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Resource Allocation for Wireless Multiuser
OFDM Networks

Xin Wang, Senior Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—Resource allocation issues are investigated in this
paper for multiuser wireless transmissions based on orthogonal
frequency division multiplexing (OFDM). Relying on convex and
stochastic optimization tools, the novel approach to resource
allocation includes: i) development of jointly optimal subcarrier,
power, and rate allocation for weighted sum-average-rate maxi-
mization; ii) judicious formulation and derivation of the optimal
resource allocation for maximizing the utility of average user
rates; and iii) development of the stochastic resource allocation
schemes, and rigorous proof of their convergence and optimality.
Simulations are also provided to demonstrate the merits of the
novel schemes.

Index Terms—convex optimization, OFDM, resource allocation
and scheduling, stochastic approximation.

I. INTRODUCTION

T HE emerging demand for high-rate wireless connectivity
under diverse quality-of-service (QoS) requirements mo-

tivates intelligent multiuser scheduling designs for next-gen-
eration wireless networks. Orthogonal frequency division
multiplexing (OFDM) facilitates high-speed wireless commu-
nications over the emergent frequency-selective links because
it copes efficiently with inter-symbol interference, which limits
the achievable data rates. Furthermore, OFDM subchannels
can be allocated dynamically among multiple users, providing
an extra degree of freedom in multiuser scheduling. For these
reasons, OFDM has become the workhorse for broadband
wireless applications and has been adopted by current and
future standards including IEEE802.11a/g [1], IEEE 802.16
standards [2] and 3GPP-Long Term Evolution (LTE) [3].
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Resource allocation for multiuser OFDM networks has at-
tracted a lot of interest [26], [12], [9], [18], [11], [27]. The
goal is to jointly allocate subcarriers, rate and power in order
to maximize (respectively minimize) the weighted sum of user
rates (powers) under a prescribed power (rate) budget. For these
problems, a low-complexity yet provably optimal solution is
not available. In this context, [26], [9], [12], [11], [27] reported
suboptimal algorithms which tradeoff complexity for (sub)op-
timality. Recently, there has also been interest to expand the
scope of resource allocation/scheduling to: i) ensure fairness
among users, ii) provide QoS guarantees, and iii) cope with mo-
bility and network dynamics, both of which render the wireless
channel uncertain. Fairness and QoS guarantees can be effected
by maximizing a suitable utility function of average user rates
and introducing minimum rate constraints per user [6], [4], [21],
[13], [5], [15], [23]. Channel uncertainty on the other hand, can
be accommodated through on-line channel-adaptive scheduling
schemes that essentially learn the underlying channel distribu-
tion on-the-fly [13], [21], [21]. The resultant “opportunistic”
schedulers, however, are mainly developed for single-carrier,
time-division multiplexing systems, and the few extensions to
OFDM networks are only limited to best-effort traffic without
rate requirements [20]. In addition, existing approaches pertain
to either deterministic links [20], or if random fading effects
are accounted for, the channel links are confined to obey a fi-
nite-state Markov chain model [13], [21]. This is not the case
in wireless propagation where fading coefficients take on a con-
tinuum of values.

To overcome limitations of existing approaches, this paper
takes a fresh look at the analytical approach and algorithmic
development of resource allocation and scheduling problems
for multiuser wireless OFDM systems. Relying on convex opti-
mization tools, the ergodic rate region is specified first, and the
corresponding optimal subcarrier, rate, and power allocation is
developed afterwards. It is shown that almost surely optimal re-
source allocation can be obtained in closed-form by a greedy
water-filling approach with linear complexity in the number of
users and subcarriers, provided that the distribution function of
the random fading channel is continuous. General utility-max-
imizing schedulers are further developed for multiuser OFDM
systems with minimum average rate guarantees when the fading
distribution is known and when it is unknown. Designed and
analyzed using stochastic-averaging tools popular in adaptive
signal processing theory, merits of the proposed novel sched-
ulers relative to [6], [21], [5] and [20], include reduced com-
plexity, faster convergence, and provable optimality for wireless
channels with continuous fading distributions.

The rest of the paper is organized as follows. Section II de-
scribes the system and channel models. Section III derives the
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ergodic rate region and the corresponding optimal resource al-
location for OFDM channels. Section IV is devoted to utility
based scheduling schemes, which are capable of dynamically
learning the underlying channel distribution and asymptotically
converging to the optimal benchmark with average rate guaran-
tees. The novel schedulers are tested in Section V with simula-
tions; and Section VI concludes the paper.

II. MODELING PRELIMINARIES

Consider OFDM-based communication over wireless fading
links between an access point (AP) and wireless users. An
intelligent scheduler at the AP relies on the channel state in-
formation (CSI) of the wireless links to allocate the available
resources, namely, subcarriers, rate, and power.

Slotted transmissions take place over bandwidth , which
is divided into orthogonal narrow-band sub-channels, each
with bandwidth small enough for each subcarrier to
experience only flat fading. With denoting the complex
channel taps, and the corresponding delays per slot ,
the square amplitude of the discrete-time Fourier transform on
subcarrier is given by

(1)

The following operational conditions are assumed.
oc-1) Fading coefficients

obey a block fading model; i.e., they are fixed
per slot but can vary from slot to slot according to a
random process which is assumed stationary and ergodic
with cumulative distribution function (cdf) .
oc-2) During a training phase entailing sufficiently long
pilot sequences, the AP acquires and each terminal
acquires per slot .

