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ABSTRACT

Many real life systems are nonlinear., We focus on the
so-called Volterra models and the input-output aspect of
the identification problem. To this date, closed form solu-
tions for the Volterra kernels exist only for Gaussian inputs
and they are usually in rather complicated forms. In this
paper, we adopt a class of non-Gaussian inputs, namely
the PSK (phase shift keying) sequences, which are com-
mon in digital communications systems. Such signals allow
for simple closed form solutions of the Volterra kernels of
anyorder. Kernels are estimated separately thus preventing
error propagation. Signal independent zero-mean additive
noise can also be tolerated even when its color and distri-
bution are unknown. Because closed form solutions for the
kernels are available, explicit variance expressions for their
estimates can also be derived. Simulation results verify our
theoretical findings.

1. INTRODUCTION

Nonlinear system identification is a subject of considerable
importance and interest due to the prevalence of nonlinear-
ities in real life problems, such as satellite communication
links [1], magnetic recording channels [2], physiological sys-
tems [8], and plasma physics [6] (see e.g., [9] for a review).
Nonlinearities can be modeled implicitly (such as with dif-
ferential equations) or explicitly, and our interest lies in the
latter. A broad class of nonlinear systems have polynomial
functional representations, for which the Volterra and the
Wiener representations are two examples [11].

An Lth-order discrete-time Volterra nonlinear system
relates the output z(t) and the input w(t) via multi-
dimensional convolutions, which are straightforward gen-
eralizations of the 1-D convolution:

oty %

=1 wy,u2,...,u
x w(t —w1)w(t —uz) ... w(t —w) +v(t). (1)

In (1), ho is the dc term, v(2) is the additive noise assumed
to be zero-mean and independent of w(%), and the discrete
time index is ¢ = 0,1,...,7 — 1. The I-dimensional func-
tional hi(u1,...,w) is called the lth-order Volterra kernel
and unless it is a delta function for all !’s, the nonlinear
process in (1) has memory. We also allow for complex in-
put and complex kernels — a setup encountered with nar-
rowband communication signals passing through bandpass
Volterra channels (see [1, pp. 58-61]). In this case, z(t)
in (1) denotes the baseband representation of the channel
response.

When the input w(?) is zero-mean Gaussian, Koukoulas
and Kalouptsidis have recently shown that the Volterra ker-
nels can be found in closed form from the cross cumulants

z(t)

hl(ul,U2,. . .,’u.z)
1
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between the input and the output [7]. Their solutions are
non-trivial and due to their sequential nature, error in one
kernel estimate propagates to the next. However, two spe-
cial cases are free of such shortcomings: (i) If the nonlin-
ear system is lth-order homogeneous (i.e., the sum over !
is absent in (1)), then we obtain Brillinger’s formula [3].
(i) If there are only two Volterra kernels h;, and h;, with
11 + I =odd. A special case of this is when L =2, I = 1,
> = 2, and Tick’s method [12] can be derived. Other than
(1) and (i1), it is in general difficult to obtain non-recursive
closed-form expressions for the Volterra kernels.

In the Wiener theory of nonlinear systems, the polyno-
mial nonlinearity is expressed in a different form, where
the functionals are made orthogonal to each other through
a Gram-Schmidt orthogonalization procedure, with respect
to zero-mean white Gaussian input w(t). The orthogonal-
ity property facilitates closed form solutions and separates
kernel estimation through cross correlations [11]. However,
the model becomes increasingly complex with larger L and
the theory does not apply to non-Gaussian inputs.

In Volterra nonlinear system identification with stochas-
tic inputs, a lot of attention has been given to Gaussian
inputs because their higher-order moments are tractable.
In this work, a class of complex valued non-Gaussian in-
puts, namely the PSK (phase shift keying) sequences, are
shown to have many vanishing moments and hence can be
used as an effective probing signal as well. Moreover, it
turns out that with these sequences, the Volterra kernels
are made orthogonal to each other, they are estimated sep-
arately, and the resulting solutions have very simple forms.
Although similar observations have been made in [5], the
kernel and variance expressions presented here are novel.

