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Dynamic Network Delay Cartography
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Abstract— Path delays in IP networks are important metrics,
required by network operators for assessment, planning, and
fault diagnosis. Monitoring delays of all source-destination pairs
in a large network are, however, challenging and wasteful
of resources. This paper advocates a spatio-temporal Kalman
filtering approach to construct network-wide delay maps using
measurements on only a few paths. The proposed network
cartography framework allows efficient tracking and prediction
of delays by relying on both topological as well as historical
data. Optimal paths for delay measurement are selected in an
online fashion by leveraging the notion of submodularity. The
resulting predictor is optimal in the class of linear predictors,
and outperforms competing alternatives on real-world data sets.

Index Terms— Internet measurements, network kriging, kriged
Kalman filter, delay prediction, submodularity optimization.

I. INTRODUCTION

THE explosive growth in network traffic volumes has
necessitated the development of avant-garde monitoring

tools to endow network operators with a comprehensive view
of the global network behavior. However, acquisition and
processing of network-wide performance metrics for large
networks is no easy task. For instance, monitoring path metrics
such as delays or loss rates is challenging primarily because
the number of paths generally grows as the square of the
number of nodes in the network. Therefore, measuring and
storing the delays of all possible source-destination pairs is
hard in practice even for moderate-size networks.

Focus has thus shifted towards statistical means of predict-
ing network-wide performance metrics using measurements
on only a subset of nodes [1], [2]. A promising approach in
this context has been the application of kriging, a tool for
spatial prediction popular in geostatistics and environmental
sciences [3], [4]. A network kriging approach was developed
in [5], where network-wide path delays were predicted using
measurements on a chosen subset of paths. The class of linear
predictors introduced leverages network topology information
to model the covariance among path delays. This is accom-
plished in [5] by assigning higher correlation between two
paths if they share several links, as in this case, they are
expected to incur similar delay variations.
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The present paper puts forth a dynamic network kriging
approach capable of real-time spatio-temporal delay predic-
tions. Specifically, a kriged Kalman filter (KKF) is employed
to explicitly capture variations due to queuing delays, while
retaining the topology-based kriging predictor. The resulting
dynamic network kriging approach not only yields lower
prediction error, but is also more flexible, allowing delay
measurements to be taken on random subsets of paths. In this
context, the problem of choosing the optimal paths for delay
measurements is also considered. Since the KKF runs in real-
time, the paths are also selected in an online fashion by
minimizing the prediction error per time slot. Interestingly,
the resulting combinatorial optimization problem is shown to
be submodular, and is therefore solved approximately via a
greedy routine. While dynamic Kriging is a well known tool
in Geostatistics, the contribution here is its application in the
networking context, and the development of the relevant online
experiment-design framework.

Recently, a compressive sampling-based approach has also
been reported for predicting network-wide performance met-
rics [6], [7]. For instance, diffusion wavelets were utilized
in [6] to obtain a compressible representation of the delays,
and account for spatial and temporal correlations. Although
this allows for enchanced prediction accuracy over [5], it
requires batch processing of measurements which does not
scale well to large networks for real-time operation. In con-
trast, both the KKF and the greedy path selection algorithms
entail sequential operations, and are therefore significantly
faster.

Imputation of end-to-end delays has also been considered
in the context of Internet geolocation. Treating end-to-end
delays as distances between nodes, all-pair node distances
are estimated using Euclidean embedding [8], or, matrix
factorization [9]. However, these approaches do not exploit
the temporal or topological information, since their focus is
not on monitoring or extrapolation (that is, prediction) of
delays.

The rest of the paper is organized as follows. Sec. II
introduces the model and the problem statement. Sec. III
deals with the KKF approach, while Sec. III-A describes
techniques for estimating the relevant parameters. Finally,
empirical validation of KKF and comparisons with the Kriging
approach of [5] are provided in Sec. V.

Notation. Lower case symbols with indices, such as yp,
represent scalar variables. These variables, when stacked
over their indices are denoted through their bold-faced ver-
sions y. Bold-faced upper case symbols (S) represent matrices.
Regular upper case symbols (S) represent constant scalars,
and typically stand for the cardinality of the set repre-
sented by corresponding calligraphic upper case symbol (S).
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Identity matrix of size P×P is denoted by IP , and its columns
by e1, e2, . . ., eP . Matrix Cy denotes the covariance matrix of
the vector y.

