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ABSTRACT

We consider deterministic blind separation of DS-CDMA signals
using an uncalibrated antenna array, subject to: (i) unknown flat
fading; (ii) unknown multipath; (iii) quasi-synchronous transmis-
sions; (iv) oversaturation; (v) lack of (or, inexact) knowledge of the
spreading codes; and (vi) loose power control. We establish a gen-
eral identifiability result that allows blind recovery of the source
signals without requiring independence or whiteness, nor finite al-
phabet or constant modulus. The results apply to both determinis-
tic and stochastic sources; knowledge of the spreading codes is not
required; and, actually, certain matrices involved may be allowed
to loose rank without sacrificing identifiability. A provably mono-
tonically convergent trilinear alternating least squares algorithm is
proposed to recover the source signals in the noisy case. Aside
from their theoretical generality and practical value, our results
have important ramifications in eavesdropping of secure spread-
spectrum communications, and the judicious choice of user codes.

1. MOTIVATION AND DATA MODELING

Blind separation of signals impinging on an antenna array is of
paramount importance in commercial and military applications,
including source localization, sensor calibration, blind signal copy,
mitigation of co-channel interference, and eavesdropping, just to
name a few. Existing self-recovering approaches separate the in-
accessible sources from their mixtures by exploiting: (i) known
manifolds [1]; (ii) finite-alphabet, constant-modulus, or cyclosta-
tionarity, e.g., [6, 2]; (iii) spatial independence of non-Gaussian
sources [7, 8]; or (iv) known orthogonal signatures [3, 4].
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Figure 1: Multiuser/Multirate Discrete-Time Equivalent Baseband
CDMA Model (chip rate)

0-7803-5010-3/98/$10.00©1988 IEEE

The block diagram in Fig. 1 represents a CDMA system, de-
scribed in terms of the equivalent discrete-time baseband model,
where signals, codes, and channels are represented by samples of
their complex envelopes taken at the chip rate. Upsamplers and
downsamplers serve the purpose of multiplexing and demultiplex-
ing (spreading and despreading by a factor P). Each of the M
users spreads the information sequence s, (n) with the upsampler
and encodes it using the code ¢, (n) of length P, before trans-
mission through the unknown Lth-order channel h,(l) which, in
addition to multipath, includes the transmit spectral-shaping pulse,
the receive-filter, and the mth user’s asynchronism in the form of
delay factors. The receiver of the system in Fig. 1 employs K
antennas. The baseband output of each antenna is sampled at the
chip rate, and decomposed into its P polyphase components. We
adopt the following assumptions:

(al)codes have L, > L trailing zeros (‘guard chips’), where Lis

the maximum expected order of all channels {hn, (l)}m (rea-

sonable for quasi-synchronous systems; see e.g., [S]).

(a2) the multipath/delay channel between user m and antenna k

only depends on m; however, each (user,antenna) pair experiences

independent fading (e.g., specular multipath).

(a3) the flat fading / antenna response coefficients, a(k, m), re-

main constant over [V symbol epochs.

(ad) the channels {hn(1)}¥ 2} remain constant over N symbol

epochs.

For ease of reference, we now summarize the notation used in

the subsequent derivation of the data model (c.f. Fig. 1). M:
number of users; P: spreading gain; K: number of receiving an-

tenna array elements; IV: number of received symbols (snapshots)

sm(n): the transmitted symbol of user m at time n; {cm (p)} )

the spreading code of user m; {hn (I)}': the multipath/quasi-

~ P-1
synchronism induced channel of the m-th user; {hm (p)} :
p=0

the spreading code of user m convolved at the chip rate with A, (1):
R () 2= (€m * hum )(-), where + denotes convolution, and the re-
sult is confined within one symbol duration due to the trailing zeros
(see (al)); a(k, m): compound flat fading/antenna gain associated
with the response of the k-th antenna to the m-th user signal.

