
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 10, MAY 15, 2017 2503

Kernel-Based Structural Equation Models for
Topology Identification of Directed Networks

Yanning Shen, Student Member, IEEE, Brian Baingana, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—Structural equation models (SEMs) have been widely
adopted for inference of causal interactions in complex networks.
Recent examples include unveiling topologies of hidden causal net-
works over which processes, such as spreading diseases, or rumors
propagate. The appeal of SEMs in these settings stems from their
simplicity and tractability, since they typically assume linear de-
pendencies among observable variables. Acknowledging the limi-
tations inherent to adopting linear models, the present paper put
forth nonlinear SEMs, which account for (possible) nonlinear de-
pendencies among network nodes. The advocated approach lever-
ages kernels as a powerful encompassing framework for nonlinear
modeling, and an efficient estimator with affordable tradeoffs is
put forth. Interestingly, pursuit of the novel kernel-based approach
yields a convex regularized estimator that promotes edge sparsity, a
property exhibited by most real world networks, and the resulting
optimization problem is amenable to proximal-splitting optimiza-
tion methods. To this end, solvers with complementary merits are
developed by leveraging the alternating direction method of multi-
pliers, and proximal gradient iterations. Experiments conducted on
simulated data demonstrate that the novel approach outperforms
linear SEMs with respect to edge detection errors. Furthermore,
tests on a real gene expression dataset unveil interesting new edges
that were not revealed by linear SEMs, which could shed more
light on regulatory behavior of human genes.

Index Terms—Structural equation models, nonlinear modeling,
network topology inference, kernel-based models.

I. INTRODUCTION

INFERENCE of network topologies is a well-studied prob-
lem with applications in diverse settings; see e.g., [22, Ch. 7]

and references therein. For example, discovery of causal links
between regions of interest in the brain is tantamount to identi-
fication of an implicit connectivity network. Studies pertaining
to regulatory and inhibitory interactions among genes depend
upon identification of unknown links within gene regulatory
networks. Terrorists and fugitives can be identified by learning
hidden links in social interaction networks, or telephone call
graphs; see e.g., [5, Ch. 1] for the capture of Saddam Hussein.
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SEMs provide an overarching statistical modeling frame-
work for inference of causal relationships within complex sys-
tems [20]. These directional effects are seldom revealed by
standard linear models which impose symmetric associations
between random variables, such as those represented by co-
variances or correlations; see e.g., [15]. Most contemporary
approaches overwhelmingly focus on linear SEMs due to their
inherent simplicity and tractability. For this reason, linear SEMs
have been widely adopted in fields as diverse as sociomet-
rics [16], psychometrics [27], and genetics [8]. More recently,
linear SEMs have been advocated for tracking dynamic topolo-
gies of directed social networks from temporal cascade traces
observed over the nodes [2], [4], [35].

Recognizing the limitations of linear SEMs for modeling non-
linear phenomena, several variants of nonlinear SEMs have re-
cently emerged in several works; see e.g., [17]–[19], [21], [24],
[34], [38]. For example, in [24] and [25], nonlinearities are only
modeled with respect to independent system variables, while a
hierarchical Bayesian framework is reported in [18]. Polyno-
mial SEMs, the closest extension to classical linear SEMs, are
the focus of several other works; see e.g., [17], [19], [21], [38].
In these contemporary approaches, it is assumed that the form
of the nonlinear functions is known a priori, and developed al-
gorithms only estimate the unknown edge weights (a.k.a., SEM
regression coefficients). However, this is a rather significant
limitation since such prior information may not be available in
practice. The generalized semi-parametric methods in [12], [36]
select the nonlinear functions from a prescribed set of e.g., cubic
splines. However, since the chosen nonlinear functions in [12]
and [36] connect only related variables. The corresponding net-
work (or graph) has a fortiori chosen connectivity. This means
that edges with nonzero weights are presumed known in [12],
[36], while the developed algorithm estimates the edge weights.

The present paper builds upon these prior works, and ad-
vocates an additive nonlinear model to capture dependencies
between observed nodal measurements, without explicit knowl-
edge of the edge structure. A key feature of the novel approach
is the premise that edges in the hidden network are sparse. Edge
sparsity is an attribute that naturally emerges in most real-world
networks; for instance, genes are known to regulate or inhibit
only a small subset of all possible genes within an organism.
Members of online social networks (e.g., Facebook, or Twitter)
typically connect with a few hundreds of friends, compared to
millions of all other subscribers. This sparse edge connectivity
has recently motivated development of regularized estimators,
promoting the inference of sparse network adjacency matrices
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Fig. 1. Illustration of an N -node network with directed edges (in blue), and the m-th sample of endogenous measurements per node. SEMs explicitly account
for exogenous inputs (red arrows), upon which endogenous variables may depend, in addition to the underlying network topology.

[1], [4], [23]. Indeed, it has been shown in these works that
exploiting edge sparsity markedly improves the estimation
accuracy of topology inference algorithms.

The rest of the paper is organized as follows. Section III
postulates an additive nonlinear model, with functional forms
of the nonlinear summands considered unknown. Toward pro-
moting edge sparsity, Section IV adopts a sparsity-promoting
regularized least-squares estimator, where it turns out that non-
linear data dependencies are all captured through inner products,
eliminating the need to explicitly know their functional forms.
To this end, a regularized kernel-based approach is advocated,
leading to a convex optimization problem that can be solved
with global optimality guarantees.

Exploiting the problem structure, solvers that leverage
proximal-splitting optimization approaches with complemen-
tary merits are developed in Section V. Specifically, an alter-
nating direction method of multipliers (ADMM) solver that
is amenable to decentralized implementation, and a first-order
proximal gradient (PG) algorithm with reduced computational
complexity are put forth. Building on prior work in [33],
Section VI specializes the postulated nonlinear SEM to the poly-
nomial form, with nonlinear summands postulated to belong to
the class of higher-order polynomials. Extensive numerical tests
on both simulated and real gene expression data are conducted
in Section VII, and the novel approach is shown to outperform
linear variants with respect to the number of correctly identi-
fied edges. Finally, Section VIII concludes the paper and high-
lights several potential future research directions that this work
opens up.

Notation: Bold uppercase (lowercase) letters will denote ma-
trices (column vectors), while operators (·)�, λmax(·), and
diag(·) will stand for matrix transposition, maximum eigen-
value, and diagonal matrix, respectively. The identity matrix
will be represented by I, while 0 will denote the matrix of all
zeros, and their dimensions will be clear in context. Finally, the
�p and Frobenius norms will be denoted by ‖ · ‖p , and ‖ · ‖F ,
respectively.

II. PRELIMINARIES

Consider a directed N -node network G(V, E), whose topol-
ogy is captured by an unknown adjacency matrix A ∈ RN×N .
Let aij ∈ {0, 1} denote entry (i, j) of A, which is nonzero only

if a directed edge is present from node i to j; see Fig. 1. Sup-
pose the network represents an abstraction of a complex system
with measurable inputs and an observable output process that
propagates over the network following directed links. Let xim
denote the m-th input to node i, and yim the m-th observation
of the propagating process measured at node i. In the context
of brain networks, yim could represent the m-th sample of an
electroencephalogram (EEG), or functional magnetic resonance
imaging (fMRI) measurement at region i, while xim could be a
controlled stimulus that affects a specific region of the brain. In
social networks (e.g., Twitter) over which information diffuses,
yim could represent the timestamp when subscriber i tweeted
about a viral story m, while xim could measure their level of
interest in such stories.