II. MODELING AND PROBLEM STATEMENT

Consider an IP network modeled by a connected digraph
G = (V, E), with V denoting the set of nodes (devices, servers,
or routers), and E , the communication links. The issue is to
monitor path delays on a set of multi-hop paths P that connect
the P := |P | source-destination pairs. Latency measured on
path p ∈ P at time t is denoted by yp(t), and all such network-
wide delays are collected in the vector y(t). At any time t
however, delay can only be measured on a subset of paths
S(t) ⊂ P , which is represented by ys(t). Based on such partial
current and past measurements H(t) := {ys(τ )}tτ=1, the goal is
to predict the remaining path delays ys̄(t) := {yp(t)}p∈P\S(t)
for each t .

The per-path end-to-end delay yp(t) consists of several
independent components corresponding to contributions from
each intermediate link and router. Of these, the queuing delay
χ̊p(t) is the time spent by the packets waiting in the queues
of intermediate buffers, and depends on the traffic volumes
in competing links. Network traffic is not only correlated
spatio-temporally, but also exhibits non-stationarities, in the
form of random fluctuations and bursts [10]. Indeed, it is not
surprising that the statistical properties of queueing delays in
large IP networks are largely unknown. In the interests of
model parsimony and amenability to the tools used later, the
following random-walk model is instead adopted for the latent
vector of queuing delays,

χ̊(t) = χ̊(t − 1)+ η(t) (1)

where η(t) denotes state noise with zero mean, and covari-
ance matrix Cη := E

[
η(t)ηT (t)

]
. Observe that the random-

walk model has very few tuning parameters, compared to
say, a model which includes a non-identity state transition
matrix (i.e., χ̊(t) = Bχ̊(t − 1) + η(t)). Further advantages
of the random-walk model, including those pertaining to the
computational cost, are provided in later sections.

Other components of the path delay, combined in the
nonzero-mean random ν̊p(t), include the propagation, process-
ing, and transmission delays, which are temporally uncor-
related (see [11] for details). This component of delays is
however spatially correlated across paths, and the covariance
matrix of the compacted vector ν̊(t) is given by Cν . Finally,
the measurement of path delays using software tools such as
ping and OWAMP itself introduces errors εp(t), which are
assumed zero mean, uncorrelated over time and across paths,
with covariance σ 2 := E

[
εp(t)εT

p (t)
]
.

The measured delays are expressed as

yp(t) = χ̊p(t)+ ν̊p(t)+ εp(t) p ∈ S(t). (2)

Letting S(t) denote the |S(t)| × P selection matrix with
0-1 entries that contains the p-th row of IP if p ∈ S(t), the
measurement equation can be compactly written as

ys(t) = S(t)χ̊(t)+ ν̊s(t)+ εs(t) (3)

where the vector εs(t) collects the measurement errors on
paths p ∈ S(t), and ν̊s(t) := S(t)ν̊(t).

The next section describes a KKF approach for tracking and
predicting the unknown end-to-end delays ys̄(t), by utilizing
the state-space model described by (1) and (3).

III. DYNAMIC NETWORK KRIGING

The spatio-temporal model in (1)-(3) is widely employed
in geostatistics and environmental science, where χ̊(t) is
generally referred to as trend, and ν̊(t) captures random
fluctuations around χ̊(t); see e.g., [3, Ch. 4], [12], and [13].
Recently, a similar modeling approach was employed by [14]
to describe the dynamics of wireless propagation channels, and
in [15] for spatio-temporal random field estimation. In order
to better relate the proposed model with the existing ones,
the mean of ν̊(t) is incorporated in the trend, and (3) is now
replaced with

ys(t) = S(t)χ(t)+ νs(t)+ εs(t) (4)

where νs(t) := ν̊s(t)−E
[
ν̊s(t)

]
and χ(t) := χ̊(t)+E

[
ν̊(t)

]
,

and likewise for ν(t). Next, given only first- and second-order
moments of η(t), εs(t), and ν(t), this section derives the best
linear predictor for the unavailable path delay vector ys̄(t).

