem [8].

This paper deals with cross-layer optimization of wireless
multicast networks that use network coding and operate over
fading links. The aim is to maximize a total network utility ob-
jective and entails finding end-to-end rates, network code design
variables, broadcast link flows, link capacities, average power
consumption, and instantaneous power allocations.

Network utility maximization was first brought into coded
networks in [5], where the aim was to minimize a generic cost
function subject only to flow and rate constraints. The optimal
flow and rate variables may then be converted to a practical
random network coding implementation using methods from
[9] and [10]. Subsequent works extended this framework to
include power, capacity, and scheduling constraints [11]–[14].
The interaction of network coding with the network and trans-
port layers has also been explored in [15]–[19]. In these works,
networks with fixed link capacities are studied, and different
decomposition techniques result in different types of layered
architectures.

There are, however, caveats associated with the utility maxi-
mization problem in wireless networks. First, the power control
and scheduling subproblems are usually nonconvex. This im-
plies that the dual decomposition of the overall problem, though
insightful, is not necessarily optimal and does not directly re-
sult in a feasible primal solution. Second, for continuous fading
channels, determining the power control policy is an infinite
dimensional problem. Existing approaches in network coding
consider either deterministic channels [11], [14] or links with a
finite number of fading states [12], [20], [21].

On the other hand, a recent result in unicast routing shows
that, albeit the nonconvexity, the overall utility optimization
problem has no duality gap for wireless networks with con-
tinuous fading channels [22]. As this is indeed the case in all
real-life fading environments, the result promises the optimality
of layer separation. In particular, it renders a dual subgradient
descent algorithm for network design optimal [23].

This paper begins with a formulation that jointly optimizes
end-to-end rates, virtual flows, broadcast link flows, link ca-
pacities, average power consumption, and instantaneous power
allocations in wireless fading multicast networks that use
intra-session network coding (Section II). The first contribution
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of this paper is to introduce a realistic physical-layer model
formulation accounting for the capacity of broadcast links. The
cross-layer problem is generally nonconvex, yet it is shown to
have zero duality gap (Section III-A). This result considerably
broadens [22] to coded multicast networks with broadcast links.
The zero duality gap is then leveraged in order to develop a
subgradient descent algorithm that minimizes the dual function
(Sections III-B and III-C). The algorithm admits a natural
layering interpretation, allowing optimal integration of network
coding into the protocol stack.

In Section IV, the subgradient algorithm is modified so that
the component of the subgradient that results from the phys-
ical-layer power allocation may be delayed with respect to op-
erations in other layers. This provably convergent asynchronous
subgradient method and its online implementation constitute the
second major contribution. Unlike the algorithm in [23], which
is used for offline network optimization, the algorithm devel-
oped here is suitable for online network control. Convergence
of asynchronous subgradient methods for dual minimization is
known under diminishing stepsize [24]; this paper proves re-
sults for constant stepsize. Near-optimal primal variables are
also recovered by forming running averages of the primal it-
erates. This technique has also been used in synchronous sub-
gradient methods for convex optimization; see, e.g., [25] and
references therein. Here, ergodic convergence results are estab-
lished for the asynchronous scheme and the nonconvex problem
at hand. Finally, numerical results are presented in Section V,
and Section VI concludes this paper.

II. PROBLEM FORMULATION

Consider a wireless network consisting of a set of terminals
(nodes) denoted by . The broadcast property of the wire-
less interface is modeled by using the concept of hyperarcs. A
hyperarc is a pair that represents a broadcast link from a
node to a chosen set of nodes . The entire network can
therefore be represented as a hypergraph , where

is the set of hyperarcs. The complexity of the model is de-
termined by the choice of the set . Let the neighbor set
denote the set of nodes that node reaches. An exhaustive model
might include all possible hyperarcs from node . On
the other hand, a simpler model might include only a smaller
number of hyperarcs per node. A point-to-point model is also a
special case when node has hyperarcs each containing
just one receiver.

This paper considers a physical layer whereby the channels
undergo random multipath fading. This model allows for op-
portunistically best schedules per channel realization. This is
different from the link-level network models in [5], [12], [13],
and [21], where the hyperarcs are modeled as erasure channels.
Section II-A discusses the physical-layer model in detail.

A. Physical Layer

In the current setting, terminals are assumed to have a set of
tones available for transmission. Let denote the power
gain between nodes and over a tone , assumed random,
capturing fading effects. Let represent the vector formed by
stacking all the channel gains. The network operates in a time-
slotted fashion. The channel remains constant for the duration
of a slot, but is allowed to change from slot to slot. A slowly
fading channel is assumed so that a large number of packets may

be transmitted per time slot. The fading process is modeled to
be stationary and ergodic.

Since the channel changes randomly per time slot, the opti-
mization variables at the physical layer are the channel realiza-
tion-specific power allocations for all hyperarcs

and tones . For convenience, these power alloca-
tions are stacked in a vector . Instantaneous power allo-
cations may adhere to several scheduling and mask constraints,
and these will be generically denoted by a bounded set such
that . The long-term average power consumption by
a node is given by

(1)

where denotes expectation over the stationary channel
distribution.

For slow fading channels, the information-theoretic capacity
of a hyperarc is defined as the maximum rate at which
all nodes in receive data from with vanishing probability
of error in a given time slot. This capacity depends on the in-
stantaneous power allocations and channels . A generic
bounded function will be used to describe this
mapping. Next, we give two examples of the functional forms
of and .