SEMs postulate that yim depends on two classes of variables:
i) the measurements of the diffusing process {yjm}j �=i (a.k.a.
endogenous variables); and ii) external inputs xim (a.k.a. exoge-
nous variables). Most contemporary SEM approaches assume
that yjm depends linearly on both {yim}i �=j and xjm , that is,

yjm =
∑

i �=j
aij yim

︸ ︷︷ ︸
endogenous term

+ bjjxjm︸ ︷︷ ︸
exogenous term

+ ejm (1)

where ejm captures unmodeled dynamics. Note that (1) encodes
the causal dependence structure between network nodes through
the unknown coefficients {aij}. Specifically, yjm only depends
on the single-hop neighborhood of node j, namely Nj := {i :
aij �= 0}. In the sequel, this paper will build upon the classical
linear SEM (1), and put forth a general nonlinear SEM. Before
proceeding, a couple of pertinent remarks are due.

Remark 1 (Structural versus measurement models): In so-
cial sciences and psychometrics, (1) represents the so-termed
structural model that is often complemented with measure-
ment models given by y̌jm =

∑
i h

(y )
j i yim + η

(y )
jm and x̌jm =

∑
i h

(x)
j i xim + η

(x)
jm , where {y̌jm , x̌jm} are noisy measurements

comprising linear superpositions of the latent {yim , xim} with
generally unknown coefficients {h(y )

j i } and {h(x)
j i }, while {η(y )

jm }
and {η(x)

jm } denote uncorrelated, zero-mean, additive white noise
terms. In contrast, the focus here is on topology inference tasks,
where {yjm , xjm} are directly available as nodal measurements.
In such tasks, “non-blind” SEMs as the one in (1) emerge for



SHEN et al.: KERNEL-BASED STRUCTURAL EQUATION MODELS FOR TOPOLOGY IDENTIFICATION OF DIRECTED NETWORKS 2505

e.g., inferring connectivity of gene-regulatory networks using
observations of gene expression levels; see e.g. [3], [8], [10],
and references therein. In a nutshell, applications related to psy-
chometrics and social sciences mainly deal with blind SEMs,
but SEMs emerge and are valuable in the non-blind SEM of (1)
too. It is also worth mentioning that so long as the noise ejm
in (1) is zero mean, the least-squares estimates of {aij , bjj} are
unbiased.

Remark 2 (Link with sparse subspace clustering (SSC)): In
the absence of exogenous inputs, (1) bears remarkable simi-
larity to SSC [11], whose goal is to cluster high-dimensional
data points lying within a union of low-dimensional sub-
spaces. Given vectors {yi ∈ RD}Ni=1 sampled from the
union of d-dimensional subspaces embedded in RD , with
d� D, SSC postulates that each datum is expressible as
a linear combination of points drawn from its subspace,
that is, yi =

∑
j wijyj + εi , where wij �= 0 only if i and j

belong to the same subspace, while εi captures noise and
unmodeled dynamics. SSC prescribes a sparsity-promoting
least-squares estimator for the weights {wij} by solving:
min{wi j , j �=i} ‖yi −

∑
j wijyj‖2

2 + λ
∑

j |wij |, which ensures
that only a few coefficients are nonzero per i. This is followed
by spectral clustering of the similarity graph induced by the
estimated pairwise weights, with subsequent identification of
the constituent subspaces e.g., via principal component anal-
ysis. Clearly, estimation of the weights in SSC is reminiscent
of recovery of the unknown coefficients {aij} in (1). Viewing
SSC as an approximate linear approach to manifold learning
(compare also with local linear embedding in e.g., [30]),
the advocated nonlinear SEM in the present paper can be
readily generalized to tasks where data are actually sampled
from low-dimensional nonlinear manifolds, embedded in
high-dimensional Euclidean spaces.

III. NONLINEAR MODEL AND PROBLEM STATEMENT

Going beyond the linearity assumption, this section gener-
alizes (1) to capture nonlinear causal dependencies. Consistent
with traditional linear SEMs, it is postulated that each nodal
measurement results from a combination of endogenous and
exogenous terms. Specifically, let

yjm = ψen(y−jm ) + ψex(xjm ) + ejm (2)

where ψen(.) and ψex(.) are memoryless nonlinear functions
of their arguments, and y−jm := [y1m , . . . , y(j−1)m , y(j+1)m ,

. . . , yNm ]� collects all endogenous variables per sample m,
excluding the measurements at node j. For simplicity of exposi-
tion, it will be explicitly assumed here that ψex(xjm ) = bjjxjm ,
although the advocated approach readily incorporates settings
where ψex(.) admits a more general nonlinear form. Similar to
the so-termed generalized additive models (GAMs), the present
paper postulates that

ψen(y−jm ) =
∑

i �=j
aijψen,ij (yim ) (3)

where aij ∈ {0, 1}, and each ψen,ij (yim ) is a nonlinear func-
tion of a single scalar variable. GAMs are popular for nonlinear

modeling in diverse machine learning tasks including regression
and classification, since they lead to computationally efficient
solvers, while their additive nature facilitates assessment of fea-
ture importance in prediction tasks. Since the hidden network
topology is encoded through the unknown coefficients in (2), it
is desirable to adopt a nonlinear modeling framework in which
the unknowns admit a similar interpretation. The key difference
between (3) and traditional GAMs is the introduction of the
unknown binary coefficients {aij} to facilitate identification of
the network structure.

Furthermore, suppose that ψen,ij (yim ) can be written as

ψen,ij (yim ) =
P∑

p=1

cijpφp(yim ) (4)

where {cijp}Pp=1 are unknown coefficients but {φp(.)}Pp=1
are (possibly) known functions, and P can take on any
positive integer or even infinity. Collecting the P coeffi-
cients into cij := [cij1 , . . . , cijP ]�, and defining φ(yim ) :=
[φ1(yim ), . . . , φP (yim )]�, then one obtains the following
nonlinear SEM [cf. (3) and (4)]

yjm =
∑

i �=j
aijφ

�(yim )cij + bjjxjm + ejm (5)

for j = 1, . . . , N , and m = 1, . . . ,M . With yj := [yj1 , . . . ,
yjM ]� ∈ RM , xj := [xj1 , . . . , xjM ]�, and ej := [ej1 , . . . ,
ejM ]�, (5) can be written in vector form as

yj =
∑

i �=j
Φicij aij + bjjxj + ej (6)

where Φi := [φ(yi1), . . . ,φ(yiM)]�. Furthermore, letting Y :=
[y1 , . . . ,yN ], X := [x1 , . . . ,xN ], E := [e1 , . . . , eN ], and
Φ := [Φ1 , . . . ,ΦN ], one obtains the following nonlinear ma-
trix SEM

Y = ΦW + XB + E (7)

where B is a diagonal matrix with (i, i)th entry [B]ii = bii , and
the NP ×N block matrix W is

W :=

⎡

⎢⎣
a11c11 · · · a1N c1N

...
. . .

...
aN 1cN 1 · · · aNN cNN

⎤

⎥⎦ (8)

has structure modulated by the entries of A. For instance, if
aij = 0, then aijcij is an all-zero block regardless of the val-
ues of entries in cij . On the other hand, if aij = 1, one has
wij = cij .

As expected in real-world networks that exhibit edge sparsity,
A has only a few nonzero entries, and this prior information will
be useful to develop efficient estimators. The dependence of (7)
on A is indirect, through W. Interestingly, the sparsity inherent
to A is not lost in this transformation, and it manifests itself
as group sparsity in the block-matrix W. Specifically, entries
{aij} determine whether certain blocks are all-zero or not [cf.
(8)], naturally leading W to exhibit group sparsity. The present
paper will leverage this inherent group sparsity, and put forth
a novel kernel-based estimator for inference of the unknown
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network topology, in the next section. Having introduced the
proposed nonlinear SEM, the problem statement can now be
formally stated as follows.