2. CHARACTERISTICS OF THE INPUT

Our input signal of choice has the following characteristics:

w(t) is i.i.d., drawn from a discrete alphabet set
{r eJ(z"k/M*'e)}kM:El, M > 1, with probability
1/M each. The constant modulus r and the angle
0 are deterministic constants.

Regarding this class of inputs, we have the following key
result:

Lemma 1 The (m + n)th-order moment of w, where m
copies of w and n copies of w* are used, is

Elw™(w")"] = r™*" (™8 §((m — n) mod M), (2)
where 8((m — n) mod M)

_ {1, if (m—n) is an integer multiple of M, 3

T 1 0, otherwise. ()



Proof:

M1
Tm+n ej(m-—n)e _1_ Z e]'27\'k(7'n—77.)/M
M

Elw™(w™)"]
k=0
pmtn o (m=n)8 5((m — n) mod M).

Note that our input is “rich enough” in frequencies (due
to its whiteness), and with M > L it is also “rich enough”
in distinct values; hence, it is persistently exciting (see e.g.,
[5], [10]) for identification of Lth-order Volterra models.

3. VOLTERRA KERNEL ESTIMATION

Closed-form solutions of arbitrary Volterra kernels are de-
rived here using the cross correlation between the input and
the output. First, we shall recast the standard model (1)
in a slightly different but more convenient form.

3.1. Symmetrized Volterra expansion

We assume w.l.o.g. that the lth-order Volterra kermel is
symmetric in its arguments; e.g., ho(ui, u2) = ha(uz,u1),
because we can symmetrize the kernel if otherwise [11, p.
80-81]. Let us denote the number of distinguishable per-
mutations of the I-tuple (u1,...,u:) by Pluws,...,u). If
w1 # uz2 # ... # w;, then P = Il. But when all u;’s are
identical, we have P; = 1. Therefore, P, depends on how
different the u;’s are. Let us group the u;’s into (n+1) sub-
sets where the u;’s are identical within each subset but are
different between subsets. Suppose that the total number
of u;’s in each subset is

my, M2, ..., Mgy, l—(m1+m2+...+mn).
It follows then that the number of symmetries in
hi(w1,...,w) is simply the multinomial coefficient [5],

{
Pz(u1,...,uz)= ( mi,mz,...,Mnp )‘

Next, let us use R; to denote the non-redundant region of
the hi(ug,...,w) kernel; ie., Ry = {(u1,...,u)] 0<u <
2 < ... < uz{l. Many identical terms in (1) can be grouped
together and hence the Volterra model can be expressed in
a slightly different form,

W =ho+Y . 3. Pl uhufu,...,wm)

=1 (uy,..., 47 )ERy
x w(t—u1)w(t —uz)...w(t — w) + v(i). 4)

3.2. Closed form solutions
Using Lemma 1, we will establish the following fact:

Elw(t—u)...wi—u)] =0, VI<IKL< M. (5

Since 1 < 1 < M is not divisible by M, we have E[w'] =0
according to SZ) This is true for (5) when all the wi’s
are identical. If some of the u;’s are different, then due to
independence, the lth-order moment in (5) splits and can be
expressed as a product of lower order moments. All of these
lower order moments are zero because their orders are still
in [1, M). Therefore, (5) always holds as long as M > L.

ecause of (5) and the fact that () is zero-mean, we
infer from (4) that E[z(t)] = ho for M > L (if »(t) has
unknown nonzero mean, ho is not identifiable); i.e., the dc
component can be obtained as the mean of the output data
provided that E[v(t)] is known. Next, let us consider the
cross correlation (moment) between z(¢) and 1 < k < L
conjugated and lagged copies of w(i),

Maw. w(r1, .-, 7%) 2 Elz(t)w*({t—11)... w (- 1%)]. (6)
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Since the above moment is symmetric w.r.t. the 7’s; e.g.,
Mzww(T1, 72) = Mzww(T2,71), We can assume w.l.o.g. that
n<n<...<7.