Example 1: Conflict graph model: The power allocations
adhere to the spectral mask constraints

(2)

However, only conflict-free hyperarcs are allowed to be sched-
uled for a given . Specifically, power may be allocated to hy-
perarcs and if and only if [13]:

i) ;
ii) and (half-duplex operation);
iii-a) (primary interference), or additionally;
iii-b) (secondary
interference).

The set therefore consists of all possible power allocations
that satisfy the previous properties.

Due to hyperarc scheduling, all transmissions in the network
are interference-free. The signal-to-noise ratio (SNR) at a node

is given by

(3)

where is the noise power at . In a broadcast setting, the
maximum rate of information transfer from to each node in
is

(4)

A similar expression can be written for the special case
of point-to-point links by substituting hyperarcs by
arcs in the expression for .

For slow-fading channels, Gaussian codebooks with suffi-
ciently large block lengths achieve this capacity in every time
slot. More realistically, an SNR penalty term can be included
to account for finite-length practical codes and adaptive modu-
lation schemes, so that

(5)
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The penalty term is in general a function of the target bit error
rate.

Example 2: Signal-to-interference-plus-noise ratio (SINR)
model: Here, the constraint set is simply a box set

(6)
The set could also include (instantaneous) sum-power con-
straints per node. The capacity is expressed as in (4) or (5), but
now the SNR is replaced by the SINR, given by

(7)
The denominator consists of the following terms.

• Interference from other nodes’ transmissions to node

(8a)

• “Self-interference” due to transmissions of node

(8b)

This term is introduced to encourage half-duplex operation
by setting to a large value.

• “Broadcast-interference” from transmissions of node to
other hyperarcs

(8c)

This term is introduced to force node to transmit at most
over a single hyperarc by setting to a large value.

The previous definitions ignore interference from nonneigh-
boring nodes. However, they can be readily extended to include
more general interference models.

The link-layer capacity is defined as the long-term average of
the total instantaneous capacity, namely

(9)

This is also called ergodic capacity and represents the maximum
average data rate available to the link layer.

B. Link Layer and Above

The network supports multiple multicast sessions indexed by
, namely , each associated with a source

node , sink nodes , and an average flow rate
from to each . The value is the average rate at
which the network layer of source terminal admits packets
from the transport layer. Traffic is considered elastic, so that the
packets do not have any short-term delay constraints.

Network coding is a generalization of routing since the nodes
are allowed to code packets together rather than simply forward
them. This paper considers intra-session network coding, where
only the traffic belonging to the same multicast session is al-
lowed to mix. Although better than routing in general, this ap-
proach is still suboptimal in terms of achieving the network ca-
pacity. However, general (intersession) network coding is dif-
ficult to characterize or implement since neither the capacity

region nor efficient network code designs are known [1, Part II].
On the other hand, a simple linear coding strategy achieves the
full capacity region of intra-session network coding [4].

The network layer consists of endogenous flows of coded
packets over hyperarcs. Recall that the maximum average rate of
transmission over a single hyperarc cannot exceed . Let the
coded packet rate of a multicast session over hyperarc
be (also referred to as the subgraph or broadcast link flow).
The link capacity constraints thus translate to

(10)

To describe the intra-session network coding capacity region,
it is commonplace to use the concept of virtual flow between ter-
minals and corresponding to each session and sink
with average rate . These virtual flows are defined only for
neighboring pairs of nodes, i.e.,

. The virtual flows satisfy the flow-conservation con-
straints, namely

if
if
otherwise

(11)
for all , , and . Hereafter, the set of equations for

will be omitted because they are implied by the remaining
equations.

The broadcast flows and the virtual flows can be re-
lated using results from the lossy hyperarc model of [5] and
[13]. Specifically, [13, Eq. (9)] relates the virtual flows and sub-
graphs, using the fraction of packets injected into
the hyperarc that reach the set of nodes . Re-
call from Section II-A that here the instantaneous capacity func-
tion is defined such that all packets injected into the hy-
perarc are received by every node in . Thus, in our case,

whenever , and consequently

(12)
Note the difference with [13], where at every time slot,

packets are injected into a fixed set of hyperarcs at the same
rate. The problem in [13] is therefore to find a schedule of
hyperarcs that do not interfere (the nonconflicting hyperarcs).
The same schedule is used at every time slot. However, only a
random subset of nodes receive the injected packets in a given
slot. Instead here, the hyperarc selection is part of the power
allocation problem at the physical layer and is done for every
time slot. The transmission rate (or equivalently, the channel
coding redundancy) is however appropriately adjusted so that
all the nodes in the selected hyperarc receive the data.

In general, for any feasible solution to (10)–(12), a network
code exists that supports the corresponding exogenous rates

[5]. This is because for each multicast session , the
maximum flow between and is and is therefore
achievable [4, Theorem 1]. Given a feasible solution, various
network coding schemes can be used to achieve the exogenous
rates. Random network-coding-based implementations such as
those proposed in [9] and [10] are particularly attractive since
they are fully distributed and require little overhead. These
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schemes also handle any residual errors or erasures that remain
due to the physical layer.

The system model also allows for a set of “box constraints”
that limit the long-term powers, transport-layer rates, broadcast-
link flow rates, virtual flow rates, as well as the maximum link
capacities. Combined with the set , these constraints can be
compactly expressed as

(13)

Here, is a super-vector formed by stacking all the average rate
and power variables, that is, , , , , and . Parame-
ters with min/max subscripts or superscripts denote prescribed
lower/upper bounds on the corresponding variables.