Problem statement: Given nodal measurements X and Y, we
wish to estimate the edge-modulated matrixW, and correspond-
ingly the unknown adjacency matrix A, as well as the diagonal
exogenous coefficient matrix B. Whether Φ is (un)known will
be clarified in the ensuing section which puts forth a novel esti-
mator. But for now, one remark is in order.

Remark 3: The general additive model adopted in (3) and
(4) is common with that in [12] and [36]. However, there are
two major differences here. Specifically, the SEM regression
coefficients are sparse in the present paper, which is a realistic
consideration since most known networks exhibit sparse con-
nectivity. In contrast, edge sparsity is not accounted for in [12],
[36]. Furthermore, a kernel-based approach will be developed,
which endows the proposed method approach with enhanced
flexibility relative to [12], [36] in selecting the unknown func-
tional form.

IV. KERNEL-BASED TOPOLOGY ESTIMATION

Towards estimating the unknown variables in (7), with no
knowledge of the additive noise statistics, this section advocates
minimization of a regularized least-squares (LS) cost, namely

{Ŵ, B̂} = arg min
W∈W, B∈B

(1/2)‖Y − ΦW − XB‖2
F + λ‖W‖G,1

(9)
where B := {B ∈ RN×N : bij = 0, ∀i �= j} is a set of diago-
nal square matrices, andW := {W ∈ RNP ×N : wii = 0, i =
1, . . . , N}, with wij := aijcij denoting the (i, j)−th block en-
try of W. The constraint set W restricts solutions to adja-
cency matrices representing networks without self-loops, i.e.,
aii = 0 ⇐⇒ wii = 0. On the other hand, restricting B to the
set of diagonal matrices B is consistent with the prior modeling
assumption that each node in the network is associated with a
single exogenous input. The penalty term

‖W‖G,1 :=
∑

i,j

‖wij‖2 (10)

is a well-known regularizer that has been shown to promote
group sparsity [39], while the regularization parameter λ ≥ 0
allows the estimator to trade off group sparsity for the LS fit.

Upon solving the optimization problem (9), the resulting es-
timate Ŵ contains all the information necessary to recover the
network topology captured by A, by simply identifying nonzero
blocks. Although the penalty (10) is non-differentiable, it is
worth stressing that the regularized cost in (9) is jointly convex
with respect to (w.r.t.) W and B. In principle, the problem can
be solved with guaranteed global optimality. However, this pre-
supposes that Φ is readily available, which may not be possible
since one may not know the functions {φp(.)}Pp=1 explicitly.
Moreover, even when {φp(.)}Pp=1 are known, no efficient strat-
egy may be available to solve (9), when P → ∞. In lieu of the
aforementioned challenges, this paper leverages kernel-based
approaches that have well-appreciated merits in nonlinear mod-
eling, often circumventing the need for explicit knowledge of

the nonlinear mappings. Derivation of the novel kernel-based
estimator will rely on the following result, which can be viewed
as a variant of the known Representer’s Theorem [37] in our
nonlinear SEM setting.

Proposition 1: Suppose Ŵ is the optimal solution of the
regularized LS estimator in (9), with ŵij denoting its (i, j)-th
block entry, then ŵij can be written as

ŵij =
M∑

m=1

αijmφ(yim ) = Φ�
i αij (11)

where αij := [αij1 , . . . , αijM ]� ∈ RM is a coefficient vector.
Proof: See Appendix A for the proof of Proposition 1.
Acknowledging Proposition 1, and substituting (11) into (9),

the LS term can be written as

(1/2)‖Y − ΦW − XB‖2
F

=
N∑

j=1

(1/2)
∥∥∥∥yj −

∑

i �=j
ΦiΦ�

i αij − bjjxj

∥∥∥∥
2

2
(12)

while the regularization term is expressible as

λ‖W‖G,1 = λ

N∑

j=1

∑

i �=j

√
α�
ijΦiΦ�

i αij . (13)

Clearly, each entry of ΦiΦ�
i constitutes an inner product in the

“lifted” space, that is, [ΦiΦ�
i ]k,l = φ�(yik )φ(yil). Defining the

set of kernel matrices {Ki ∈ RM×M }Ni=1 , with Ki := ΦiΦ�
i ,

it is possible to recast the estimator (9), so that all dependencies
on the functions {φ(.)} are captured through entries of Ki , for
i = 1, . . . , N . Accordingly, one obtains the following estimator

{{α̂ij}, B̂} = arg min
{αi j },B

(1/2)‖Y − K̃Wα − XB‖2
F

+ λ

N∑

j=1

∑

i �=j

√
α�
ijKiαij (14)

where K̃ := [K1 , . . . ,KN ], Wα := [α1 , . . . ,αN ], and αj :=
[α�

1j , . . . ,α
�
(j−1)j ,0

�
M×1 ,α

�
j+1 , . . .α

�
N ]�. Examination of (14)

reveals that Wα inherits the block-sparse structure of W, that
is, if wij = 0, then correspondingly αij = 0. Recognizing that
summands in the regularization term of (14) can be written as√

α�
ijKiαij = ‖K1/2

i αij‖2 , it is clear that (14) is a convex

problem admitting a globally-optimal solution. Exploiting the
structure inherent to (14), the next section develops inference
algorithms for unveiling the unknown network topology.

V. TOPOLOGY INFERENCE ALGORITHMS

Given matrices Y, X, and K̃, this section capitalizes on
convexity, as well as the nature of the additive terms in (14)
to develop efficient topology inference algorithms. Proximal-
splitting approaches have been shown useful for convex opti-
mization when the cost function comprises both smooth and
nonsmooth components [9]. Prominent among these are the al-
ternating direction method of multipliers (ADMM), as well as
proximal gradient (PG) descent approaches. Our first advocated
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approach leverages ADMM iterations as demonstrated next,
see e.g., [32] for an early application of ADMM to distributed
estimation.

A. Alternating Direction Method of Multipliers

For ease of exposition, let the equality constraints (αjj = 0,
bij = 0, ∀i �= j) temporarily remain implicit. Introducing the

change of variables γij = K1/2
i αij , problem (14) can be equiv-

alently recast as

{{α̂ij}i �=j , B̂}
= arg min

{αi j },B
(1/2)‖Y − K̃Wα − XB‖2

F + g(Γ)

s.t. γij − K1/2
ij αij = 0 ∀i, j (15)

where the matrix Γ := [γ1 , . . . ,γN ], with γj := [γ�
1j , . . . ,

γ�
(j−1)j ,0

�
M×1 ,γ

�
j+1 , . . . ,γ

�
N ]�, and

g(Γ) := λ

N∑

i=1

N∑

j=1

‖γij‖2 . (16)

Defining the block-diagonal matrix D := Bdiag(K1 , . . . ,KN ),
where the operator Bdiag(.) constructs a block-diagonal ma-
trix from its matrix arguments, one can write the augmented
Lagrangian of (15) as

Lρ(Wα ,B,Γ,Ξ) = (1/2)‖Y − K̃Wα − XB‖2
F + g(Γ)

+ 〈Ξ,D1/2Wα − Γ〉 + (ρ/2)‖Γ − D1/2Wα‖2
F . (17)

In (17), Ξ is a dual matrix-variable that collects all Lagrange
multipliers corresponding to the equality constraints introduced
in (15), 〈P,Q〉 := trace(P�Q) denotes the inner product be-
tween matrices P and Q, while ρ > 0 is the a priori prescribed
penalty parameter. ADMM essentially adopts alternating min-
imization (AM) iterations to minimize Lρ(Wα ,B,Γ,Ξ) over
the primal variables Wα ,B, and Γ, followed by a gradient as-
cent step over the dual variables in Ξ[3], [32]. During iteration
k + 1, AM updates of the primal and dual variables entail the
following steps

Wα [k + 1] = arg min
Wα

Lρ(Wα ,B[k],Γ[k],Ξ[k]) (18a)

B[k + 1] = arg min
B

Lρ(Wα [k + 1],B,Γ[k],Ξ[k]) (18b)

Γ[k + 1] = arg min
Γ

Lρ(Wα [k + 1],B[k + 1],Γ,Ξ[k])

(18c)

Ξ[k + 1] = Ξ[k] + ρ(D1/2Wα [k + 1] − Γ[k + 1]). (18d)

Per step, the augmented Lagrangian is minimized w.r.t. a specific
variable, with all the rest fixed to their most recent update, until
convergence is attained. Each subproblem under the ADMM
updates is studied next, and their solutions are correspondingly
derived.