Whereas the block-fading model in oc-1) is commonly as-
sumed, the full CSI assumption in oc-2) is reasonable for time-
division duplex (TDD) systems where link reciprocity holds.
Based on , the scheduler at the AP wishes to optimally allo-
cate subcarriers, rate, and power per slot , to all users.

Notation: Boldface letters denote column vectors and in-
equalities for vectors are defined element-wise; denotes
the expectation operator over fading states the all-zero
vector, transposition, the vector norm, the absolute
value, the interior of a set the gradient of

with respect to vector , and .

III. ERGODIC RATE REGION AND OPTIMAL

RESOURCE ALLOCATION

This section characterizes the ergodic region of achievable
rates, and develops optimal resource allocation schemes for
OFDM-based wireless networks.

A. Ergodic Rate Region

Consider for now that per time slot, each subcarrier can be
shared by multiple users over nonoverlapping time fractions.
Let denote the nonnegative time-sharing fraction of
a slot and the average transmit-power allocated for

transmission to user on subcarrier . Supposing without loss
of generality (w.l.o.g.) that the slot duration is unity, fractions
per subcarrier must obey . Since
only a fraction of the slot is designated for terminal ,
its transmit-power on subcarrier during the active time fraction
is . Assuming w.l.o.g. that the additive white Gaussian
noise (AWGN) at the receiver has unit variance and the sub-
bandwidth , the maximum achievable rate of user on
subcarrier is then provided by Shannon’s capacity formula

(2)

The allocation scheme sought should specify resources
per fading channel realization . Since the rate in (2)
depends on and , the optimization variables are

and . Once
the optimal and are found, it follows from (2) that the op-
timal rates are determined as

. For notational brevity, consider the set of “trivial”
constraints

. Given a specific allo-
cation policy , it is clear that the maximum average
rate per user is

(3)

and the maximum average rate vector is
.

Consider for specificity the OFDM-based downlink where
the AP has an average sum-power budget for transmis-
sions. Let denote the set of all feasible allocation policies

satisfying also the average sum-power constraint
. With , the

region of achievable average rates is clearly given by

(4)

Proposition 1: The ergodic capacity in (2) is a
jointly concave function of and ; and thus the ergodic re-
gion in (4) is a convex set of vectors.

Proof: See Appendix A.

Since is convex, each boundary point of can be attained
by maximizing a weighted sum of average rates [8]; i.e.,

(5)

where the weight vector . Varying the
weights allows one to reach all the boundary points and thus de-
termine . Clearly, at a boundary point associated with a weight
vector , one finds the optimal rate vector for
a certain . This optimal allocation will be pursued
next using a Lagrange dual-based approach.
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Fig. 1. Greedy water-filling approach.

B. Optimal Subcarrier and Power Allocation

After substituting (3) and (4) into (5), finding the optimal
requires solving the optimization problem

(6)

Since is a concave function of
, it follows that (6) is a convex optimiza-

tion problem, which can be solved using a Lagrange dual
approach [8], [16]. With denoting the Lagrange multiplier
associated with the constraint, the Lagrangian function of (6) is

where the functional is defined as

(7)

The dual function is then given by

(8)

and the dual problem of (6) is

(9)

Due to the convexity of (6), there is no duality gap [8].
Therefore, the solution of (6) can be obtained by solving (9).
Specifically, if denotes the minimizer of (9), then the op-
timal and that maximize in (8), are

the optimal variables for (6) provided that the complementary
slackness condition is satisfied [8].

To obtain for a given , consider what will be later
interpreted as link quality indicator

(10)

Lemma 1: For ergodic fading channels with continuous cdf,
the almost surely unique solution of (8) yields the optimal time
fractions and powers per and as

(11)

where .
Proof: See Appendix B.

Basically, Lemma 1 asserts that a “winner-takes-all” assign-
ment per subcarrier along with a water-filling power allocation
across realizations constitutes with probability one (w.p. 1) the
optimal solution of (6), provided that the distribution function of
the random fading channel is continuous. Regarding as a rate
reward weight and as power price, in
(7) is indeed a anet reward (rate reward minus power cost) for
user over subcarrier per slot. The optimal resource alloca-
tion should maximize the total net reward across users and sub-
carriers per . As illustrated in Fig. 1, this amounts to a greedy
water-filling solution, where power and subcarrier allocations
are decoupled.

In the first step, transmit-power during the
active time fraction , is allocated per user across sub-
carriers following a water-filling principle, i.e.,

(12)

The link quality indicators in (10), obtained based on
such power values

(13)
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represent the highest potential of net reward when allocating
subcarrier to terminal for the fading realization . In the
second step, the entire subcarrier is then greedily assigned to
the “winner”-user for
maximum net reward per subcarrier.

With the optimal allocation of Lemma 1, only the optimal
multiplier is left to specify in order to obtain the optimal so-
lution for (6). With the dual-optimal power allocation
in (11), consider the resultant average sum-power which is a
well-defined function of since the associated expected value
is unique due to the almost surely unique . Func-
tion is monotonic as asserted by the following lemma.

Lemma 2: The instantaneous power speci-
fied in (11) as well as the corresponding average sum-power

are both nonincreasing functions of .
Proof: See Appendix C.

As dictated by the complementary slackness condition, the
optimal should satisfy: either i) and or ii)

and . However, here we should have ,
because otherwise must be infinity [cf. (11)], which
clearly violates the sum-power constraint. Therefore, we must
have . Thanks to the monotonicity established in
Lemma 2, 1-D search algorithms (such as bi-section) employed
to numerically solve are ensured to converge to
geometrically fast.

Summarizing, we have established the following result.