C. Optimal Resource Allocation

A common objective of the network optimization problem
is maximization of the exogenous rates and minimization
of the power consumption . Toward this end, consider in-
creasing and concave utility functions and convex cost
functions so that the overall objective function

is concave. For example, the utility
function can be the logarithm of session rates, and the cost func-
tion can be the squared average power consumption. The net-
work utility maximization problem can be written as

(14a)

s.t.

(14b)

(14c)

(14d)

(14e)

(14f)

where . Note that constraints (1), (9), and (11) have been
relaxed without increasing the objective function. For instance,
the relaxation of (11) is equivalent to allowing each node to send
at a higher rate than received, which amounts to adding virtual
sources at all nodes . However, adding virtual sources does
not result in an increase in the objective function because the
utilities depend only on the multicast rate .

The solution of the optimization problem (14) gives the
throughput that is achievable using optimal virtual flow
rates and power allocation policies . These virtual
flow rates are used for network code design. When imple-
menting coded networks in practice, the traffic is generated in
packets and stored at nodes in queues (and virtual queues for
virtual flows) [10]. The constraints in (14) guarantee that all
queues are stable.

Optimization problem (14) is nonconvex in general, and thus
difficult to solve. For example, in the conflict graph model, the
constraint set is discrete and nonconvex, while in the SINR
model, the capacity function is a nonconcave
function of ; see e.g., [6] and [26]. Section III analyzes the
Lagrangian dual of (14).

III. OPTIMALITY OF LAYERING

This section shows that (14) has zero duality gap and solves
the dual problem via subgradient descent iterations. The purpose
here is twofold: 1) to describe a layered architecture in which
linear network coding is optimally integrated; and 2) to set the
basis for a network implementation of the subgradient method,
which will be developed in Section IV.

A. Duality Properties

Associate Lagrange multipliers , , , , and
with the flow constraints (14b), the union of flow constraints
(14c), the link rate constraints (14d), the capacity constraints
(14e), and the power constraints (14f), respectively. Also, let
be the vector formed by stacking these Lagrange multipliers in
the aforementioned order. Similarly, if inequalities (14b)–(14f)
are rewritten with zeros on the right-hand side, the vector

collects all the terms on the left-hand side of the
constraints. The Lagrangian can therefore be written as

(15)
The dual function and the dual problem are, respectively

(16)

(17)

Since (14e) may be a nonconvex constraint, the duality gap is, in
general, nonzero, i.e., . Thus, solving (17) yields an upper
bound on the optimal value of (14). In the present formulation,
however, we have the following interesting result.

Proposition 1: If the fading is continuous, then the duality
gap is exactly zero, i.e., .

A generalized version of Proposition 1, including a formal
definition of continuous fading, is provided in Appendix A, and
connections to relevant results are made. The essential reason
behind this strong duality is that the set of ergodic capacities
resulting from all feasible power allocations is convex.

The requirement of continuous fading channels is not limiting
since it holds for all practical fading models, such as Rayleigh,
Rice, or Nakagami- . Recall, though, that the dual problem is
always convex. The subgradient method has traditionally been
used to approximately solve (17) and also provide an intuitive
layering interpretation of the network optimization problem [8].
The zero duality gap result is remarkable in the sense that it
renders this layering optimal.

A corresponding result for unicast routing in uncoded net-
works has been proved in [22]. The fact that it holds for coded
networks with broadcast links allows optimal integration of
the network coding operations in the wireless protocol stack.
Section III-B deals with this subject.
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B. Subgradient Algorithm and Layer Separability

The dual problem (17) can in general be solved using the
subgradient iterations [27, Sec. 8.2] indexed by

(18a)

(18b)

where is a positive constant stepsize, and denotes projec-
tion onto the nonnegative orthant. The inclusion symbol al-
lows for potentially multiple maxima. In (18b),
is a subgradient of the dual function in (16) at . Next,
we discuss the operations in (18) in detail.

For the Lagrangian obtained from (15), the maximization in
(18a) can be separated into the following subproblems:

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

where

(19g)

and is the indicator function, which equals 1 if the expression
is true, and zero otherwise.
The physical-layer subproblem (19f) implies per-fading state

separability. Specifically, instead of optimizing over the class
of power control policies, (19f) allows solving for the optimal
power allocation for each fading state; that is

(20)

Note that problems (19a) and (19b) are convex and admit
efficient solutions. The per-fading state power allocation sub-
problem (19f), however, may not necessarily be convex. For
example, under the conflict graph model (cf. Example 1), the

number of feasible power allocations may be exponential in the
number of nodes. Finding an allocation that maximizes the ob-
jective function in (20) is equivalent to the NP-hard maximum
weighted hyperarc matching problem [13]. Similarly, the ca-
pacity function and hence the objective function for the SINR
model (cf. Example 2) is nonconvex in general and may be dif-
ficult to optimize.

This separable structure allows a useful layered inter-
pretation of the problem. In particular, the transport-layer
subproblem (19a) gives the optimal exogenous rates allowed
into the network, the network-flow subproblem (19b) yields
the endogenous flow rates of coded packets on the hyperarcs,
and the virtual-flow subproblem (19c) is responsible for deter-
mining the virtual flow rates between nodes and therefore the
network code design. Likewise, the capacity subproblem (19d)
yields the link capacities, and the power subproblem (19e)
provides the power control at the data link layer.