Focusing on Wα [k + 1], note that (18a) can be written in
terms of {αj}Nj=1 as

Wα [k + 1] = arg min
α1 ,...,αN

N∑

j=1

[
(1/2)α�

j

(
K̃�K̃ + ρD

)
αj

− α�
j

(
ρD1/2γj [k] + K̃�yj − D1/2ξj [k] − bjj [k]K̃�xj

)]

(19)

where ξj denotes column j of Ξ. Clearly the cost in (19) decou-
ples across columns of Wα , and admits closed-form, paralleliz-
able solutions. Incorporating the structural equality constraint
αjj = 0, one obtains the following decoupled subproblem per
column j

α̃j [k + 1] = arg min
α̃j

(1/2)α̃�
j

(
K̃�
j K̃j + ρDj

)
α̃j

− α̃�
j qj [k] (20)

where α̃j denotes the (N − 1)M × 1 vector obtained by re-
moving the entries of αj indexed by Ij := {(j − 1)M +
1, . . . , jM}. Similarly, K̃j collects columns of K̃ excluding
the columns indexed by Ij , the block-diagonal matrix Dj is
obtained by eliminating rows and columns of D indexed by
Ij , while qj [k] is constructed by removal of entries indexed
by Ij from ρD1/2γj [k] + K̃�yj − D1/2ξj [k] − bjj [k]K̃�xj .
The per-column subproblem (20) is an unconstrained quadratic
optimization problem which, assuming (K̃�

j K̃j + ρDj ) is in-
vertible, admits the following closed-form solution per j

α̃j [k + 1] =
(
K̃�
j K̃j + ρDj

)−1
qj [k]. (21)

Upon evaluation of (21), column j of Wα [k + 1] is updated by
zero-padding α̃j [k + 1], that is,

αj [k + 1] = [α̃�
1j , . . . , α̃

�
(j−1)j ,0

�
M×1 , α̃

�
(j+1)j , . . . , α̃

�
N j ]

�

(22)
where 0M×1 denotes the M × 1 all-zero vector.

The per-column update (22) entails inversion ofM(N − 1) ×
M(N − 1) matrices, which quickly becomes computationally
prohibitive as the network grows in size. To circumvent this
computational burden, we adopt the matrix inversion lemma, by
recognizing that
(
K̃�
j K̃j + ρDj

)−1

=
1
ρ

(
D−1
j − D−1

j K̃�
(
ρI + K̃D−1

j K̃�
j

)−1
K̃jD−1

j

)
(23)

which only requires inversion of an M ×M matrix, ensuring
that the computational complexity of the update (21) does not
grow with the network size N .

In order to obtain B[k + 1], first set bij = 0 for all off-
diagonal entries as required by the equality constraints on B. It
turns out that (18b) is separable over the diagonal entries bjj,
that is,

B[k + 1] = arg min
b1 1 ,...,bN N

N∑

j=1

‖yj − K̃αj [k + 1] − bjjxj‖2
2 . (24)
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Per entry j, (25) boils down to a scalar unconstrained quadratic
minimization problem with the closed-form solution

bjj [k + 1] = x�
j (yj − K̃αj [k + 1])/x�

j xj . (25)

Finally, (18c) can be cast as

Γ[k + 1] = arg min
{γi j }

N∑

j=1

N∑

i=1

‖γij‖2 −
N∑

j=1

N∑

i=1

ξ�
ij [k]γij

+ (ρ/2)
N∑

j=1

N∑

i=1

∥∥K1/2
i αij [k + 1] − γij

∥∥2
2 (26)

which reduces to a group Lasso solver per index j [39]. Per
component vector γij , (26) can be solved in closed form via the
so-termed group shrinkage operator for each i and j, yielding

γij [k] = Pλ/ρ
(
K1/2
i αij [k + 1] + ξij [k]/ρ

)
(27)

which is defined as

Pλ(z) :=
z

‖z‖2
max(‖z‖2 − λ, 0). (28)

Together with the gradient ascent step over the dual vari-
ables, Algorithm 1 summarizes the iterations resulting from the
developed ADMM solver for network topology inference task.

Admittedly, even with the adoption of the matrix inversion
lemma, ADMM incurs a considerable computational burden due
to the reduced matrix inversion complexity. Nevertheless, it is
important to point out that ADMM has well-documented merits
in large-scale decentralized processing, where it may be feasible
to split the problem across a “coordinated” network of comput-
ing agents; see e.g., [31], [32] and references therein. Due to
space considerations, exploration of an ADMM-based decen-
tralized implementation of Algorithm 1 is beyond the scope of
the present paper. Instead, the sequel will focus on develop-
ing a first-order inference algorithm that leverages advances in
proximal gradient descent approaches. As will be shown later,
the developed approach mitigates the inherent matrix inversion
complexity associated with ADMM.

Remark 4: Most of the terms in Algorithm 1 are shared
across all iterations, and can be computed once, e.g., the matrix
inversion in (23). Consequently, it turns out that the algorithm
incurs O(M 2N) per-iteration complexity.

B. Proximal Gradient Iterations

Since the decoupled convex cost in (14) reduces to a weighted
version of the group Lasso solver, it is prudent to first define the
change of variables ζij := K1/2

i αij . Consequently, (14) can be
reformulated for each node j to yield

{{ζ̂ij}, {b̂ij}}

= arg min
{ζi j },{bi j }

1
2

∥∥∥∥yj −
N∑

i=1

K1/2
i ζij −

N∑

i=1

bijxj

∥∥∥∥
2

2
+ λ‖ζij‖2

s.t. ζij = 0, ∀i = j, bij = 0, ∀i �= j. (29)

Note that group-sparsity over the blocks {αij} as induced by the
weighted regularizer in (14) is inherited by (29). This implies

Algorithm 1: ADMM for Kernel-Based Topology Inference.
Input: Y, X, λ, K, τ
Initialize: A[0] = 0N×N , B[0] = 0N×N , k = 0
while not converged do

for j = 1, . . . , N (in parallel) do
Update α̃j [k + 1] via (21)
Update αj [k + 1] via (22)
Update bjj [k + 1] via (25)
Update γij [k + 1], ∀i �= j via (27)

end for
Update Wα [k + 1], B[k + 1] and Γ[k + 1]
Ξ[k + 1] = Ξ[k] + ρ(D1/2Wα [k + 1] − Γ[k + 1])
k = k + 1

end while
Edge identification:
âij = 1 if ‖αij [k]‖ ≥ τ , else âij [k] = 0 for all i, j
return Â and B̂ = B[k]

that unveiling the hidden network topology amounts to identify-
ing which vectors in the set {ζij} are nonzero. Furthermore, the
cost in (29) is convex and consists of the sum of differentiable
and non-differentiable terms. Key to our first-order algorithm
developed in this section is recognizing that this well-known
problem structure is amenable to PG optimization tools; see
e.g., [6] for a comprehensive review.