Theorem 1: For ergodic fading channels with continuous cdf,
the almost surely optimal subcarrier assignment and power al-
location for (6) is given by and ,
in (11), where the optimal is chosen (via bisection iterations)
such that .

Interestingly, although each subcarrier was allowed to be
time shared at the outset, the almost surely optimal solution in
Theorem 1 dictates no sharing. In fact, this “winner-takes-all”
policy per subcarrier subsumes three cases: (i) no transmis-
sion when all user subchannels experience deep fades; i.e.,

; (ii) allocation to a single winner if
, admits a unique maximizer; and (iii) allocation

to a randomly chosen winner if has multiple
maxima. Continuity of the channel cdf ensures that having
multiple “winners,” i.e., case (iii), is an event of Lebesgue mea-
sure zero. Thus, the pair is almost surely
unique; and hence, it is almost surely optimal for all wireless
channel models including Rayleigh, Rice, and Nakagami that
indeed have continuous cdfs [17]. Note that this optimality
w.p. 1 does not apply when the channel fading distribution is
discrete (as is the case with static channel fading [9], [20]).
In this case, the “winner-takes-all” policy may not be optimal
and optimal time-sharing among users needs to be determined

(even when one considers maximization of the average rates);
see also [23].

The optimal resource allocation in Theorem 1 can be used to
determine boundary points of the ergodic rate region . Such
a greedy approach “water-fills” the available power resources
across subcarriers and realizations, with higher power (and
rate) assigned to higher quality links. This achieves op-
timal utilization of the rich spectral and temporal modes of di-
versity that become available with random OFDM channels. In
addition, the water-filling power allocation together with the
“winner-takes-all” subcarrier assignment specified in (11) cap-
tures the multiuser diversity [22], by intelligently scheduling
the user terminal with the “best” channel as quantified by the
highest net reward per subcarrier. Note that the term “winner-
takes-all” should not be misunderstood. Although one winner
is chosen per subcarrier per , the optimally scheduled winners
(as well as their assigned powers) vary across subcarriers and
fading realizations. In this spirit, all the types of diversity avail-
able by fading are exploited by the proposed scheme.

From a Shannontheoretic perspective, the ergodic rate re-
gion in (4) does not yield a maximum achievable rate (i.e.,
capacity) region. Shannon’s capacity of general OFDM broad-
cast channels can be approached by allowing superposition
coding and successive decoding per subcarrier. In fact, the
capacity-achieving schemes for OFDM downlink should not
be difficult to derive by combining the proposed approach
with those in [14], [25]. This direction is not pursued because
superposition coding and successive decoding per subcarrier
are generally considered too complex for practical OFDM
systems. For this reason, most existing works on resource
allocation for OFDM systems do not advocate superposition
coding [9], [27], [20]. In fact, many existing works assume a
fortiori that each subcarrier is assigned to a single user (i.e.,
time-sharing is not allowed), and formulate the resultant opti-
mization problem as a nonconvex 0-1 integer program (which
is NP-hard). Bearing these considerations in mind, we allow
time-sharing among users per subcarrier at the outset. This
prevents the NP-hard integer program, and facilitates a convex
optimization formulation. On the other hand, we prove that the
optimal resource allocation policy for our formulation admits
a “winner-takes-all” strategy, that is a single user assignment
per subcarrier, almost surely, provided that the channel fading
has a continuous distribution function—a condition met by all
fading models used in practice. Hence, we provide a provably
optimal solution for OFDM systems with low-complexity
transceiver design (since each subcarrier is assigned to a single
user). Notwithstanding, this optimality cannot be claimed by
existing sub-optimum schemes [9], [27], [20]. Furthermore,
the proposed optimal scheme incurs low computational com-
plexity. With the optimal power price , optimal allocation of
subcarriers and power entails just evaluating and comparing
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link quality indicators per subcarrier .
Hence, the almost surely “winner-takes-all” optimal resource
allocation over random OFDM channels exhibits a linear com-
plexity . This is remarkable if one takes into account
that with deterministic multiuser OFDM channels, optimal
“winner-takes-all” subcarrier allocation amounts to an integer
programming problem, which is known to be exponentially
complex; and even the sub-optimal algorithms in [9] incur
“reduced complexity” in the order of . Interest-
ingly, wireless fading with infinitely many states is actually
a “blessing” rather than a “curse” as far as optimal OFDM
resource allocation is concerned.

We remark that a Lagrange dual approach to “optimal”
downlink OFDM resource allocation was independently de-
veloped in [27]1 This approach is actually a variant of our
“greedy water-filling” approach. But assuming each subcarrier
is assigned to a single user a fortiori, the optimality of the
proposed scheme in [27] cannot be shown; instead, a so-called
“99.9999% practical optimality” is claimed through exten-
sive simulations using a specific distribution function for the
fading process, namely white, zero-mean, circular-symmetric
complex Gaussian. Differently, we analytically establish that
a “winner-takes-all” policy such as the scheme in [27] is al-
most surely optimal for any fading process with continuous
distribution function. This almost sure optimality holds for any
continuous fading case, in contrast to the “99.9999% practical
optimality” for a specific distribution.

The Lagrange dual method was also used to solve a static
optimization for resource allocation per slot (i.e., per fading
realization) in OFDM downlink [10]. Differently, here we max-
imize the ergodic rates for time-varying fading channels; thus,
our scheme can also capitalize on the temporal fading diversity
to achieve better performance. A time-sharing argument was
also employed in [10] to obtain a convex optimization formula-
tion2. The optimal resource allocation strategy derived in [10]
has different form when compared to the “greedy water-filling”
strategy of this paper. The proposed “greedy water-filling”
method with decoupled power and time allocation provide
useful insights on the structure of the optimal policy.