The layered architecture described so far also allows for
optimal integration of network coding into the protocol stack.
Specifically, the broadcast and virtual flows optimized re-
spectively in (19b) and (19c) allow performing the combined
routing-plus-network coding task at the network layer. An im-
plementation such as the one in [10] typically requires queues
for both broadcast as well as virtual flows to be maintained
here.

Next, the subgradient updates of (18b) become

(21a)

(21b)

(21c)

(21d)

(21e)

where are the subgradients at index given by

(22a)

(22b)

(22c)

(22d)

(22e)

The physical-layer updates (21d) and (21e) are again compli-
cated since they involve the operations of (22d) and (22e).
These expectations can be acquired via Monte Carlo simula-
tions by solving (19f) for realizations of and averaging over
them. These realizations can be independently drawn from the
distribution of , or they can be actual channel measurements.
In fact, the latter is implemented in Section IV on the fly during
network operation.
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C. Convergence Results

This section provides convergence results for the subgra-
dient iterations (18). Since the primal variables
and the capacity function are bounded, it is possible
to define an upper bound on the subgradient norm; i.e.,

for all .
Proposition 2: For the subgradient iterations in (19) and (21),

the best dual value converges to upto a constant; i.e.,

(23)

This result is well known for dual (hence, convex) problems
[27, Prop. 8.2.3]. However, the presence of an infinite-dimen-
sional variable is a subtlety here. A similar case is dealt
with in [22], and Proposition 2 follows from the results there.

Note that in the subgradient method (18), the sequence of
primal iterates does not necessarily converge. However,
a primal running average scheme can be used for finding the
optimal primal variables as summarized next. Recall that

denotes the objective function .
Proposition 3: For the running average of primal iterates

(24)

the following results hold.

1) There exists a sequence such that

, and also

(25)

2) The sequence converges in the sense that

(26a)

and

(26b)

Equation (25) asserts that the sequence together

with an associated becomes asymptotically feasible.
Moreover, (26) explicates the asymptotic suboptimality as a
function of the stepsize and the bound on the subgradient norm.
Proposition 3, however, does not provide a way to actually find

.
Averaging of the primal iterates is a well-appreciated method

to obtain optimal primal solutions from dual subgradient
methods in convex optimization [25]. Note, though, that the
primal problem at hand is nonconvex in general. Results related
to Proposition 3 are shown in [23]. Proposition 3 follows in
this paper as a special-case result for a more general algorithm
allowing for asynchronous subgradients and suitable for online
network control, elaborated in Section IV.

IV. SUBGRADIENT ALGORITHM FOR NETWORK CONTROL

The algorithm in Section III-B finds the optimal operating
point of (14) in an offline fashion. In this section, the subgradient
method is adapted so that it can be used for resource allocation
during network operation.

The algorithm is motivated by Proposition 3 as follows. The
exogenous arrival rates generated by the subgradient
method [cf. (19a)] can be used as the instantaneous rate of
the traffic admitted at the transport layer at time . Then,
Proposition 3 guarantees that the long-term average trans-
port-layer rates will be optimal. Similar observations can be
made for other rates in the network.

More generally, an online algorithm with the following char-
acteristics is desirable.

• Time is divided in slots, and each subgradient iteration
takes one time slot. The channel is assumed to remain in-
variant per slot, but is allowed to vary across slots.

• Each layer maintains its set of dual variables, which are
updated according to (21) with a constant stepsize .

• The instantaneous transmission and reception rates at the
various layers are set equal to the primal iterates at that time
slot, found using (19).

• Proposition 3 ensures that the long-term average rates are
optimal.

For network resource allocation problems such as those de-
scribed in [5], the subgradient method naturally lends itself to
an online algorithm with the aforementioned properties. This
approach, however, cannot be directly extended to the present
case because the dual updates (21d) and (21e) require an ex-
pectation operation, which needs prior knowledge of the exact
channel distribution function for generation of independent real-
izations of per time slot. Furthermore, although Proposition 3
guarantees the existence of a sequence of feasible power vari-

ables , it is not clear if one could find them since the
corresponding running averages do not necessarily converge.

Toward adapting the subgradient method for network control,
recall that the subgradients and involve the following
summands that require the expectation operations [cf. (22d) and
(22e)]

(27)

(28)

These expectations can, however, be approximated by averaging
over actual channel realizations. To do this, the power allocation
subproblem (19f) must be solved repeatedly for a prescribed
number of time slots, say , while using the same Lagrange
multipliers. This would then allow approximation of the op-
erations in (27) and (28) with averaging operations, performed
over channel realizations at these time slots.

It is evident, however, that the averaging operation not only
consumes time slots, but also that the resulting subgradient
is always outdated. Specifically, if the current time slot is of
the form with , the most recent
approximations of and available are

(29a)

(29b)



1282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Here, the power allocations are calculated using (19f) with the
old multipliers and . The presence of
outdated subgradient summands motivates the use of an asyn-
chronous subgradient method such as the one in [24].

Specifically, the dual updates still occur at every time slot, but
are allowed to use subgradients with outdated summands. Thus,

and are used instead of the corresponding
terms in (22d) and (22e) at the current time . Furthermore,

since the averaging operation consumes another time slots, the
same summands are also used for times .
At time , power allocations from the time slots , ,

become available and are used for calculating
and , which then serve as the more recent subgradient sum-
mands. Note that a subgradient summand such as is at least

and at most slots old.
The asynchronous subgradient method is summarized as

Algorithm 1. The algorithm uses the function , which
outputs the time of most recent averaging operation, that is

(31)

Note that . Recall also that the subgradient
components and are evaluated only at times .