Once again temporarily ignoring the linear constraints,
let vj := [ζ�

j bjj ]
�, where ζj := [ζ�

1j , . . . , ζ
�
N j ]

�. Lf := λmax(
P�
j Pj

)
, where Pj := [K̆ xj ], that is, ‖∇f(vj1) −∇f(vj2)‖ ≤

Lf ‖vj1 − vj2‖, ∀vj1 ,vj2 in the domain of f , withλmax(Z) denot-
ing the largest eigenvalue of Z. Due to the Lipschitz continuity
of f(vj ), it holds that

f(vj1) ≤ f(vj2) + 〈∇f(vj2),v
j
1 − vj2〉 + (Lf /2)‖vj1 − vj2‖2

2

=: Q(vj1 ,v
j
2) (30)

where Q(vj1 ,v
j
2) is a quadratic upper-bound of f(vj1) eval-

uated at vj2 . In general, PG algorithms judiciously select vj2
from the domain of f , and iteratively minimize the upper
boundQ(vj ,vj2) + g(vj ) of the cost f(vj ) + g(vj ), until con-
vergence is attained. Accordingly, adopting the iteration in-
dex k and setting vj2 = vj [k], computation of the next iterate
vj [k + 1] amounts to solving (cf. [6])

vj [k + 1] := arg min
v j

Q(vj ,vj [k]) + g(vj )

= arg min
v j

(Lf /2)‖vj − uj [k]‖2
2 + g(vj ). (31)

It turns out that uj [k] := vj [k] − (1/Lf )∇f(vj [k]) is an or-
dinary gradient descent step evaluated at vj [k]. As will be
shown next, evaluation of the proximal operator argminv j

(Lf /2)‖vj − uj [k]‖2
F + g(vj ) is straightforward, rendering

this iterative approach quite attractive. In fact, adoption of itera-
tive PG solvers for most regularized estimators is well motivated
because vj [k + 1] is available in closed form.
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In order to incorporate the linear equality constraints, let
K̆s denote the M ×M(N − 1) matrix obtained by remov-
ing all columns indexed by Ij from K̆, and ζ̃j := [ζ�

1j , . . . ,

ζ�
(j−1)j , ζ

�
(j+1)j , . . . , ζ

�
N j ]

�. Modifying the cost function
accordingly, f(vj ) can then be written as

f(vj ) := (1/2)‖yj − K̆j ζ̃j − bjjxj‖2
2 . (32)

Clearly, ∇f(vj ) decouples into gradients with respect to ζ̃j and
bjj to obtain

∇ζ̃j
f(vj [k]) = K̆�

j

(
K̆j ζ̃j [k] + bjj [k]xj − yj

)
(33a)

∇bj j f(vj [k]) =
(
K̆j ζ̃j [k] + bjj [k]xj − yj

)�
xj (33b)

which upon substitution into (31), yields the following provably-
convergent PG iterations per node j

zj [k] = ζ̃j [k] − (1/Lf )∇ζ̃j
f(vj [k]) (34a)

ζij [k + 1] = Pλ/Lf
(zij [k]) (34b)

bjj [k + 1] = bjj [k] − (1/Lf )∇bj j f(vj [k]). (34c)

In step (34b), zij denotes a subvector of z with entries in-
dexed by Ij , while the projection operator Pλ/Lf

(.) has been

previously defined in (28). The sought estimate of ζj [k + 1] is
now obtained by stacking and zero-padding ζij [k + 1] as

ζj [k] :=
[
ζ�

1j [k + 1], . . . , ζ�
(j−1)j [k + 1],

0�
1×M , ζ

�
(j+1)j [k + 1], . . . , ζ�

N j [k + 1]
]�
. (35)

Entries of the adjacency matrix A are then set by identify-
ing the nonzero vectors ζij , while entries of the diagonal ma-
trix B[k] are selected from the estimates of {bii [k]}Ni=1 associ-
ated with the appropriate indices. Algorithm 2 summarizes all
the steps constituting the developed PG algorithm. Similar to
Algorithm 1, the per-iteration complexity incurred by
Algorithm 2 is O(M 2N).

Although Algorithm 2 is computationally simple and prov-
ably convergent, it has been shown to converge slowly at
times, and several accelerated variants have been developed.
Prominent among these are the so-termed accelerated proxi-
mal gradient (APG) approaches that offer a worst-case conver-
gence guarantee ofO(1/

√
ε) iterations for an ε-optimal solution

[cf. O(1/ε) for PG methods]; see e.g., [28] for details. Further
details pertaining to the APG-based variant of the Algorithm 2
are provided in Appendix B.

VI. SPECIAL CASE: POLYNOMIAL SEM

The developed kernel-based topology inference approach is
quite general, and eliminates the need to explicitly specify the
functions {φp(.)}Pp=1 a priori. Nevertheless, if φp(.) is known
to belong to a specific family, e.g. polynomial functions, it may
be possible to derive more efficient estimators that capitalize on
such prior knowledge. Polynomial SEMs have been advocated
in e.g., [17], [21], with the underlying network topology as-
sumed known a priori. This section does not presume such prior

Algorithm 2: Kernel-Based PG Inference Algorithm.
Input: Y, X, K, τ , λ
Initialize: A[0] = 0N×N , B[0] = 0N×N , k = 0
while not converged do

for j = 1, . . . , N (in parallel) do
(S1) Gradient calculation:

Calculate gradients at ζ̃j [k] via (33a)
Calculate gradients at bjj [k] via (33b)

(S2) Variable updates:
Update zj [k + 1] via (34a)
Update ζij [k + 1], ∀ j �= i via (34b)
Update bjj [k + 1] via (34c)
Update ζj [k + 1] via (35)

end for
k = k + 1

end while
Edge identification:
Set âij = 1 if ‖ζij [k]‖ ≥ τ , else âij [k] = 0 for all i, j

return Â and B̂ = B[k]

knowledge, and postulates that ψen,j (yjm ) admits a polynomial
expansion whose coefficients capture the unknown topology;
that is,

ψen,ij (yim ) =
P∑

p=1

cijpy
p
im (36)

with the summand φp(yim ) = ypim . Defining ỹim := [yim , y2
im ,

. . . , yPim ]�, (36) can be equivalently written as ψen,ij (yim ) =
c�ij ỹim , which is clearly a special case of the endogenous term
in (7), with φ(yim ) = ỹim . More specifically, adopting the poly-
nomial endogenous term (36), one obtains

yj =
∑

i �=j
Ỹicij aij + bjjxj + ej (37)

where Ỹi :=[ỹi1 , . . . , ỹiM ]�, with all other variables previously
defined. Furthermore, with Y := [y1 , . . . ,yN ], X := [x1 , . . . ,
xN ], and Ỹ := [Ỹ1 , . . . , ỸN ], one obtains the corresponding
nonlinear matrix SEM

Y = ỸW + XB + E (38)

where, as earlier observed, W exhibits a block structure dictated
by the hidden network topology. By similarly adopting a regu-
larized LS approach to estimate the unknown matrices in (38),
the following estimator is advocated

{Ŵ, B̂} = arg min
W ,B

(1/2)‖Y − ỸW − XB‖2
F + λ‖W‖I,1

s.t. wjj = 0 ∀j, bij = 0 ∀i �= j (39)

where wij := aijcij , while the constraints are once again en-
forced to ensure absence of self-loops, and that B is a diagonal
matrix. Since edge sparsity is reflected in the block-sparsity of
W, the well-known group-sparse regularizer is adopted as an
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additive penalty defined as

‖W‖I,1 :=
N∑

i=1

N∑

j=1

⎛

⎝
∑

k∈Ij
w2
ik

⎞

⎠
1/2

=
∑

i,j

‖wij‖2 . (40)

As earlier alluded to in a similar context, Ŵ contains suffi-
cient information to recover the adjacency matrix A, namely
by identifying the non-zero blocks. Recognizing that the cost
function in (39) retains the properties of estimators put forth in
the prequel (convex with a non-differentiable, additive term),
proximal gradient iterations will be adopted next to estimate the
unknowns.