Similar to (5), we find

ho Elw*(t—m)...w"(—7%)] =0,

and

1<k<L<M,(7)

Elv@w "t — )= . w" (¢ — 7))
Elv(t)] E[w*(t—n)...w*(t— )] =0.

Therefore, the cross correlation becomes (c.f. (6)-(8)),

(8)

m:cw.A.w(Tla ey Tk)

L
= Z Z Pua, ... ui)h(us,. .. w)

I=1 (uy,.., 4 )ERy
X Elwt—u)...wit—uw)w (t—m)...0 (¢ - )] (9)
From1 < land k £ L, weinfer that 1-L < (I-k) < L—-1
is divisible by M > L only when ! = k. Hence, only the
[ = k term survives in (9) and we can drop }:{;1 to obtain

Mow. w(Tty.r s Tk)

2

(w10, up YERE
x Blw(t—ui)...wit—up)w"(t—m)... 0" —m)] (10)

Equation (10) explains how we isolate the Volterra kernels
of different orders by using PSK inputs and the appropriate
cross correlation.

Although there are k unconjugated and % conjugated w’s
in the moment on the r.h.s. of (10), it will be non-zero
only when we can equate every u,, with one 7,; otherwise,
unmatched w* and w’s factor out (due to independence)
and the resulting lower order moments are zero according
to Lemma 1. However, since we have assumed u; < u2 <
... <ur and 1 < 1 < ... < Tk, this happens only when
ui =7i,Vi=1,...,k, in which case Elw(i—u1)... w(t—ux)
w'(t—71)...w*(t - 7x)] equals El__[f=1 Jw(t — ui)? = 2*.
Therefore we can drop the sum over Ry in (10) and obtain a

surprisingly simple formula Iinking the (k+ 1)st-order cross
correlation and the kth-order Volterra kernel,

Pk(u1,...,uk)hk(u1,. . .,'U.k)

m:w"'w(Tl’ Tt Tk) = [Tzk Pk(u‘l? AR ’l.tk)] hk(u17 ey Uk),

Maw...w(Tly- ., Th) (11)
2k Pr(ua,...,ux)’
Consistent sample estimate of the cross correlation in (6)

can be obtained froui a single record of input/output data
as usual:

or, hr(ui, ..., ux) =

T-1
A 1 * »
Maw...w(Tl, ..., Tk} = T E z(B)w (@ —711) ... w(t — 7).
t=0

12

Remarks: (i) Our solution (11) is in simple closed fgrn)x
and only requires M > L. For parsimony, there should be
an upper bound on the highest nonlinearity order for the
Volterra model to be practical, and M can be taken above
that upper bound. (ii) We do not impose any assumption
on the kernel itself such as its memory or zero locations.
ii) Our algorithm tolerates additive noise of any color and
istribution as long as it is independent of the mput. (iv)
The solution is linear and can be used as an initial estimate
for other optimum nonlinear schemes such as the maximum



likelihood method. (v) The kernels are estimated separately
thus preventing error propagation. (vi) Eq. (11) depends
on the constant modulus  but is independent of other con-
stellation parameters such as the size M and the angle 6.
However, the condition M > L must be met.

The symmetry number Pi(ui,...,ux) can be computed
beforehand. Specific results for the first- through fourth-
order Volterra kernels are given below. All formulas assume

that M > L.
hi(7) = (1/7%) mau(r),

(1/2r*) mzww(m, 72),
(1/7*) Mmzww(m1, 12),

(13)

(14)

T # T2,
1 = T2,

hz(Tl,Tg) = {

h3 (71,72, 73) =
(1/67'6) mzw‘ww(Tl; T2, T3); n # 2 # T,
(1/37'6) Mowww(T1,72,73), (11 = 1) # 73,
(1/7%) Mewww(r1,72,73), 7 =1 =r11,
ho(m, 72,72, 7) =
(1/2478)m$wwww(7'1; 72,73, 7'4)’ T1 # T2 # 3 # 74,
(1/127* )mzwwww(rs, 72, Ta, 71), (11 = T2) # 73 # 74,
(1/678)mzwwww(7'1y 72,73, 7'4)7 (1'1 =7)# (s = 7s),

(1/47'8)mzwwww(7'1, T2, T3, 7'4), n# (T2 =T33 = T4)7
(1/78)mzwwww(7'1,7'2, T3,74),T1 = T2 = T3 = Tq.