The following proposition gives the dual convergence result

on this algorithm. Define as the bound
, where and are formed by stacking the terms

and , respectively.
Proposition 4: If the maximum delay of the asynchronous

counterparts of physical-layer updates (21d) and (21e) is ,
then we have the following.

1) The sequence of dual iterates is bounded.
2) The best dual value converges to up to a constant

(32)

Thus, the suboptimality in the asynchronous subgradient over
the synchronous version is bounded by a constant proportional
to . Consequently, the asynchronous subgradient
might need a smaller stepsize (and, hence, more iterations) to
reach a given distance from the optimal.

The convergence of asynchronous subgradient methods for
convex problems such as (17) has been studied in [24, Sec. 6] for
a diminishing stepsize. Proposition 4 provides a complementary
result for constant stepsizes.

Again, as with the synchronous version, the primal running
averages also converge to within a constant from the optimal
value of (14). This is stated formally in the next proposition.

Proposition 5: If the maximum delay of the asynchronous
counterparts of physical-layer updates (21d) and (21e) is ,
then we have the following.

1) There exists a sequence such that
and

(33)

2) The sequence converges in the following sense:

(34a)

and

(34b)

Algorithm 1: Asynchronous Subgradient Algorithm

1 Initialize and .
Let be the maximum number of subgradient iterations.

2 for , do
3 Calculate primal iterates , , , ,

and [cf. (19a)–(19e)].
4 Calculate the optimal power allocation by

solving (19f) using and .
5 Update dual iterates , ,

and from the current primal iterates
evaluated in Line 3 [cf. (21a)–(21c)].

6 if , then
7 Calculate and as in (29).
8 end
9 Update the dual iterates and

10 Network Control: Use the current iterates for
flow control; and for routing and network
coding; for link rate control; and for
instantaneous power allocation.

11 end

Note that as with the synchronous subgradient, the primal
running averages are still asymptotically feasible, but the bound
on their suboptimality increases by a term proportional to the
delay in the physical-layer updates. Of course, all the results
in Propositions 4 and 5 reduce to the corresponding results in
Propositions 2 and 3 on setting . Interestingly, there is no
similar result for primal convergence in asynchronous subgra-
dient methods even for convex problems.

Finally, the following remarks on the online nature of the al-
gorithm and the implementation of the Lagrangian maximiza-
tions in (19) are in order.

Remark 1: Algorithm 1 has several characteristics of an
online adaptive algorithm. In particular, prior knowledge of the
channel distribution is not needed in order to run the algorithm
since the expectation operations are replaced by averaging over
channel realizations on the fly. Likewise, running averages need
not be evaluated; Proposition 5 ensures that the corresponding
long-term averages will be near-optimal. Furthermore, if at
some time the network topology changes and the algorithm
keeps running, it would be equivalent to restarting the entire
algorithm with the current state as initialization. The algorithm
is adaptive in this sense.

Remark 2: Each of the maximization operations (19a)–(19e)
is easy because it involves a single variable, concave objective,
box constraints, and locally available Lagrange multipliers.
The power control subproblem (19f), however, may be hard
and require centralized computation in order to obtain a (near-)
optimal solution. For the conflict graph model, see [13], [28],
and references therein for a list of approximate algorithms.
For the SINR model, solutions of (19f) could be based on ap-
proximation techniques in power control for digital subscriber
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Fig. 1. Wireless network used in the simulations. The edges indicate the neigh-
borhood of each node. The thickness of the edges is proportional to the mean of
the corresponding channel.

TABLE I
SIMULATION PARAMETERS

lines (DSL)—see, e.g., [23] and references therein—and effi-
cient message passing protocols as in [11].

V. NUMERICAL TESTS

The asynchronous algorithm developed in Section IV is sim-
ulated on the wireless network shown in Fig. 1. The network
has eight nodes placed on a 300 300 m area. Hyperarcs orig-
inating from node are denoted by , where

, i.e., the power set of the neighbors of excluding
the empty set. For instance, hyperarcs originating from node 1
are (1, {2}), (1, {8}) and (1, {2, 8}). The network supports the
two multicast sessions and .
Table I lists the parameter values used in the simulation.

The conflict graph model of Example 1 with secondary in-
terference constraints is used. In order to solve the power con-
trol subproblem (19f), we need to enumerate all possible sets
of conflict-free hyperarcs (cf. Example 1). These sets are called
matchings. At each time slot, the aim is to find the matching that
maximizes the objective function . Note that since

is a positive quantity, only maximal matchings, i.e., match-
ings with maximum possible cardinality, need to be considered.
At each time slot, the following two steps are carried out.

Fig. 2. Evolution of the utility function �������� and best dual value
� ��� � ��� ��������� for � � ��	
 and 	 � 
�.

Fig. 3. Evolution of the utility function �������� for different values of 	 with
stepsize � � ��	
.

S1) Find the optimal power allocation for each maximal
matching. Note that the capacity of an active hyperarc
is a function of the power allocation over that hyperarc
alone [cf. (3) and (4)]. Thus, the maximization in (19f)
can be solved separately for each hyperarc and tone.
The resulting objective [cf. (19g)] is a concave function
in a single variable, admitting an easy waterfilling-type
solution.