Let w̃j denote the (N − 1)P × 1 vector obtained by remov-
ing entries indexed by I′

j := {jP − P + 1, . . . , jP} from the

jth column of W. Similarly, let Ỹ−i denote the (N − 1)P ×M
matrix obtained by removing all columns indexed by I′

i from Ỹ.
Modifying the cost function to incorporate the linear equality
constraints, and defining vj := [w̃�

j x�
j ]�, it turns out that

f(vj ) := (1/2)
∥∥yj − Ỹ−j w̃j − bjjxj

∥∥2
2 . (41)

Leveraging the PG iterations from (31), ∇f(vj [k]) decouples
into gradients with respect to wj and bjj , that is,

∇w̃ j
f(vj [k]) = Ỹ�

j

(
Ỹj w̃j [k] + bjj [k]xj − yj

)
(42a)

∇bj j f(vj [k]) =
(
Ỹj w̃j [k] + bjj [k]xj − yj

)�
xj (42b)

which leads to the following steps per iteration k

zj [k] = w̃j [k] − (1/Lf )∇w̃ j
f(vj [k]) (43a)

wij [k + 1] = Pλ/Lf

(
[zj [k]]Ij

)
(43b)

bii [k + 1] = bjj [k] − (1/Lf )∇bj j f(vj [k]) (43c)

where [z]Ij denotes a subvector of z whose entries comprise

coefficients indexed by elements of Ij . Rows of Ŵ are similarly
obtained by stacking and zero-padding [cf. (35)]

wj [k] =
[
w�

1j [k], · · · ,w�
(i−1)j [k],

0�
1×P ,w

�
(i+1)j [k], · · · ,w�

N j [k]
]�
. (44)

Algorithm 3 summarizes the developed PG solver for the non-
linear polynomial SEM. Acceleration of Algorithm 3 for faster
convergence is straightforward, and follows along similar mod-
ifications to those highlighted in the prequel.

Remark 5: It turns out that polynomial regression is a spe-
cial case of kernel regression, with an appropriate choice of
polynomial kernel; see e.g., [13]. Not surprisingly, a similar
link can be drawn for the kernel-based SEM advocated in
Section IV. Specifically, upon adoption of the kernel func-
tion k(x, y) =

∑P
p=1(xy)

p , (14) can be shown equivalent to
(39). Note that even when the form of ψen,ij (yim) is explicitly
known, Algorithms 1 and 2 can still be run upon computation of
the kernel matrices from nodal measurements {yim}. However,
comparing (33a) and (33b) with (42a) and (42b) reveals that

Algorithm 3: PG Solver for Polynomial SEM.
Input: Y, X, λ, P , τ
Initialize: W[0] = 0N×NP , B[0] = 0N×NP , k = 0
while not converged do

for j = 1, . . . , N (in parallel) do
(S1) Gradient calculation:

Calculate gradients at w̃j [k] via (42a)
Calculate gradients at bjj [k] via (42b)

(S2) Variable updates:
Update zj [k + 1] via (43a)
Update wij [k + 1], ∀ j �= i via (43b)
Update bjj [k + 1] via (43c)
Update wj [k + 1] via (44)

end for
Update W[k + 1] and B[k + 1]
k = k + 1

end while
Edge identification:
Set âij = 1 if ‖wij [k]‖ ≥ τ , else âij [k] = 0 for all i, j
return Â and B̂ = B[k]

when P �M , one incurs lower computational cost by explic-
itly modeling node dependencies via a polynomial SEM than the
more general kernel-based approach. This is due to the smaller
dimensions involved in the constituent matrix products.

VII. NUMERICAL TESTS

A. Tests on Simulated Data

This section presents results of numerical tests conducted
on synthetic data to assess the effectiveness of the developed
algorithms.

Data generation: A Kronecker random graph with N = 64
nodes was generated with a “seed matrix”

S0 :=

⎛

⎜⎜⎝

0 0 1 1
0 0 1 1
0 1 0 1
1 0 1 0

⎞

⎟⎟⎠

to obtain a binary-valued 64 × 64 matrix via repeated Kronecker
products, namely S = S0 ⊗ S0 ⊗ S0 ; see also [26]. The Kro-
necker graph with adjacency matrix A was then constructed
by randomly sampling each entry from a Bernoulli distribution
with aij ∼ Bernoulli(0.3sij ).

With different values of M , entries of Y ∈ RN×M were ran-
domly sampled from the standard normal distribution (ynm ∼
N (0, 1)). Kernel matrices {Km} were generated using pre-
scribed kernels, that is, entry (i, j) of Km was set to [Km ]ij =
k(yim , yjm ), where the kernel function k(·, ·) is known a pri-
ori. Matrix B ∈ RN×N was constructed as a diagonal matrix
with entries drawn from an i.i.d. standardized normal distri-
bution. Entries of coefficient vectors αij ∈ RM were drawn
uniformly from the interval [−0.2, 0.2], while noise terms were
generated i.i.d. as eij ∼ N (0, σ2

e ), with σe = 0.01. Finally, the
exogenous matrix X was generated from other terms using the
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Fig. 2. EIER plotted against the measurement ratio (M/N) with simulated
data generated via a polynomial kernel of order P = 2. The nonlinear topology
identification approaches markedly outperform the linear SEM.

postulated nonlinear SEM, that is, X = (Y − K̃Wα − E)B−1 ,
where Wα was constructed with the (i, j)-th block set to αij .

Experiments were run for different values of M , with thresh-
olds that control presence or absence of an edge (denoted by τ in
the listed algorithms) selected to obtain the best edge identifica-
tion accuracy. Furthermore, sparsity-promoting regularization
parameters (λ) were all judiciously selected to obtain the lowest
edge identification error rate (EIER), defined as

EIER :=
‖A − Â‖0

N(N − 1)
× 100% (45)

with the operator ‖ · ‖0 denoting the number of nonzero entries
of its argument. For all experiments, error plots were generated
using values of EIER averaged over 100 independent runs. It
turns out that Algorithm 1 takes about 100 iterations to converge,
while Algorithms 2 and 3 typically require 300 iterations before
converging to the global optimum.

Test results: Figs. 2 and 3 depict plots of the EIER against
the measurement ratio (M/N ), for polynomial and Gaussian
kernels, respectively. Specifically, Fig. 2 plots the EIER when
data are generated by (7), using a polynomial kernel of order
P = 2. Clearly, adoption of nonlinear SEMs yields markedly
better performance than topology inference approaches based
on linear SEMs, as demonstrated by the lower EIER values.
It turns out that running the ADMM solver consistently leads
to lower EIER than its (A)PG counterparts. This performance
gap can be attributed to parameter transformation for the latter
solvers, that is, presence or absence of an edge was based on
ζij , a linear transformation of αij .