It is worth mentioning that an attractive aspect of the proposed
greedy water-filling approach with regard to those in [27], [10]
is its generality. Theorem 1 for OFDM downlink is derived as-
suming that both transmit-rates and fading channel cdfs are con-
tinuous. The result carries over readily to the uplink by taking
into account the individual (instead of sum) power constraints;
our approach can also account for discontinuous channel cdfs as
well as discrete rate adaptation, and can be extended to general
orthogonally channelized systems, along the lines of our recent
work in [23] and [24].

1We exchanged conference papers with the authors of [27], and they cited/
acknowledged our work. In fact their first conference paper reporting this result
appeared one month after ours in ICASSP, April 16–20, 2007; whereas we first
reported our result in CISS, March 14–16, 2007.

2In fact, the approach in [10] is not on safe grounds because� �����������
is used as the rate function for a time fraction �, and power allocation �; but
this function is undefined at � � 	, especially � � � � 	, and thus concavity
cannot be claimed over the entire feasible set � � 	 and � � 	. This is actually
neither trivial nor irrelevant since the optimal policy indeed chooses one of such
extreme points. (Recall that at the optimal “winner-takes-all” allocation, it holds
that � � � � 	, for all but a single user.)

IV. UTILITY-BASED SCHEDULING WITH

AVERAGE RATE GUARANTEES

The schemes of Section III provide proper benchmarks for
resource allocation and scheduling over wireless OFDM con-
nections. However, they are insufficient to address user fairness
and QoS guarantees, as well as to cope with the uncertainty
associated with wireless fading propagation. The approach of
“opportunistic scheduling” in [13], [21], [15], [5], [28] holds
promise to address these challenges in the OFDM context.
To devise fair and efficient schedulers for communication
networks, these works rely on utility functions—a notion
originally studied in economics, to quantify user fairness and
benefits of a resource. Following such an approach and using
the derived ergodic rate region as benchmark, this section deals
with utility based multiuser scheduling for OFDM downlink
systems, where continuous rate adaptation and continuous
fading distributions are assumed for specificity; but results of
this section carry over readily to uplink, and to other (discon-
tinuous cdf, discrete rate adaptation) setups.

For user connections requesting QoS guarantees in terms
of minimum prescribed rates , a general
utility-based scheduler seeks the solution of

(14)

where is a chosen utility function of the average rate vector
, and the constraint bounds average rate limits that the

physical channels can handle. Similar rate (utility) maximiza-
tion problem with minimum rate requirements were also formu-
lated in different contexts to address user fairness and/or QoS
guarantees [5], [16], [21], [25].

To ensure that the global optimum of (14) can be attained in
principle, it is assumed that:

(A1) Function is selected to be concave, increasing
and uniformly bounded, ; and the prescribed min-
imum rates reside within the interior of , i.e., .

Choosing to be increasing is consistent with the fact that the
benefit of the th user should increase as increases, whereas a
concave can balance the tradeoff between rate efficiency and
user fairness [23]. Other conditions in (A1) are imposed to as-
sure that (14) is a strictly feasible convex optimization problem,
provided that is a closed convex set of .

A. Scheduling With Known Channel CDF

To bypass the requirement for differentiable , one can resort
to the Lagrange dual approach. To this end, consider re-formu-
lating (14) to [cf. the definition of ]

(15)
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where the constraint is put under the operator for
notational brevity. Due to the concavity of functions and ,
the primal problem in (15) is convex.

With denoting the Lagrange multiplier asso-
ciated with the average sum-power constraint and

collecting the Lagrange multipliers for
, the Lagrangian for

(15) is then as shown in (16), at the bottom of the page, where
the net-reward per user-subcarrier is defined as

(17)

The corresponding Lagrange dual function can be found as

(18)

and the dual problem of (15) is .
Since (15) is a strictly feasible convex optimization problem,

it follows that there is no duality gap between the primal (15)
and its dual. Hence, the solution of (15) can be obtained via
solving its dual problem.

To this end, it is necessary to first solve (18), which amounts
to solving two decoupled subproblems (across and ).
The first one involves only [cf. (16)]

(19)

For any (possibly nondifferentiable) concave , (19) is a simple
convex optimization problem, for which efficient algorithms are
available to obtain the optimal . If is differentiable
and its gradient has a well-defined inverse , then (19)
can be solved in closed form

(20)

The second subproblem associated with is [cf. (16)] as
shown in

(21)
But problem (21) is identical to the one in (8) with ;
hence, its solution is pro-
vided by Lemma 1.

Relying on and ,
the optimal multipliers and can be obtained by solving
the dual problem using gradient projection iterations [7], as
shown in (22), at the bottom of the page, where a shorthand
notation is used for the th user’s transmit-rate over subcarrier

, namely

(23)

The iterations in (22) are guaranteed to converge to the optimal
and from any initial and [7, p. 641].

Strong duality between the primal (15) and its dual ensures
that replacing and with and provides the (almost
surely) optimal resource schedule , and
the resultant optimal rate vector for (15), or equivalently,
for (14). Notice that since is an increasing function, it must
hold that

In other words, the optimal resides on a boundary point
of . Furthermore, reasoning as in Theorem 1, it should also
hold that

(16)

(22)
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Therefore, all the inequality constraints associated with and
are active (and the optimal multipliers ). This
implies that the projection operators in (22) are not in effect.
One can then rely on the duality theorem [8, p. 225] to show that
the dual iterations without ; that is

(24)

can replace (22) to find and .
Summarizing, we have the following proposition.