S2) Evaluate the objective function (19f) for each maximal
matching and for powers found in Step 2, and choose the
matching with the highest resulting objective value.

It is well known that the enumeration of hyperarc matchings
requires exponential complexity [13]. Since the problem at hand
is small, full enumeration is used.

Fig. 2 shows the evolution of the utility function and
the best dual value up to the current iteration. The utility func-
tion is evaluated using the running average of the primal iterates
[cf. (24)]. It can be seen that after a certain number of iterations,
the primal and dual values remain very close, corroborating the
vanishing duality gap.

Fig. 3 shows the evolution of the utility function for different
values of . Again, the utility function converges to a near-op-
timal value after a sufficient number of iterations. Note, how-
ever, that the gap from the optimal dual value increases for large
values of , such as (cf. Proposition 5).

Finally, Fig. 4 shows the optimal values of certain optimiza-
tion variables. Specifically, the two subplots show all the virtual
flows to given sinks for each of the multicast sessions, namely

and , respectively. The
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Fig. 4. Some of the optimal primal values after 5000 iterations with � � ����

and � � ��. The gray level of the edges corresponds to values of virtual flows
according to the color bar on the right, with units b/s/Hz.

thickness and the gray level of the edges is proportional to the
magnitude of the virtual flows. It can be observed that most
virtual flows are concentrated along the shorter paths between
the source and the sink. Also, the radius of the circles repre-
senting the nodes is proportional to the optimal average power
consumption. It can be seen that the inner nodes 2, 4, 6, and 8
consume more power than the outer ones, 1, 3, 5, and 7. This
is because the inner nodes have more neighbors and thus more
opportunities to transmit. Moreover, the outer nodes are all close
to their neighbors.

VI. CONCLUSION

This paper formulates a cross-layer optimization problem for
multicast networks where nodes perform intra-session network
coding and operate over fading broadcast links. Zero duality gap
is established, rendering layered architectures optimal.

Leveraging this result, an adaptation of the subgradient
method suitable for network control is also developed. The
method is asynchronous because the physical layer returns
its contribution to the subgradient vector with delay. Using
the subgradient vector, primal iterates in turn dictate routing,
network coding, and resource allocation. It is established that
network variables, such as the long-term average rates admitted
into the network layer, converge to near-optimal values, and the
suboptimality bound is provided explicitly as a function of the
delay in the subgradient evaluation.

APPENDIX A
STRONG DUALITY FOR THE NETWORKING PROBLEM (14)

This appendix formulates a general version of problem (14)
and gives results about its duality gap. Let be the random

channel vector in , where denotes the nonnega-
tive reals, and the dimensionality of . Let be the -field
of Borel sets in , and the distribution of , which is a prob-
ability measure on .

As in (14), consider two optimization variables: the vector
constrained to a subset of the Euclidean space , and the
function belonging to an appropriate set of func-
tions . In the networking problem, the aforementioned func-
tion is the power allocation , and set consists of the
power allocation functions satisfying instantaneous constraints,
such as spectral mask or hyperarc scheduling constraints (cf.
also Examples 1 and 2). Henceforth, the function variable will
be denoted by instead of for brevity. Let be a subset
of . Then, is defined as the set of functions taking values
in

measurable for almost all (35)

The network optimization problem (14) can be written in the
general form

(36a)

subj. to (36b)

(36c)

where and are -valued functions describing constraints.
The formulation also subsumes similar problems in the unicast
routing framework such as those in [22] and [23].

Evidently, problem (14) is a special case of (36). If inequali-
ties (14b)–(14f) are rearranged to have zeros on the right-hand
side, function will simply have zeros in the en-
tries that correspond to constraints (14b)–(14d). The function

defined before (15) equals .
The following assumptions regarding (36) are made.

AS1. Constraint set is convex, closed, bounded, and in the
interior of the domains of functions and . Set is
closed, bounded, and in the interior of the domain of function

for all .

AS2. Function is concave, is convex, and
is integrable whenever is measurable. Furthermore, there is a

such that , whenever .

AS3. Random vector is continuous.1

AS4. There exist and such that (36b) holds as
strict inequality (Slater constraint qualification).

Note that these assumptions are natural for the network
optimization problem (14). Specifically, are the box con-
straints for variables , , , , and , and gives the
instantaneous power allocation constraints. The function
is selected concave and is linear. Moreover, the entries
of corresponding to (14f) are bounded because the
set is bounded. For the same reason, the ergodic capacities

are bounded.
While (36) is not convex in general, it is separable

[29, Sec. 5.1.6]. The Lagrangian (keeping constraints (36c)

1Formally, this is equivalent to saying that � is absolutely continuous with
respect to the Lebesgue measure on . In more practical terms, it means that
� has a probability density function without deltas.
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implicit) and the dual function are, respectively [cf. also (15)
and (16)]

(37)

(38)

where denotes the vector of Lagrange multipliers and

(39a)

(39b)

The additive form of the dual function is a consequence of the
separable structure of the Lagrangian. Furthermore, AS1 and
AS2 ensure that the domain of is . Finally, the dual
problem becomes [cf. also (17)]

(40)

As varies in , define the range of as

for some
(41)

The following lemma demonstrating the convexity of plays
a central role in establishing the zero duality gap of (36) and in
the recovery of primal variables from the subgradient method.