Definea Px M aggregate spreading/multipath channel matrix
H, with columns h%, ]: hm (0) Fom (1) P (P-1) ]
and consider the p-th polyphase component of the output of the k-
th antenna element at time n (cf. Fig. 1), denoted by x<k) (n). Let
us temporarily ignore the noise term, to obtain under (al) (ad):

M-1
2 (n) =Y alk,m)hn(p)sm(n) = af Dp(H)s(n), (1)
m=0
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where a¥ = [ a(k,0) a(k,1) olk, M — 1) ],D,,(H)
= diag {ho(p), .- ,hM_1(p)}, i.e.,an M x M diagonal ma-
trix holding the (p + 1)-th row of H in its diagonal, and s(n) :=
[so(n) s1(m) ... sam-1(n)]T. Let S be the M x N source sig-
nal matrix obtained by lining up N consecutive instances of s(n),
and consider the row vector formed by lining up IV consecutive
instances of £ (n), forn = 0,1,---, N — 1. Next, stack the
respective row vectors for all K antenna elements. The result is
a K x N matrix X,, given by X, = AD,(H)S where A is
the K X M aggregate flat fading-antenna array response matrix
with typical element a(k,m), and X, is the p-th polyphase ma-
trix component of the observation data in the noiseless case. In the
presence of noise, the observation model becomes:

X, =X, +V, =AD,(H)S+V,, p=0,1,---,P~1

where the K X N matrix V), is the measurement noise correspond-
ing to the p-th polyphase matrix component.

2. THE DIVERSITY DATACUBE
Define a K x N x P three-way array Q, with typical element

Qk,n,p = :c;k)(n). Q contains the observation data arranged in
(k, n, p)-diversity space, reflecting the three different kinds of di-
versity available: antenna array diversity, temporal diversity, and
spreading gain diversity. We shall refer to Q as the diversity dat-
acube. The model in (1) affords a scalar view of the diversity dat-
acube as an M -component trilinear decomposition of Q. Another
view, namely: -

X, =AD,(H)S, p=0,1,---,P—1

is afforded by the polyphase matrix decomposition of the data.
This alternative view can be interpreted as “slicing” the 3-D data
into a series of “slabs” (2-D arrays), which are perpendicular to
one of the diversity dimensions - in this case, the spreading di-
mension. Indeed, X,, is nothing but [g.,. o], the K x N 2-D slice
of Q corresponding to a fixed p. Direct manipulation of the scalar
trilinear model yields the following two alternative views of the
diversity datacube Q:

Y, =STD,(A)HT, k=0,1,---,K -1

where the N x P matrix Y}, := [gg,.,.]. Recall that ST is N x M,
Dx(A)isan M x M diagonal matrix holding the k-th row of A
in its diagonal, and HT is M x P. Similarly,

Z, =HD,(SDAT, n=0,1,---,N-1

where the P x K matrix Zn, := [g.,»,.], His P x M, Dy (ST) is
M x M diagonal holding the n-th row of ST, and AT is M x K.
Note that the multicomponent trilinear model in (1) is completely
symmetric - thus one may choose the rows of any one of A, ST,
or H, to construct the diagonal matrices that appear in the middle
of the decomposition. Alternatively, if two of the three parameters
K, P, Nare > M (e.g., P > M,and N > M), one may always
select a low-rank decomposition, meaning one for which the left
factor is “tall” and the right factor is “fat”.

3. IDENTIFIABILITY

Theorem 1 In the noiseless case, the signal matrix S, the com-
pound spreading/multipath/delay channel matrix H, and the com-
pound flat fading/antenna gain matrix A. can be uniquely identified

(up to the inherently unresolvable permutation and scale ambigu-
ity) from the diversity datacube Q, provided that

ka +ka + kst > 2(M + 1), 2)

where ka stands for the k-rank of A: the maximum number of
linearly independent columns that can be drawn from A. in an ar-
bitrary fashion (ka < rank(A)). The result holds for M = 1
irrespective of condition (2), so long as Q does not contain an
identically zero 2-D slice along any dimension.

In the case of real modulations, the elements of all arrays involved
are real numbers, and the result can be proven using Kruskal’s
results in [91,{10, Theorem 4a]. For complex modulations, the ele-
ments of all arrays involved are drawn from the complex field, and,
under full-rank conditions, a simpler proof can be constructed us-
ing generalized eigenanalysis. Interestingly, it turns out that the
base field from which the array elements are drawn makes a dif-
ference for such basic concepts as rank of multi-way arrays, and
complex modulations require a generalization of the line of argu-
ment in [9],[10, Theorem 4a).