Suppose first that the queuing delay vector χ(t) is known,
and let S̄(t) denote an |S̄(t)| × P matrix containing the p-th
row of IP if p ∈ S̄(t); that is, S̄(t) is a path selection matrix
which returns quantities pertaining to paths in S̄(t). Then,
the linear minimum mean-square error (LMMSE) estimator
(denoted by E

∗ [.]) for ν s̄(t) is given by (see, e.g. [16])

E
∗ [ν s̄(t)|χ (t), ys(t)

] = S̄(t)CνST (t)

×(
S(t)CνST (t)+ σ 2IS

)−1[ys(t)− S(t)χ(t)] (5)

and is commonly referred to as kriging [4]. In practice how-
ever, the trend χ(t) has to be estimated from the data. In the
so-termed universal kriging predictor [3], χ(t) is estimated
using the generalized least-squares (GLS) criterion, where
νs(t) is treated as noise (lumped together with εs(t)). The
prediction for ν s̄(t) is then obtained by replacing χ(t) in (5)
with its estimate. This approach was proposed for network
delay prediction in [5], and was referred to as network kriging.
However, since the trend is estimated independently using
GLS per time slot, its temporal dynamics present in (1) are
not exploited.

From the spatio-temporal model set forth in Sec. II, it is
clear that estimating the trend χ(t) can benefit from processing
both present and past measurements jointly. Towards this
end, the Kalman filtering (KF) machinery offers a viable
option for tracking the evolution of χ(t) from the set of
historical data H(t). At each time t , the KF finds the LMMSE
estimate χ̂(t) := E

∗ [χ(t)|H(t)], and its error covariance
matrix M(t) := E

[
(χ(t)− χ̂(t))(χ (t)− χ̂(t))T

]
using the

following set of recursions (see e.g., [16, Ch. 3])

χ̂(t) = χ̂(t − 1)+K(t)(ys(t)− S(t)χ̂(t − 1)) (6a)

M(t) = (IP −K(t)S(t))(M(t − 1)+ Cη) (6b)
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where the so-termed Kalman gain K(t) is given by

K(t) := (M(t − 1)+ Cη)ST (t)

×[
S(t)(Cν + Cη +M(t − 1))ST (t)+ σ 2IS

]−1
. (7)

Once χ̂(t) has been estimated via KF, ν s̄(t) can be readily
obtained via kriging as in (5), yielding the predictor

ŷs̄(t) = S̄(t)χ̂(t)+ S̄(t)CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1

×[ys(t)− S(t)χ̂(t)]. (8)

The predictor in (8) constitutes what is also referred to as
the kriged Kalman filter [12], [13]. The LMMSE framework
employed here yields the best linear predictor even for non-
Gaussian distributed noise. The prediction error of the KKF
is characterized in the following proposition, whose proof is
provided in Appendix A. A similar result appears in [12], but
for the Gaussian noise case.

Proposition 1. The prediction error covariance matrix at
time t is given by

My
s̄ (t) := E{(ys̄(t)− ŷs̄(t))(ys̄(t)− ŷs̄(t))

T } (9a)

= σ 2IS̄ + S̄(t)
[
(M(t − 1)+ Cν + Cη)

−1

+ 1

σ 2 ST (t)S(t)
]−1

S̄T (t). (9b)

Having a closed-form expression for the prediction error
will come handy for selecting the matrix S(t), as shown later
in Sec. IV.

The KF step also allows τ -step prediction for τ ≥ 1,
which is given by ŷ(t + τ ) = χ̂(t), since the kriging term
is temporally white. In the present context, this can be useful
in preemptive routing and congestion control algorithms, as
well as for extrapolating missing measurements. In the latter
case, the covariance matrix is updated simply as M(t) =
M(t−1)+Cη. Before concluding the description of the KKF,
the following remarks are due.