Lemma 1: If AS1–AS3 hold, then the set is convex.
The proof relies on Lyapunov’s convexity theorem [30]. Re-

cently, an extension of Lyapunov’s theorem [30, Extension 1]
has been applied to show zero duality gap of power control prob-
lems in DSL [26]. This extension, however, does not apply here,
as indicated in the ensuing proof. In a related contribution [22],
it is shown that the perturbation function of a problem similar to
(36) is convex; the claim of Lemma 1 though is quite different.

Proof of Lemma 1: Let and denote arbitrary points in
, and let be arbitrary. By the definition of , there

are functions and in such that

(42)

Now define

(43)

The set function is a nonatomic vector measure on be-
cause is nonatomic (cf. AS3) and the functions
and are integrable (cf. AS2); see [31] for defini-
tions. Hence, Lyapunov’s theorem applies to ; see also
[30, Extension 1] and [22, Lemma 1].

Specifically, consider a null set in , i.e., a set with
, and the whole space . It holds that

and . For the chosen , Lyapunov’s theorem
asserts that there exists a set such that ( denotes the
complement of )

(44a)

(44b)

Now using these and , define

.
(45)

It is easy to show that . In particular, the function
can be written as ,

where is the indicator function of a set . Hence, it
is measurable as the sum of measurable functions. Moreover,
we have that for almost all because and

satisfy this property. The need to show makes
[30, Extension 1] not directly applicable here.

Thus, and satisfies [cf. (44)]

(46)

Therefore, .
Finally, the zero duality gap result follows from Lemma 1 and

is stated in the following proposition.
Proposition 6: If AS1–AS4 hold, then problem (36) has zero

duality gap, i.e., . Furthermore, the values and are
finite, the dual problem (40) has an optimal solution, and the set
of optimal solutions of (40) is bounded.

Proof: Function is continuous on since it is
convex (cf. AS1 and AS2) [27, Prop. 1.4.6]. This, combined
with the compactness of , shows that the optimal primal
value is finite. Consider the set

for some (47)

Using Lemma 1, it is easy to verify that set is convex. The
rest of the proof follows that of [29, Prop. 5.3.1 and 5.1.4], using
the finiteness of and Slater constraint qualification (cf. AS4).

The boundedness of the optimal dual set is a standard result
for convex problems under Slater constraint qualification and
finiteness of optimal primal value; see e.g., [25, p. 1762] and
[27, Prop. 6.4.3]. The proof holds also in the present setup since

is finite, , and AS4 holds.

APPENDIX B
DUAL AND PRIMAL CONVERGENCE RESULTS

This appendix formulates the synchronous and asynchronous
subgradient methods for the generic problem (36) and estab-
lishes the convergence claims in Propositions 2–5. Note that
Propositions 2 and 3 follow from Propositions 4 and 5, respec-
tively, upon setting the delay .

Starting from an arbitrary , the subgradient itera-
tions for (40) indexed by are [cf. also (18)]

(48a)

(48b)

(48c)
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where and are the subgradients of functions and
, defined as [cf. also (22)]

(49a)

(49b)

The iteration in (48c) is synchronous because, at every , both
maximizations (48a) and (48b) are performed using the cur-
rent Lagrange multiplier . An asynchronous method is also
of interest and operates as follows. Here, the component of
the overall subgradient used at does not necessarily corre-
spond to the Lagrange multiplier , but to the Lagrange mul-
tiplier at a time . Noting that the maximizer in (48b) is

and the corresponding subgradient component used
at is , the iteration takes the form

(50)

The difference is the delay with which the subgradient
component becomes available. In Algorithm 1, for example,
the delayed components are and .

Next, we proceed to analyze the convergence of (50).
Function is continuous on because it is convex
[27, Prop. 1.4.6]. Then, AS1 and AS2 imply that there exists a
bound such that for all and

(51)

Due to this bound on the subgradient norm, algorithm (50)
can be viewed as a special case of an approximate subgradient
method [32]. We do not follow this line of analysis here, though,
because it does not take advantage of the source of the error
in the subgradient—namely, that an old maximizer of the La-
grangian is used. Moreover, algorithm (50) can be viewed as a
particular case of an -subgradient method (see [29, Sec. 6.3.2]
for definitions). This connection is made in [24], which only
deals with diminishing stepsizes; here, results are proved for
constant stepsizes. The following assumption is adopted for the
delay .

AS5. There exists a finite such that for
all .

AS5 holds for Algorithm 1 since the maximum delay there is
. The following lemma collects the results needed

for Propositions 2 and 4. Specifically, it characterizes the error
term in the subgradient definition when is used and
also relates successive iterates and . The quantity
in the ensuing statement was defined in AS2.

Lemma 2: Under AS1–AS5, the following hold for the se-
quence generated by (50) for all :

a)

(52a)

b)

(52b)

c)

(52c)

Parts a) and b) of Lemma 2 assert that the vectors
and are respectively -subgradients of and
the dual function at , with . Note that is
a constant proportional to the delay .