Under spatially independent fading, A will be full rank, and
thus ka = min(K, M) with probability one. Under very mild
“persistence of excitation” conditions, S will be full rank, and
hence kgr = min(N, M). If the multipath/delay channel coef-
ficients are modeled as i.i.d. random variables, kg = min(P, M)
with probability one. Given the above, condition (2) becomes:

min(K, M) + min(N, M) + min(P, M) > 2M + 2

which has the following important corollaries:

(i) Datacube should be truly three-dimensional: K, N, P > 2;

@) If N > M, P > M (typical in DS-CDMA), then K > 2
antennas are sufficient - which implies that one may separate any
number of DS-CDMA multiplexed signals in the presence of un-
known ISl/delay/MUV/fading, provided that one uses at least two
antennas, the MIMO channel is slowly varying, and appropriate
spreading/guard time provisions are met at the transmitter;

(iii) f K > M, P > M, then N > 2 symbols are sufficient -
which implies that the fading/muitipath/delay can vary as fast as
half the symbol rate;

Gv)If K > M, N > M, then P > 2 chips are sufficient. Re-
call that we have assumed L trailing zeros, which means that P =
2 + L chips per symbol are sufficient (where L is the maximum
anticipated order of the multipath/delay channels) -this implies
that one does not necessarily need orthogonal or quasi-orthogonal
spreading sequences, and it is particularly important in oversatu-
rated systems (more users than spreading).

The importance of Theorem 1 lies precisely in the fact that the
sufficient condition involves the concept of k-rank ( < rank), and
identifiability may be guaranteed even when the matrices involved
do loose rank - it is the sum of k-ranks that counts. It is important
to note here that, even though the k-rank condition (2) has been
shown to be sufficient, practical experience of R.A. Harshman (as
cited in [10]) indicates that identifiability is not possible when the
k-rank condition fails. Thus (2) can be used to characterize the
diversity trade-off, i.e., the intricate balance of different kinds of
diversity (signaling/sampling at the chip rate, use of orthogonal
spreading codes, independent fading, multiple receiver antennas)
that leads to identifiability.

4. TRILINEAR ALTERNATING LS REGRESSION

The (real) trilinear data model is common in the Chemometrics
community [12, 13], where it is used for spectrophotometric, chro-
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matographic, and flow injection analyses; it is commonly referred
to as the PARAFAC (PARAllel FACtor Analysis) model [11]. Tri-
linear Alternating Least Squares (TALS) can be used to fit the tri-
linear model on the basis of noisy observations, possibly initialized
using generalized eigenanalysis. This has been proven to be the
method of choice in applications of PARAFAC in Chemometrics
[12]; its appeal rests primarily in its simplicity, guaranteed conver-
gence, and good performance. Experience shows that, with rea-
sonable initialization, convergence to the global minimum is usu-
ally achieved [12]. The explanation (and fundamental difference
vis-a-vis unstructured bilinear ALS) lies in the inherent uniqueness
of the trilinear model.

The basic idea behind ALS is simple: each time update one of
the factors, using least squares conditioned on previously obtained
estimates of the remaining factors; proceed to update the other fac-
tors; repeat until convergence. Effective estimation of the complex
trilinear model involves several sub-algorithms and it is of interest
in its own right. Algorithmic issues will be presented separately, in
a follow-up paper. Here we confine ourselves to (briefly) explain-
ing how one may utilize the three different ways of slicing the dat-
acube to come up with conditional least squares updates for each
of the three factors. We are given the noisy datacube Q = Q +V,
and wish to estimate A, H, and S. From the first way of slic-
ing the data (polyphase decomposition), it foliows that LS fitting
amounts to minimizing:

Xo
Xp-1

where ip, p=0,1,.--, P —1 are the noisy slabs. It follows that
the conditional least squares update for S is:

AD,(H) 2

ADp_;(H) r

~

KDo(ﬁ) io
S = pinwv :

ADp_,(H) Xp-1
where K, H denote previously obtained estimates of A, and H.