Remark 1. The random walk model adopted in (1) may
result in an unstable filter. Operationally, if the KKF is
unstable, an incorrect initialization of M(0) or χ(0) may result
in poor prediction performance even as t →∞. This can be
remedied by adopting a damped model χ(t) = bχ(t−1)+η(t)
with b < 1. Here, χ(t) is a zero-mean random process
which does not incorporate the mean of ν̊(t). The mean
delay of all paths should instead be estimated a priori, and
subtracted from the measurements themselves, so that each
component of the path delay in (4) is zero-mean. With this
modification, the results in this paper can be generalized to
the damped case. The random walk model is nevertheless
used here since no instability issues were observed in the two
data sets considered in Sec. V. An alternative formulation,
developed along the lines of [17], can also be used in the
AR(1) case. This technique may however increase the number
of state-space parameters, and considerably complicate the
expressions developed in Sec. IV.

Remark 2. A distributed implementation of the KKF may
be desirable for enhancing the robustness and scalability of
delay monitoring. In large-scale networks, a distributed algo-
rithm also mitigates the message passing overhead required

to collect all measurements at a fusion center. If the model
covariances Cν and Cη are globally known, and the selection
matrix S(t) is constant for all t , a distributed implementation
of (6) can be derived along the lines of [18]. To this end,
notice that substituting (6a) in (8), one can re-write the KKF
predictor as

ŷs̄(t) = S̄(t) [F(t)− F(t)S(t)K(t) +K(t)] ys(t)

+S̄(t) [F(t)S(t)K(t) −K(t)− F(t)] S(t)χ̂ (t − 1)

+S̄(t)χ̂(t − 1) (10)

where F(t) := CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1
. With

χ̂(t − 1) available from the previous iteration, it is clear
from (10) that if d(t) := [F(t)− F(t)S(t)K(t)+K(t)] ys(t)
were available at each node of the network, the KKF predic-
tor (8) could be performed locally at each node. Assume that
measurements are collected at a sub-set of nodes Vs ⊂ V , and
node v ∈ Vs measures delays of the set of paths Sv ⊂ S; that
is, v is the end-node of all the paths in Sv . Then, to compute
d(t) in a distributed manner, consider rewriting it as a sum
of |Vs | terms, each involving only the local measurements
ys,v(t) := [{yp|p ∈ Sv}]T . Next, collect in the P × |Sv |
matrix �v (t), the columns of matrix F(t)−F(t)S(t)K(t)+K(t)
corresponding to the paths in Sv . Then, d(t) can be expressed
as d(t) =∑

v∈Vs
�v (t)ys,v (t), which is equivalent to [19]

{dv (t)}v∈Vs = arg min{dv }
∑

v∈Vs

∥
∥dv − |Vs |�v (t)ys,v (t)

∥
∥2

2 (11a)

s.t. dv = dv ′ , v ′ ∈ V̄s , v ∈ Vs (11b)

where dv (t) represents a local copy of d(t) at node v, and
V̄s ⊂ Vs is the set of nodes communicating with v. Building
on (11), an iterative consensus algorithm whereby each node
v exchanges its local copy dv (t) only with nodes in V̄s , can
be derived by employing the so called alternating direction
method of multipliers as detailed in [18] and [19]. Notice that,
since the model covariances are globally known, recursions (9)
can be performed locally at each node.

A. Estimating Model Parameters

The LMMSE-optimal dynamic kriging framework described
in Sec. III requires knowledge of model covariance matrices
Cν , σ 2IS , and Cη, to operate. Of these, σ 2 depends on the
precision offered by the measurement software, and can be
safely assumed known a priori.

The structure of Cν is motivated by the modeling assump-
tions and utilizes topological information. Intuitively, propaga-
tion, transmission, and processing delays over paths p, q ∈ P
should be highly correlated if these paths share many links.
This relationship can be modeled by utilizing the Gramian
matrix G := RRT , where R is the P × |E | path-link routing
matrix; that is, the (p, l)th element of R is 1 if path p ∈ P
traverses link l ∈ E , and 0 otherwise. Each off-diagonal entry
(p, q) of G represents the number of links common to the
paths p, q ∈ P . On the other hand, the elements on the main
diagonal of G count the number of constituent links per path.
The covariance matrix of ν(t) can therefore be modeled as
Cν = γ G.