Proof of Lemma 2: a) The left-hand side of (52a) is

(53)

Applying the definition of the subgradient for at
to (53), it follows that

(54)

Now, adding and subtracting the same terms in the right-hand
side of (54), we obtain

(55)

Applying the definition of the subgradient for at
to (55), it follows that

(56)

Using the Cauchy–Schwartz inequality, (56) becomes

(57)

Now, write the subgradient iteration [cf. (50)] at

(58)

Subtracting from both sides of the latter
and using the nonexpansive property of the projection
[27, Prop. 2.2.1] followed by (51), one finds from (58) that

(59)

Finally, recall that for all (cf. AS2),
and for all (cf. AS5). Applying the two
aforementioned assumptions and (59) to (57), we obtain (52a).
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b) This part follows readily from part a), using (38) and the
definition of the subgradient for at [cf. (49a)].

c) We have from (50) for all that

(60)

Due to the nonexpansive property of the projection, it follows
that

(61)

Introducing (51) and (52b) into (61), (52c) follows.
The main convergence results for the synchronous and asyn-

chronous subgradient methods are given by Propositions 2 and
4, respectively. Using Lemma 2, Proposition 4 is proved next.

Proof of Proposition 4: a) Let be an arbitrary dual solu-
tion. With and denoting the th entries of and , respec-
tively, define

(62)

where and are the strictly feasible variables in AS4. Note
that due to AS4.

We show that the following relation holds for all :

(63)

Eq. (63) implies that the sequence of Lagrange multipliers
is bounded because the optimal dual set is bounded (cf.

Proposition 6). Next, (63) is shown by induction.
It obviously holds for . Assume it holds for some .

It is proved next that it holds for . Two cases are considered,
depending on the value of .

Case 1: . Then, (52c) with
and becomes

(64)

The square-bracketed quantity in (64) is positive due to the as-
sumption of Case 1. Then, (64) implies that

, and the desired relation holds for .
Case 2: . It follows from

(50), the nonexpansive property of the projection, the triangle
inequality, and the bound (51) that

(65a)

(65b)

Next, a bound on is developed. Specifically, it holds
due to the definition of the dual function [cf. (38)] that

(66)

Rewriting the inner product in (66) using the entries of the cor-
responding vectors and substituting (62) into (66) using ,
it follows that

(67)

Using into (67), the following bound is
obtained:

(68)

Introducing (68) into (65b) and using the assumption of
Case 2, the desired relation (63) holds for .

b) Set and in (52c)

(69)

Summing the latter for , and introducing the quan-
tity , it follows that

(70)

Substituting the left-hand side of (70) with 0, rearranging the
resulting inequality, and dividing by , we obtain

(71)

Now, note that exists be-
cause is monotone decreasing in
and lower-bounded by , which is finite. Moreover,

because is bounded.
Thus, taking the limit as in (71) yields (32).

Note that the sequence of Lagrange multipliers in the syn-
chronous algorithm (48c) is bounded. This was shown for
convex primal problems in [25, Lemma 3]. Interestingly, the
proof also applies in the present case since AS1–AS4 hold and
imply finite optimal . Furthermore, Proposition 2 for the
synchronous method follows from [22] and [27, Prop. 8.2.3].

Next, the convergence of primal variables through running
averages is considered. The following lemma collects the inter-
mediate results for the averaged sequence [cf. (24)] and
is used to establish convergence for the generic problem (36)
with asynchronous subgradient updates as in (50). Note that

, , because (24) represents a convex combi-
nation of the points .

Lemma 3: Under AS1–AS5 with denoting an optimal

Lagrange multiplier vector, there exists a sequence in
such that for any , it holds that

a) (72a)

b) (72b)

c)

(72c)
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Eq. (72a) is an upper bound on the constraint violation, while
(72b) and (72c) provide lower and upper bounds on the objective
function at . Lemma 3 relies on Lemma 1 and the fact that
the averaged sequence is generated from maximizers of
the Lagrangian that are not outdated.

Proof of Lemma 3: a) It follows from (50) that

(73)

Summing (73) over , using , and dividing
by , it follows that

(74)

Now, recall the definitions of the subgradients and
in (49). Due to the convexity of , it holds that

(75)

Due to Lemma 1, there exists in such that

(76)
Combining (74)–(76), it follows that

(77)

Using and the fact that is a nonnegative vector,
(72a) follows easily from (77).

b) Due to the concavity of , it holds that
. Adding and subtracting the same

terms, and for
, to the right-hand side of the latter, and using

[cf. (38) and (48a)], it
follows that

(78)

Now recall that [cf. (49b)].
Thus, it holds that

(79)

The first term in the right-hand side of (79) is ([cf.
(38) and (48b)]. The second term can be lower-bounded using
Lemma 2(a) with . Then, (79) becomes

(80)

Using (80) into (78) and , it
follows that

(81)

Moreover, it follows from (50) and the nonexpansive property
of the projection that

(82)

Summing (82) for , dividing by , and intro-
ducing the bound (51) on the subgradient norm yields

(83)

Using (83) into (81) together with , one arrives
readily at (72b).

c) Let be an optimal dual solution. It holds that

(84)

where was defined in part a) [cf. (76)].
By the definitions of and [cf. (40)] and the dual function

[cf. (38)], it holds that

(85)

Substituting the latter into (84), it follows that

(86)

Because and for all , (86) implies that

(87)

Applying the Cauchy–Schwartz inequality to the latter, (72c)
follows readily.

Using Lemma 3, the main convergence results for the syn-
chronous and asynchronous subgradient methods are given cor-
respondingly by Propositions 3 and 5, after substituting

(88)

Proof of Proposition 5: a) Take limits on both sides of (72a)
as , and use the boundedness of .

b) Using and taking the lim inf in (72b), we obtain
(34a). Moreover, using , (72a), the boundedness of ,
and taking lim sup in (72c), (34b) follows.
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