Similarly, from the second way of slicing the datacube, the condi-
tional LS update for H is:

~

§TD0(K) Yo
HT = pinwv : :

STDk_1(A) Y
Finally, from the third way of slicing the datacube, it follows that
the conditional LS update for A is:

—~

HDo(ST) Zo
AT = pinv : :

fIDN_l(gT) Zy-1

Note that the conditional update of any given factor, as prescribed
above, may either improve, or maintain, but cannot worsen the
current fit. Monotone convergence follows directly from this ob-
servation.

5. MONTE-CARLO RESULTS

‘We define the sample SNR (in dB’s) at the input of the multiuser

2
receiver as SNR = 10log,, :i—gl; Consider M = 4 differentially-

F
VI

encoded (DE) BPSK sources, Hadamard(4) codes, P — M = 2
trailing zeros, P = 6 chips, L + 1 = 3-chip Rayleigh multi-
path/delay channels, N' = 50 snapshots, and K = 2 antennas. For
each Monte-Carlo run, the multipath/delay channel coefficients
are re-drawn from an ii.d. Rayleigh generator, and so are the
fading coefficients. Note that the channel impulse responses are
not normalized to unit norm; this, along with the presence of fad-
ing, means that the effective signal power for a given user is usu-
ally much different from that of other users for the same run, and
varies considerably for the same user from run to run. We compare
against the traditional MF receiver (averaging the independently-
faded signal copies received by the two antennas), as well as two
non-blind approaches: the non-blind minimum mean squared error
(MMSE) receiver, and the non-blind zero-forcing (ZF) receiver.
Both assume full knowledge of spreading codes, multipath chan-
nels, relative delays, and fading coefficients. In addition, the non-
blind MMSE receiver assumes knowledge of SNR.

The results are presented in Figure 2, which depicts average
BER (all users) versus average SNR (both averaged over signal,
multipath-delay, fading, and Gaussian noise statistics) results for
the proposed method (solid with circles), versus the conventional
MF receiver (dashed with stars), the non-blind MMSE method
(dash-dot with squares), and the non-blind ZF method (double-dot
with triangles), for 1000 Monte-Carlo trials (O(10°) effective av-
eraging) per datum. Note that the proposed blind receiver achieves
results very close to those of the non-blind receivers. Figure 3
presents the corresponding results for DE-QPSK (symbol error
rate is reported). Figure 4 presents results for M = 8, N = 50,
DE-BPSK, and everything else as before. Note that the difference
between the proposed blind approach and the (completely) non-
blind approaches increases as M increases. This is to be expected,
for we seek to determine more unknowns from (and a higher-rank
model of) the same noisy observation data. However, this can be
easily compensated by increasing K (the number of receive anten-
nas) from the present K = 2 (minimum possible) to, e.g., K = 3.

6. DISCUSSION AND CONCLUSIONS

Blind separation of DS-CDMA signals is of paramount importance
in commercial and military spread spectrum wireless communi-
cations. The system model considered herein is sufficiently gen-
eral and flexible to account for a wide array of degradations, in-
cluding uncalibrated antenna arrays, unknown fading, unknown
frequency-selective multipath, quasi-synchronous transmissions,
over-saturation, lack of (or, inexact) knowledge of the spreading
codes, and loose power control. We have shown that parallel factor
analysis provides a unifying framework for blind source separation
for DS-CDMA systems utilizing receive antenna arrays, within
which the delicate trade-off between different types of diversity
required for identifiability can be understood and thoroughly ex-
ploited. Multi-way arrays, multi-linear models, and the trilinear
model in particular have many additional applications in signal
processing and communications, including joint azimuth-elevation
and signal-array response estimation, joint angle-delay estimation,
and the subspace fitting formulation of multiple-parameter / multiple-
invariance ESPRIT. Work on the above problems is reported in
companion submissions [14, 15].
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Figure 2: BER vs. SNR: M = 4 DE-BPSK users (see text).

Figure 3: SER vs. SNR: M = 4 DE-QPSK users (see text).

Figure 4: BER vs. SNR: M = 8 DE-BPSK users (see text).