Proposition 2: Under (A1), the iterates in (24) converge to
and from any initial and , and the optimal solu-

tion of (14) is given by , while the corresponding optimal
subcarrier and power allocation are specified by and

in Lemma 1.
It is clear from Proposition 2 that the globally optimal alloca-

tion maximizing the selected utility coincides with the optimal
one for (5) with ; that is, the optimal for (14) re-
sides on a boundary point of the ergodic rate region when the
rate reward vector is , which is, of course, unknown prior to
convergence of the gradient iterations. In fact, for a differen-
tiable , it holds that: i) if all minimum rate constraints are in-
active, i.e., , then ; and ii) if some
of the rate constraints are active, then satisfies

[cf. (20)].
Relying on Proposition 2, a utility-based scheduling algo-

rithm when the channel cdf is known can be devised as:

Algorithm 1 Dual-gradient iterations:

1) initialize with any at the AP, and run
off-line (24) until convergence to find the optimal

.
2) repeat on-line: for channel realization per slot ,

AP schedules in accordance with the globally optimal
.

B. On-Line Scheduling Without Channel CDF

Knowledge of the channel cdf is required to evaluate the ex-
pectations involved in (24) and thus implement the scheduling
Algorithm 1. If this knowledge is not available a priori, the
channel distribution can be only accurately estimated by a suf-
ficiently large number of measurements. Actually even when
the channel cdf is available, it is rarely possible to find in
closed form. These considerations motivate “stochastic” sched-
ulers based on a single or a limited number of observations that
can learn the required cdf on-the-fly in order to approach the
optimal strategy. In fact, such stochastic schemes also make
more sense in practical mobile applications. The optimization
based on a priori knowledge of the channel cdf is not robust
in the sense that it simply fails if the underlying channel distri-
bution changes due to e.g., user mobility or topology changes.

On the other hand, the stochastic optimization based on a single
channel observation is capable of “learning” the channel sta-
tistics on-the-fly, and thus it could even track changes in the
distribution function. These considerations guide the scheduling
scheme of this subsection in which the ensemble iterations (24)
are replaced with stochastic approximation iterations.

Stochastic approximation iterations are typically adopted by
adaptive signal processing algorithms; e.g., the well-known
least-mean-square (LMS) algorithm is a result of dropping the
expectation operator from the steepest descent iterations [19,
p.77]. In the same spirit, consider dropping from (24), and
replacing the iteration index with the slot index . The resul-
tant on-line iterations based on the per slot fading realization

are

(25)

where hats are to stress that these iterations involve stochastic
estimates of their counterparts in (22), based on instantaneous
(instead of average) power and rates. The optimal subcarrier
and power allocation for the given and per slot

is provided by Lemma 1, which is then used to determine
and in (25).

Based on (25), the LMS-alike on-line scheduler can be sum-
marized as follows.

Algorithm 2 Stochastic dual-gradient iterations:

1) initialize with any and ; and
2) repeat on-line: with and available per

slot , the AP schedules according to the allocation
and , and

subsequently updates and using (25).

Different from Algorithm 1, the multipliers are up-
dated on-line without knowing the channel cdf. The interesting
feature of Algorithm 2 is that multiplier iterates converge to the
optimal and ; thus, the subcarrier and power allocation
converges also to the globally optimal one.

To rigorously establish this claim, start by defining

, and
. Using

these definitions, rewrite (25) as

(26)

Following standard practice in adaptive systems, to establish
convergence of the primary iteration in (26), we link it with its
averaged system (and thus time-invariant) iteration

(27)
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where . Putting back into
(25), it clearly follows that (27) is (within iteration re-indexing)
equivalent to (24).

Having clarified that (25) and (24) is a pair of primary and
averaged systems, it is possible to employ the stochastic locking
theorem in [19] to prove the following.

Lemma 3: For ergodic fading channels with continuous cdf,
if the primary system (26) and its averaged system (27) are both
initialized with , then in any time interval it holds
that

(28)

where as .
Proof: See Appendix D.

The stochastic locking theorem in [19] holds true only when
some regularity conditions (primarily stochastic Lipschitz con-
ditions for system perturbations) are satisfied. The contribution
of Lemma 3 is to confirm that these regularity conditions are
satisfied for the primary and averaged systems of the wireless
OFDM setup, provided that the random fading channel has
continuous cdf. The continuous fading distribution renders
the sequential difference Lipschitz continuous in the
averaged system (27). This together with the monotonicity of

and in (as
well as ) proved by Lemma 2, then implies that both
in the primary system (26) and the total deviations of the two
systems are stochastic Lipschitz, so that the stochastic locking
theorem is in effect.

Trajectory locking is key to the asymptotic optimality of the
stochastic iterations (25). Here, Lemma 3 rigorously establishes
that for sufficiently small stepsize , the trajectories of the pri-
mary and averaged systems corresponding to (25) and (24) re-
main close over any time interval in the sense that the distance
of the two trajectories is bounded in probability by a constant

, which vanishes as . Since Proposition 2 asserts
that the averaged system (24) converges to and (geomet-
rically fast from arbitrary initialization), the stochastic hovering
theorem in [19] further implies the following result.

Theorem 2: Under (A1), the iterates in (25) converge to
in probability, i.e.,

, from any initial as ; and thus the
corresponding subcarrier and power allocation converges to the
globally optimal one for (14).

Theorem 2 establishes both convergence as well as stability
of the stochastic iterations in Algorithm 2 in the following sense.
Given any , there exist (controllably small) constants
and such that the probability of the stochastic iterates

in Algorithm 2 to escape from a ball of radius around the
optimal is less than when using a (sufficiently small but
constant) stepsize . It is clear that this convergence
does not rely on finite-state Markovianity of the random fading
channels, and only ergodicity of the fading process suffices.