(15)

16
We emphasize that as long as M > L is satisfied, t](lesg
formulas are valid irrespective of the other nonlinear kernels
present in the system. For example, if a QPSK (M = 4)
input is used, then whether the system is linear (L = 1),
linear-quadratic (L = 2), or linear-quadratic-cubic (L =3
the first-order kernel is always estimated as in (13).

4. PERFORMANCE ANALYSIS

Sample kernel estimates are obtained by substituting (12)
into (11). For example, the first-order kernel estimate is

?

-1

M) 2 =5 Y e -,

t=0

M>L (17)

Because we can express hy explicitly in terms of the true
kernels and the input, it is possible to derive its variance
expression. However, the task turns out to be quite tedious
and so far we have derived the variance expression of (17)
for linear-quadratic systems only. Additional variance ex-
pressions will be reported in [13].

Substituting (1) with L = 2 and ko = 0 into (17), we

obtain
T—1

Ba(r) = # Y3 (- ww(t - ) (18)
T t=0 u
+orr D 3 ol w)u (ma ) (=sa)u(t=r) (19)
=0 u1,uz T—1
+ 2y 30 (Dl 7). (20)

Let us denote (18) as A(r), (19) as B(r), and (20) as
C(7). The variance of hy(7) is then

var{/I;;l {r)} cum{A(7), A*(7)}
+cum{B(7), B*(r)} + cum{C(7),C*(r)}
+cum{A(7), B*(r)} + cum{A*(7), B(r)}
+eum{A(7), C* ()} + cum{A*(7), C(7)}

+cum{B(r), C* (1)} + cum{B* (1), C()}.

339

By the multi-linearity property of cumulants [4], we find

T=-17T-1

cum{A(7), A*(7)} = -TTIF E Z ZE k1 (u)ha(v)

t1=0t2=0 u v

X cum{w*(tl — u)’w(tl —_ T), ’w(tz bt v)w'(tz -— T)}

Next, we use the Leonov-Shiryaev formula [4] to express
cum{w"(t1 — w)w(ts —), w(tz — v)w* ({2 — 7)}

= cum{w*(t1 — u), w(t1 — 7), w(t2 — v),w (2 — 7)}
+cum{w*(t1 — u), w(t2 — v)} cum{w(t, — ), w*(t2 — 7)}
—rt fu=v=rta = t1) +7* 6(t1 = o, u = v).
Therefore, cum{A(r), A*(r)} = T™* 3 . hi(u). Other

cumulant terms in var{zl ()} can be found similarly. The
final variance of (17) is given by

~ 2 1 2r?
var{ki(r)} = % + Tth(u) + —1..1:- Z h3(u1, u2)

ugEr uy,u2

-; > 3w, u)+ 34:}1 lz ha(x, T)J
Zhg(u, 7),(21)

uFET

472 4r?
—-——;,—Zhg(u, T) — -;.,— hao(r,7)

which is seen to depend on the data length T, the lag 7, the

variance of the additive noise o2, the constellation parame-
ter r, and all the true kernels. The estimator is consistent.

5. SIMULATIONS

We present here three numerical examples to illustrate the
results developed in this paper.

Example 1: Suppose that there is an unknown linear-
quadratic-cubic (L = 3) nonlirearity and we use QPSK
symbols {-1~j, =143, 1—j, 1+ 5} as the input which
corresponds to M = 4, r = /2, and § = w/4. Table I
shows the true kernels (h2 and hs in their non-redundant
regions), the mean and the standard deviation (std) of the
sample estimates computed from (13)-(15) using T = 4,096
input/output data and 100 independent realizations. The
parameter estimates are seen to be fairly accurate for the
given data length, considering the fact that there are 13
unknowns and higher-order moments are used.