Fig. 2 also depicts test results for experiments conducted
with a fortiori selection of the polynomial SEM, advocated
in Section VI. Setting the polynomial order to P = 2, the
kernel-based solvers are observed to yield improved perfor-
mance over the polynomial SEM. Although one can readily

Fig. 3. EIER plotted against the measurement ratio with data generated using
a Gaussian kernel with σ2 = 0.01. In this case, adopting the polynomial SEM
does not lead to a noticeable performance improvement over the linear SEM.
Nevertheless, all kernel-based approaches markedly outperform the linear SEM.

Fig. 4. Plots of actual and inferred adjacency matrices resulting from adopting
linear and nonlinear SEMs with M = 128.

attribute this to the inherent model mismatch, it is worth not-
ing that even solvers based on the polynomial SEM markedly
outperform the linear SEM.

Fig. 3 plots the EIER curves for the setting in which data
were generated via Gaussian kernels κ(x, y) := e−(x−y )2 /2σ 2

,
with the bandwidth parameter set to σ2 = 0.01. The plot also
depicts the EIER curves resulting from adopting a polynomial
SEM of order P = 3 for the same data. Not surprisingly, kernel-
based approaches significantly outperform the conventional
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Fig. 5. ROC curves generated under different modeling assumptions: a) nonlinear SEM based on a Gaussian kernel with σ2 = 1; b) nonlinear SEM based on
polynomial kernel of order P = 2; and c) polynomial SEM of order 2.

Fig. 6. Comparison of ROC curves for the quadratic data model, with edge
weights estimated via GASEM [12], linear and polynomial SEMs.

Fig. 7. ROC plot comparing the same approaches as depicted by Fig. 6, but
based on data generated by a linear model.

linear SEM. In this setting, adopting the polynomial SEM does
not lead to better performance than the linear SEM, as was the
case with the data generated via polynomial kernels.

On the other hand, polynomial SEMs are attractive due to
their reduced computational complexity, leading to algorithms
that are on average three times faster than the more general
kernel-based alternatives. It is also worth pointing out that in-
creasing the measurement ratio yields lower EIER, especially
for the kernel-based algorithms. Fig. 4 depicts plots of actual
and inferred adjacency matrices, under varying modeling as-
sumptions. Plots of inferred adjacency matrices are based on a
single realization ofM = 128 samples, and non-zero entries are
illustrated in white. As demonstrated by the plots, accounting
for nonlinearities yields more accurate recovery of the unknown
network topology.

In order to assess edge detection performance, receiver op-
erating characteristic (ROC) curves under different modeling
assumptions are plotted in Fig. 5. With PD denoting the prob-
ability of detection, and PF A the probability of false alarms,
each point on the ROC corresponds to a pair (PF A , PD ) for a
prescribed threshold. Fig. 5 (a) results from tests run on data
generated by Gaussian kernels, while Fig. 5 (b) corresponds
to polynomial kernels of order P = 2. Using the area under
the curve (AUC) as the edge detection performance criterion,
Fig. 5 (a) and (b) clearly emphasize the benefits of accounting
for nonlinearities. In both plots, kernel-based approaches result
in the highest AUC values than approaches that resort to either
polynomial or linear SEMs. Interestingly, adopting a polyno-
mial SEM for data generated by Gaussian kernels leads to a
lower AUC than the plain linear SEM in this case.

Fig. 5 (c) plots ROC curves based on linear and polynomial
SEMs, with simulated data actually generated using a poly-
nomial SEM of order 2. The curves are parameterized by the
sparsity-control parameter λ, with more accurate topology iden-
tification resulting from λ = 10. As expected, the linear SEM
underperforms the polynomial SEM, due to the inherent model
mismatch.

The novel approach is also compared with the generalized
additive structural equation model (GASEM) in [12]. While
[12] can flexibly choose the form of the nonlinear function, it
does not account for the edge sparsity inherent to the network.
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Fig. 8. Network visualizations of inferred gene regulatory networks of 39 immune-related human genes, based on gene expression data of M = 69 individuals
using: (a) a linear SEM; (b) a kernel-based SEM using polynomial kernels of order 2; (c) a kernel-based SEM using polynomial kernels of order 2; and (d)
a kernel-based SEM using Gaussian kernels with σ2 = 1. The nonlinear inference approaches are capable of unveiling a number of new links that were not
discovered by linear SEMs.

Simulated data are generated from a polynomial SEM of order
2, and the coefficients of the linear terms are all set to zero.
Algorithm 3 is run with dependencies assumed to be lin-
ear (P = 1) and quadratic (P = 2), respectively, while the
GASEM-based approach is set up to adopt quadratic splines.
Fig. 6 plots the corresponding ROC curves that depict edge
detection performance using [12], and our polynomial SEMs,
respectively. It is clear from Fig. 6 that both algorithms ex-
ploiting nonlinear dependencies markedly outperform the linear
model. On the other hand, Fig. 7 depicts the performance of al-
gorithms based on linear and nonlinear SEMs when the true data
model is linear. In this case, leveraging a linear SEM with sparse
regularization yields improved edge detection performance in
comparison to the nonlinear approaches. Nonetheless, the non-
linear methods still lead to demonstrably reliable performance
in identifying the true underlying network. Notice also that the
novel approach outperforms GASEMs since the underlying net-
work is actually sparse.

B. Real Gene Expression Data

Linear SEMs have recently been adopted for identification of
gene regulatory topologies, with nodes representing individual

genes, while directed edges encode causal regulatory relation-
ships between gene pairs. The goal of this experiment was to
test the novel nonlinear SEMs of the present paper, and assess
whether it is possible to glean new insights about gene regula-
tory behavior.

The experiment was based on real gene expression data re-
sulting from RNA sequencing of cell samples from 69 un-
related Nigerian individuals, under the International HapMap
project [14]. From the 929 identified genes, expression lev-
els and the genotypes of the expression quantitative trait loci
(eQTLs) of 39 immune-related genes were selected and normal-
ized; see [7] and [29] for detailed descriptions. Genotypes of
eQTLs were adopted as exogenous inputs or perturbations X,
since the more typical gene-knockout experiments are gener-
ally impractical for human subjects. On the other hand, gene
expression levels were treated as the endogenous variables Y.

Inference of the underlying gene regulatory network topol-
ogy was done by adopting both linear and the nonlinear SEM
approaches developed in the present paper. For each algorithm,
λ was carefully selected by 5-fold cross-validation. Fig. 8 de-
picts network visualizations of the identified topologies, with the
nodes annotated with their corresponding gene IDs. Fig. 8(a)
depicts the resulting network based on a linear SEM, while



2514 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 10, MAY 15, 2017

Fig. 8(b) and (c) result from nonlinear SEMs based on polyno-
mial kernels of orders 2 and 3, as well as a Gaussian kernel with
σ2 = 1.

In all cases, the identified networks are very sparse, and the
visualizations only include nodes that have at least a single
incoming or outgoing edge. Interestingly, the novel nonlinear
approaches unveil all edges identified by the linear SEMs, as
well as a number of new edges. These newly discovered gene
regulatory interactions could potentially be the subject of studies
by geneticists, to investigate whether they lead to a better un-
derstanding of causal influences among immune-related genes
across humans. Clearly, acknowledging the possibility that in-
teractions among genes may be driven by nonlinear dynamics,
our novel nonlinear modeling framework subsumes linear ap-
proaches, and facilitates discovery of causal patterns that may
not be captured through linear SEMs.