Theorem 2 exemplifies also a tradeoff between convergence
speed and optimality. This is a well-known tradeoff especially

in the adaptive signals and systems literature [21], [19], [23].
As in any stochastic approximation scheme, the Lagrange mul-
tipliers in (25) only converge to or hover within a small neigh-
borhood with size proportional to the stepsize around optimal

; hence, one needs a small to come “closer” to optimality,
but the smaller is chosen, the slower convergence speed is ex-
perienced.

The novel dual-based scheduling approach overcomes limi-
tations of schedulers developed in [6], [4], [21], [13], [5], [15]
for time-division systems and their extensions to OFDM net-
works, since: i) it remains operational for both differentiable
and nondifferentiable utility functions and ii) its convergence
to the globally optimal schedule is established for typical wire-
less channels with continuous fading. A similar on-line dual it-
eration was also developed for resource allocation in multi-an-
tenna broadcasting [28], but no proof was provided for its con-
vergence.

In the foregoing derivation, the “ensemble” scheduler imple-
mented by Algorithm 1 seems as a middle step to the stochastic
scheme. However, it is worth mentioning that both schemes have
complementary strengths. Algorithms 1 and 2 are developed
based on ensemble and stochastic gradient iterations, respec-
tively. Compared with Algorithm 2, Algorithm 1 can take ad-
vantage of the channel cdf when known, to obtain the optimal
Lagrange multipliers off-line; and uses them in the on-line phase
to implement the optimal resource allocation and scheduling
per slot with fairness and average rate guarantees. On the other
hand, Algorithm 2 is capable of learning the channel statistics
on-the-fly and Theorem 2 ensures that this algorithm converges
asymptotically to the optimal strategy regardless of initializa-
tion. The latter implies that Algorithm 2 can also track even non-
stationary channels, and thus provides robustness to e.g., net-
work dynamics and user mobility. With the same algorithmic
structure, Algorithms 1 and 2 can be also seamlessly integrated
to take advantage of the available cdf information as well as re-
main robust to network dynamics, by playing roles similar to
“estimation” and “tracking” in adaptive signal processing.

V. NUMERICAL TESTS

In this section, we provide numerical examples to verify
the proposed schemes. We consider two-user OFDM down-
link or uplink transmissions over frequency-selective wireless
channels. The total bandwidth is 320 KHz, and there are 32
sub-carriers, each with sub-bandwidth 10 KHz. For each user’s
wireless link, a profile of 20 s exponentially and indepen-
dently decaying tap gains is assumed changing independently
across slots of 500 .

Supposing average normalized SNRs dBW,
Fig. 2 shows the ergodic rate regions found by the proposed
schemes for the OFDM downlink and uplink channels with: i)
sum-power budget Watt and individual power budgets;
ii) Watt; iii) Watt, Watt;
and iv) Watt, Watt. (The receive SNR is

dBW multiplied by the transmit-power measured in Watts.)
Clearly, the individual average power constraints can be seen as
realizations of the average sum-power constraint, i.e.,

. Therefore, the downlink region contains the uplink regions,
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Fig. 2. Ergodic rate regions for 2-user OFDM systems when average SNRs for both users are 8 dB.

Fig. 3. Learning curves of Algorithm 2, GPD and GS schemes for BE traffic (left), and nRT traffic (right).

and each uplink region touches the downlink region at one point.

We next test the utility-based scheduling Algorithm 2 and
compare it with existing alternatives in an OFDM down-
link. The two baseline schemes chosen to compare with are
the greedy primal-dual (GPD) scheme in [21] which indeed
exhibits best performance among the existing opportunistic
scheduling schemes, and the gradient scheduling (GS) algo-
rithm of [6]. The GPD and GS schemes were introduced for
time-division slotted networks. With these schemes modified
appropriately for the OFDM context, we test them together with
Algorithm 2 in an OFDM downlink where average normalized
SNRs for users 1 and 2 are 8 dBW and 5 dBW, respectively.
The utility function is selected as . We
first consider that the two users support BE services (without
rate requirements). Fig. 3 (left) compares the evolutions of
average user rates for the three schemes. It is evident that
the proposed stochastic dual-gradient and the GPD schemes
converge to the same optimal . Since the GS algorithm

does not perform adaptive power allocation, it converges to
a suboptimal rate vector strictly less than . It is also seen
that the stochastic dual-gradient algorithm converges faster but
exhibits larger variation after convergence which also depends
on the utility function adopted. This is because the trajectory
of is locked to but the final average rate is obtained as

.
We consider next that the two users require nRT services

with minimum average rate constraints Kbps.
Fig. 3 (right) compares the average user rates for the stochastic
dual-gradient, the GPD and the GS schemes in this case. Again,
the stochastic dual-gradient and the GPD schemes converge to
the optimal with both minimum rate requirements satisfied.
The stochastic dual-gradient algorithm converges faster but ex-
hibits larger variation after convergence than the GPD. Notice
that due to the operator in (20), the average user rate esti-
mated by in Algorithm 2 is equal to 50 kbps from the
beginning and stays there afterwards since this is the optimal
value upon convergence. Following [5], the GS algorithm is also
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Fig. 4. Ergodic rate region (benchmark) and achieved rates with stochastic
dual-gradient scheme for BE and nRT traffic.

possible to guarantee the minimum average rate requirements, if
feasible, using a token-based approach. Although such a scheme
is employed in the simulations, Fig. 3 (right) demonstrates that

cannot be met by the GS. This is because without performing
adaptive power allocation in the GS, the rate requirements be-
come infeasible for the given average SNRs since spectral and
temporal diversity have not been fully exploited.