Example 2: We have here a 4th-order homogeneous non-
linear system. Additive noise v(t) is present which is zero-
mean white Gaussian with variance 0.5. A PSK sequence
with M = 5,7 = 2, and 6 = 0 is used as the input. Table II
shows the non-redundant 4th-order kernels, the mean and
the std of the sample estimates computed from (16) using
T = 4,096 input/output data and 100 independent realiza-
tions. The estimates are seen to be fairly accurate despite
of the high nonlinearity order and the presence of additive
noise.

Example 3: The input here is QPSK and the system has
linear and quadratic nonlinearities. The 1st- and 2nd-order
Volterra kernels are identical to those of Example 1. Addi-
tive noise is also present which is zero-mean colored Gaus-
sian with variance o2 = 0.5. We used T = 8,192 data
and 200 independent realizations to verify (21). Table III

shows the theoretical variance of k;(7) multiplied by T and
the corresponding sample variance multiplied by 7. Close
agreement between the empirical and the theoretical values
is observed.



TaBLE I: RESULTS FOR EXAMPLE 1

T 0 1 2 3 4
true h1(7) 1.0000 { 0.5000 | -0.8000 | 1.6000 | 0.4000

mean of A1 (r) | 0.9992 | 0.5095 [ -0.8030 | 1.5759 | 0.3743
std of hy(r) | 0.1723 | 0.0970 | 0.1383 | 0.1299 | 0.1414

(r,m2) (0,0) (0,1) (1,1)
true hz (71, ™2) 1.0000 | 0.6000 | -0.3000

mean of ha(m,m2) | 1.0049 | 0.6041 | -0.2916
std of ha (71, 72) 0.1096 [ 0.0891 | 0.0964

{11, 72,73) (0,0,0) 1 (0,0,1) [ (0,1,1) | (1,1,1) [ (0,1,2)
true ha{m, 12, 73) 1.0000 | 1.2000 [ 0.8000 | -0.5000 | 0.6000

mean of hs(r,m2,75) | 1.0094 | 1.1983 | 0.7993 | -0.4979 | 0.5993
std of ha(71,72,73) | 0.0741 | 0.0201 | 0.0265 | 0.0917 | 0.0093

TaBrLE II. ResuLTs For EXAMPLE 2

(11, 72,73, 78) (0,0,0,0) | (0,0,0,1) | (0,0,1,1) | (0,0,1,2) | (0,1,2,3)
true hs(71, 72,73, 72) 1.0000 1.2000 0.8000 -0.5000 0.6000
mean of hs(m1,72,7s,74) 0.9782 1.1909 0.8041 -0.5005 0.5997
std of ha(7m1, 72,73, 72) 0.1802 0.0484 0.0281 0.0142 0.0040

TABLE III. REsuLTs For EXAMPLE 3

T 0 1 2 3 3
theoretical Tvar{h,(r)} | 13.7200 | 8.2300 | 9.2800 | 7.3600 | 9.7600
sample Tvar{h;(r)} | 13.7854 | 8.5657 | 10.1553 | 6.5336 | 9.7562

6. CONCLUSIONS AND DISCUSSION

We have developed a novel algorithm for input-output nonlinear system identification. The Volterra model is adopted and
PSK sequences are used as input. These sequences are discrete, fairly easy to generate, and are common for communications
applications. Our solution is in closed form, non-iterative, simple to implement, and works for Volterra kernels of arbitrary
order. We have illustrated our algorithms with simulations. Currently, we are working on adaptive versions of the closed
forms and variance expressions of the kernel estimates of arbitrary order, to be reported in [13]. Since AM-PM sequences
can be regarded as PSK symbols on concentric circles, the results presented here may be extended to the larger AM-PM
class of inputs — this constitutes another interesting future research direction.
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