VIII. CONCLUDING SUMMARY

This paper put forth a novel nonlinear structural equation
modeling framework for inference of sparse directed network
topologies, over which observable processes propagate. Pos-
tulating a general additive nonlinear model to capture depen-
dencies between endogenous variables, a sparsity-promoting
LS estimator was put forth to recover the unknown network
topology. Since all dependencies on the unknown functions in
the estimator are expressible as inner products, kernels were
adopted as an encompassing nonlinear modeling framework.
Efficient algorithms based on ADMM and PG iterations were
developed to solve the ensuing optimization problem. It was also
demonstrated that polynomial SEMs are naturally subsumed by
the advocated framework, as a special case in which the non-
linear functions belong to the class of polynomials. Several
experiments conducted on simulated data demonstrated the ef-
fectiveness of the developed algorithms in inference of sparse
directed networks. Numerical tests on real gene expression data
demonstrated that the advocated modeling approach is capa-
ble of recovering new causal links, that were not detected by
conventional linear SEMs.

This work opens up a number of interesting directions for
future research, including: a) broadening the scope of the novel
approach to dynamic network topologies; b) exploring more
efficient inference algorithms e.g., distributed implementations
that are well-motivated in large-scale networks, or online op-
eration when measurements are acquired sequentially; and c)
deriving identifiability results for the novel nonlinear model.

APPENDIX A
PROOF OF PROPOSITION 1

First notice that (9) is separable across columns of W. The
separable cost can be modified to incorporate the constraints,
with each subproblem consequently becoming expressible as

{{ŵij}i �=j , b̂jj} =

min
{w i j },bj j

(1/2)
∥∥yj −

∑

i �=j
Φiwij − bjjxj

∥∥2
2 + λ

∑

i �=j
‖wij‖2 .

(46)

Equivalently, by isolating wij for a specific i, (46) can now be
written as

min
{wk j }k �= i , j ,bj j

[
min
w i j

(1/2)
∥∥yj −

∑

k �=i,j
Φkwkj

− bjjxj − Φiwij

∥∥2
2 + λ‖wij‖2

]
+ λ

∑

k �=i,j
‖wkj‖2 (47)

where the inner optimization problem is solved first, followed
by the outer one. Defining terms that are constant w.r.t. wij

in (47) as the vector

rij := yj −
∑

k �=i,j
Φkwkj − bjjxj (48)

and focusing only on the inner minimization over wij f, one
obtains the following regularized LS problem

min
w i j

(1/2)‖rij − Φiwij‖2
2 + λ‖wij‖2 . (49)

Recalling that Φi := [φ(yi1), . . . ,φ(yiM )]�, the set of vectors

F := {φ(yi1), . . . ,φ(yiM ),d1 , . . . ,dP −M ′ }
constitutes a complete basis of RP , where M ′ := dim(span
(φ(yi1), . . . ,φ(yiM ))), and {dk ∈ RP }P −M ′

k=1 denotes nonzero
vectors orthogonal to {φ(yim )}, i.e.,

d�
k φ(yim ) = 0 ∀k,m. (50)

This means that any vector in RP can be represented as a lin-
ear combination of elements from F , and the optimal solution
to (49) admits the following expansion

ŵij =
M∑

m=1

αijmφ(yim ) +
P −M ′∑

k=1

βijkdk (51)

without loss of generality. Note that {αijm} and {βijk} in (51)
denote basis coefficients. Adopting (51), the LS fitting term in
(49) can be written as

‖rij − Φiŵij‖2
2

=

∥∥∥∥∥rij − Φi

(
M∑

m=1

αijmφ(yim ) +
P −M ′∑

k=1

βijkdk

)∥∥∥∥∥

2

2

=

∥∥∥∥∥rij −
M∑

m=1

αijmΦiφ(yim )

∥∥∥∥∥

2

2

(52)

where the last equality is a direct consequence of (50). Clearly,
from (52), the component of wij lying within the span of {dk}
has no influence on the LS fitting term in (51). On the other
hand, the second term in (49) can be expanded as [cf. 51]

‖ŵij‖2 =

∥∥∥∥∥

M∑

m=1

αijmφ(yim )

∥∥∥∥∥
2

+

∥∥∥∥∥

P −M ′∑

k=1

βijkdk

∥∥∥∥∥
2

≥
∥∥∥∥∥

M∑

m=1

αijmφ(yim )

∥∥∥∥∥
2

(53)
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where the first equality holds due to (50), while the second
inequality follows from the non-negativity of norms. Also note
that equality in (53) is attained when βijk = 0, ∀k.

Combining (52) and (53), one deduces that ŵij is the optimal
solution to (49) if βijk = 0, ∀k in (51). This is based on the
argument that any coefficient βijk �= 0 will not change the value
of the LS fit, yet it will certainly increase the penalty term,
leading to a higher overall cost. It can now be concluded that
any optimal solution to (49), regardless of the value of rij ,
admits the following expansion

ŵij =
M∑

m=1

αijmφ(yim ) = Φ�
i αij . (54)

It is also worth noting that (54) holds for any i regardless of
the outer optimization in (46). This concludes the proof of
Proposition 1.

APPENDIX B
ACCELERATED PROXIMAL GRADIENT ALGORITHM

The key to convergence improvement of the proximal gra-
dient algorithm lies in computing uj [k] in (31) using a linear
combination of the two most recent iterates, namely vj [k − 1]
and vj [k − 2]. Adopting this strategy, convergence improve-
ment of Algorithm 2 is effected using the modified iterations
[cf. (31)]

vj [k + 1] = arg min
v j

Q(vj ,uj [k])

= arg min
v j

(Lf /2)
∥∥vj − (ŭj [k]

− (1/Lf )∇f(ŭj [k])
)∥∥2

2 + g(vj ) (55)

where

ŭj [k] := vj [k − 1] +
(
βk−1 − 1

βk

)(
vj [k − 1] − vj [k − 2]

)

(56)

βk =
(

1 +
√

4β2
k−1 + 1

)
/2. (57)

Similar to (34a)–(34c), it turns out that the resulting APG up-
dates can be written as

zj [k] = ζj [k] +
(
βk−1 − 1

βk

)
(ζj [k] − ζj [k − 1]) (58a)

djj [k + 1] = bjj [k]+
(
βk−1 − 1

βk

)
(bjj [k] − bjj [k − 1]) (58b)

z̃j [k] = zj [k] − (1/Lf )∇z̃j f [k] (58c)

ζij [k + 1] = Pλ/Lf
(z̃ij [k]) (58d)

bjj [k + 1] = djj [k] − (1/Lf )∇dj j f [k]. (58e)

Algorithm 4: Kernel-Based APG Inference Algorithm.
input: Y, X, P , λ, τ
initialize: A[0] = 0N×NP , B[0] = 0N×NP

for k = 1, 2, . . . ,K do
for j = 1, · · ·N (in parallel) do

(S1) Intermediate variable updates:
Update zj [k] via (58a)
Update djj [k] via (58b)

(S2) Gradient calculation:
Calculate gradients at z̃j [k] via (59a)
Calculate gradients at djj [k] via (59b)

(S3) Variables updates:
Update z̃j [k + 1] via (58c)
Update ζij [k + 1], ∀ j �= i via (58d)
Update bjj [k + 1] via (58e)
Update ζj [k + 1] via (35)

end for
end for
Edge identification:
Set âij = 1 if ‖ζij [k]‖ ≥ τ , else âij [k] = 0 for all i, j

return Â and B̂ = B[k]

Clearly, ∇f(v) decouples into gradients with respect to ζj and
bii , that is,

∇z̃j f(vj [k]) = K�
s,j (Ks,j z̃j [k] + dii [k]xi − yj ) (59a)

∇di i f(vj [k]) = (Ks,j z̃j [k] + bii [k]xj − yj )
� xj . (59b)

With a similar update for ζj [k] as highlighted in (35), the
developed accelerated variant of the PG solver is summarized
in Algorithm 4.
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