Additional evidence on the merits of the stochastic dual-gra-
dient scheduling is provided by Fig. 4, which depicts the er-
godic rate region for the investigated OFDM downlink as well
as the resultant average user rates by the stochastic dual-gradient
scheme at the end of the simulations for the aforementioned BE
and nRT traffic. The optimality of the stochastic dual-gradient
algorithm is confirmed by the fact that the achieved rate vectors
settle at boundary points of the ergodic rate region. The min-
imum rates are not enforced, and are thus not guaranteed in the
resultant user rate vector for BE services. Notice however, that
except for the minimum rate constraints, the stochastic dual-gra-
dient algorithms for BE or nRT traffic solve the same utility
maximization problem [cf. (14)]. Therefore, taking into account
the minimum rate constraints, the nRT solution should be the
projection of the BE solution onto the feasible set dictated by
the area between the boundaries of the ergodic rate region and
the two dashed lines Kbps and Kbps. This is
clearly seen in Fig. 4, which further corroborates the optimality
of the stochastic dual-gradient scheduling.

Lastly, we study the impact of the imperfect CSI on the pro-
posed algorithm. To account for the estimation/feedback errors,
suppose that the CSI per user acquired by the AP is corrupted by
a circularly symmetric Gaussian noise with variance . Fig. 5
shows the evolutions of Lagrange multipliers ,
with the Algorithm 2 for the case considered by Fig. 3 (left).
Adding a noise term to the CSI changes the distribution of the
fading coefficients. The stochastic iteration (22) then simply
learns the so-adjusted cdf of and converges to a different “op-
timal” point. It is seen from Fig. 5 that the impact of noisy CSI

Fig. 5. Evolutions of Lagrange multipliers with imperfect CSI.

on the proposed algorithm is noticeable only when the noise
variance is large; i.e., in which case the noisy CSI
has a SNR of 4.95 dB and of 1.95 dB for users 1 and 2, re-
spectively. This demonstrates the robustness of the proposed
stochastic dual-gradient algorithm to the imperfect CSI.

VI. CONCLUSION

Relying on convex optimization and stochastic approxima-
tion tools, a novel approach was introduced for solving the joint
subcarrier, power and rate allocation for multiuser OFDM sys-
tems. Based on this approach, the ergodic rate region of wire-
less multiuser OFDM channels was characterized, and corre-
sponding optimal resource allocation schemes were developed
in closed form. In addition, a unifying framework was presented
for designing and analyzing utility-based stochastic scheduling
schemes for OFDM networks with provable optimality and pre-
scribed rate guarantees. The merits of the proposed stochastic
schemes were corroborated by simulations. Robustness of the
proposed schemes to noisy CSI was also illustrated using simu-
lated tests. In future work, it will be interesting to further study
the impact of delayed CSI encountered with mobile settings as
in the IEEE 801.16 and 3GPP networks.

APPENDIX

PROOF OF PROPOSITIONS AND LEMMAS

A. Proof of Proposition 1

To prove the concavity of the function , it suffices to show
for a convex combination
with , that

. To this end, consider the following three cases.
1) and : In this case, and

. Because
is a concave function of , it follows that its perspective

is jointly concave in and when
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[8, p. 89]. Using the latter, it follows readily that
for

and thus .
2) and : Since , we have

. On the other hand, with

It then follows that
.

3) : It is clear that
.

From 1)–3), it always holds that
; and thus, is a

jointly concave function in and .
Based on the concavity of , we can now proceed to

prove the convexity of . For any two and , there
exist two allocation policies such
that and . The convex combina-
tion , with , sat-
isfies since it belongs to and obeys the average
sum-power constraint. Furthermore, since is a
concave function of , it clearly holds that

is a concave function of
. This implies that

, and
thus . We then have

.
Since , any convex combination
of two vectors must also belong to . The convexity
of thus follows readily.

B. Proof of Lemma 1

To prove the lemma, we need the following two properties.

Property B.1: For any , it holds that
and .

Proof: Consider the following two cases:
1) If , substituting (2) into (7) yields

Upon defining , the latter can be rewritten as

where . Since
is a concave function of , the optimal

maximizing is given by the water-filling
formula

(29)

Substituting the latter into yields the link quality
indicator in (10); i.e.,

(30)

It thus holds that
.

2) If , it clearly holds that . On the other
hand, (7) and (2) imply that

. Therefore, .
Cases 1) and 2) together imply that

.

Property B.2: For any , it holds that ,
and if .

Proof: Differentiating (10) yields

(31)

and thus . Since
is a continuous function of and

, the property follows readily.
We are now ready to prove Lemma 1 based on Properties

B.1 and B.2. With winner user index defined in (11), it
holds for each fading state that

where the first inequality is due to Property B.1; the
second inequality is due to the definition of

in (11); and the third one is due to the facts

that from Property B.2 and
. Furthermore, the equality can be achieved using the al-

location specified in (11), which is thus
optimal for (8).

To show the almost sure uniqueness of ,
consider this optimal allocation at subcarrier for the following
three cases (recall that ).

1) If , we must have
, and all users are “winners”. This is the case when all

users’ channels experience deep fading over subcarrier
such that [cf. (10)]. Upon such a
deep fading state, in fact any user , if scheduled, will be
allocated with transmit-power [cf. (29)].
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Therefore, the unique optimal strategy for AP is to defer
its transmission at subcarrier , which can be represented
by the policy in (11) where the subcarrier is assigned to
a randomly chosen “winner” but zero transmit-power is
allocated.

2) If and it is attained by a single
winner, then the optimal allocation given by (11) is clearly
unique.

3) If and it is attained by multiple users,
then assigning the entire subcarrier to a randomly chosen
winner or allowing (arbitrary) time-sharing among mul-
tiple winners is optimal for maximizing the dual function
in (8). However, since is an increasing function
of when it is greater than zero [cf. (31)], the event that
two winners and have identical but nonzero net re-
ward; i.e., event must have
Lebesgue-measure zero when the fading process has a con-
tinuous cdf. Likewise, having more than two “winners” tie
is also a measure zero event. Hence, the nonuniqueness of

upon such events has “measure-zero”
effect.

Combining 1)–3), we readily deduce the almost sure unique-
ness of .

C. Proof of Lemma 2

We first prove that is nonincreasing in and
, by considering two cases.

1) If ; i.e., we have the same
winner at subcarrier for and , then

and . In
this case, it is clear that for

.
2) If and , the winner

selection rule in (11) implies that

(32)

(33)

where from (30). Now
recognizing that and maximize

and , respectively, , we
further deduce from (32) and (33) that

(34)

(35)

Substituting into the
leftmost and rightmost terms in (34) and (35), yields

Subtracting the latter two inequalities implies that
. But since

imply
, we clearly have

for .
Cases 1) and 2) prove the wanted nonincreasing property of

. The nonincreasing property of then follows
from that of upon taking expectation. In fact, taking
into account the strict concavity of the function, we readily
see that and are strictly decreasing in when
they are greater than zero.

D. Proof of Lemma 3

To prove the wanted locking between primary and aver-
aged trajectories, it suffices to verify that the five conditions
(9.2A1)–(9.2A5) in [19, Theorem 9.1] are satisfied. These
conditions with our notational conventions are:

(C1) In the primary system (26), , is time-
invariant.
(C2) For in the averaged system (27), it holds
that .
(C3) Initialization is small enough so that iterates of
the averaged system remain bounded; i.e.,
for .
(C4) Function obeys a stochastic Lipschitz con-
dition; i.e.,

(36)
where is a random sequence obeying

w.p. 1, as .
(C5) The total deviation

, is also stochastic Lips-
chitz; i.e.,
(a) ; and (b)

, where as
and w.p. 1.

Condition (C1) clearly holds since the fading process is as-
sumed stationary and ergodic.

To check (C2), notice that all the average transmit-rates and
powers in are bounded if . But since from
Theorem 1, we can select a small , and restrict the iterates
of within the positive interval . Then (C.2) is satisfied
for a sufficiently large .

To establish (C3), one needs to show first that a finite op-
timal Lagrange multiplier vector always exists. For nota-
tional brevity, let collect all the primal optimization vari-
ables. Writing also the constraints in (15) in a compact form

, there must also exist under (A1) a strictly feasible
such that for a constant . By definition,

the dual function in (18) is .
Therefore, it holds that

which readily implies that for any ;
thus, . The boundedness of now
follows immediately from the finite value of , which is
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equal to because the duality gap is zero. Now since
converges to under (A1), there exists a finite for a
stepsize , and any constant , such that

This implies that . Since
and , it is also easy

to see that .
Overall, we must have .
By selecting a to minimize for a given ,
the tightest bound is obtained. Letting denote this bound, it
follows that for any . This holds for
any (arbitrarily large) .

Checking the validity of (C4) and (C5) is nontrivial. We next
only detail those for the iterations related to the power price ,
whereas the rest can be verified using similar arguments. To this
end, we first establish the ensuing property:

Property D.1: Function is Lipschitz; i.e.,
for a constant .

Proof: By definition, we have

where [cf. Lemma 1]

(37)

Recall that when , it holds that , by
the definition of the operator. Define the set

. Using the latter and (37), we can express as a product of
unit step functions

(38)

where taking the expectation over allows removing
the operator. Since the derivative of the step function
is the Dirac delta function , and all other terms in (38) are

continuously differentiable, Leibniz’s rule implies that the first-
order derivative of w.r.t. is

Clearly, all terms except the delta functions are bounded (for
specified in proving (C2)), and the sums over and

are finite. Therefore, is uniformly bounded if we can show
that is bounded. If we introduce
a continuous random variable , it
can be shown that has continuous distribution since has a
continuous cdf and function is monotonic w.r.t.
(from Property B.2). This then implies that

is given by the bounded density function of at 0.
This shows the uniform boundedness of , and in turn the
Lipschitz continuity of .

We are now ready to check (C4). Recall that
. Assuming w.l.o.g. that , non-

increasing of in from Lemma 2 implies that
.

Therefore, we have

as since the fading process is stationary and ergodic.
Because is Lipschitz continuous from Property D.1, it
readily follows that

. And there must exist a random sequence
satisfying (36), and w.p. 1, as

. In fact, from the mean-value theorem, such
can be given by the first derivative (w.r.t. ) for a
certain .

To verify (C5a), simply select

which clearly satisfies ; and also
since
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w.p. 1, when the fading process is stationary and ergodic.
To confirm (C5b), start with the definition of total devia-

tion and apply the mean-value theorem to obtain
, where

. But as , sample averages converge
to ensemble ones, and therefore

where the second equality holds since has uniformly
bounded derivative (cf. Property D.1). Therefore, there exists a
random sequence satisfying the requirement of (C5b).

Having verified (C1)–(C5), the lemma follows from [19, The-
orem 9.1].
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