RAJAWAT et al.: DYNAMIC NETWORK DELAY CARTOGRAPHY 2913

A similar model for Cν was adopted by [5], where it was
motivated from the property that path delays are sum of link
delays, that is, ν(t) = Rx(t), where vector x(t) collects the
link delays. Under this assumption, it holds that Cν = γ G
if the link delays are uncorrelated across links, and have
covariance matrix γ I|E |. Note that the KKF and path-selection
techniques also work with a generic link-delay covariance
matrix �, i.e., Cν = R�RT . Unfortunately however, in
most IP networks the link delays cannot be directly observed,
which makes estimation of � difficult, if not impossible. For
example, consider a network (1–2–3) where two end terminals
(nodes 1 and 3) are connected via an intermediate router
(node 2). Clearly, the delays incurred by the individual links
(1–2 and 2–3) cannot be discerned from each other, no matter
how accurately the end-to-end delays (between 1 and 3) are
measured. The same reasoning applies to the corresponding
covariance matrices, irrespective of the estimation technique
used.

For the remaining parameters, namely γ and Cη, an empir-
ical approach is described next. It entails a training phase,
and a set of measurements {ys(t)}tL

t=1 collected at time slots
t = 1, . . . , tL . During the KKF operation, tL−1 time slots can
be periodically devoted to updating model covariances, while
predicting the networks-wide delays ys̄(t) for t = 1, . . . , tL .
Let Ĉν(t) := γ̂ (t)G and Ĉη(t) denote the estimates of
Cν and Cη, respectively, at time t . Estimating the covariance
matrix of the state noise is well known to be a challenging
task, primarily because χ(t) and χ(t − 1) are not directly
observable. Furthermore, methods such as those in [20] are not
applicable in the present context, as they require the KF to be
time-invariant and stationary. As shown in [21], a viable means
of estimating Cη from {ys(t)}tL

t=1 relies on approximating the
noise η(t) as q(t) := χ̂(t)−χ̂ (t−1). Then, upon noticing that
the resultant process {q(τ )} is temporally-white, the sample
mean and covariance of q can be obtained as

m̂q(tL) =
∑tL

t=2 q(t)

tL − 1
(12)

Ĉq(tL) =
∑tL

t=2(q(t)− m̂q(t))(q(t)− m̂q(t))T

tL − 2
. (13)

Using (13), and exploiting the equality E{Ĉq} =
(tL − 1)−1 ∑

t (M(t − 1) − M(t)) + Cη, it follows that
an unbiased estimate of Cη can be obtained as

Ĉη(tL) = Ĉq(tL)+ 1
tL−1

∑tL
t=2

(
M(t)−M(t − 1)

)
. (14)

Finally, in order to obtain γ̂ , consider the innovations at
time t as ιp(t) := yp(t) − χ̂p(t − 1), and notice that if
the model covariances are correct, then ιp(t) is temporally
white and zero-mean [20]. Indeed, it is possible to show that
E

[
ιp(t)ιq(t)

] = [
M(t − 1)+ Cη + Cν

]
pq+σ 2 for any p, q ∈

S(t) [21]. Further, let Tpq := {t|1 ≤ t ≤ tL , p, q ∈ S(t)}
be the set of time slots for which paths p and q are both
measured. Then, the sample covariance between ιp(t) and
ιq(t) is given by Ĉpq := |Tpq |−1 ∑

t∈Tpq
ιp(t)ιq(t) for all pairs

p, q ∈ P . Given M(t − 1) and σ 2, this observation yields the

following estimate

[
Ĉν(t)

]
pq=

∑
t∈Tpq

ιp(t)ιq(t)−σ 2−[M(t − 1)+Ĉη(t)]pq

|Tpq | .

(15)

Indeed, entries of Ĉν(t) can be updated recursively using
Ĉν(t−1) in (15). At each time, only a few entries are updated,
depending on which paths are observed (cf. S(t)).

Finally, γ̂ (t) can be obtained by fitting Ĉν(t) to γ G in the
least-squares sense, which yields

γ̂ (tL) =
∑

p,q∈P [G]pq[Ĉν(tL)]pq

‖G‖2F
. (16)

As further justification for the random-walk model, it is
remarked that a model of the form χ(t) = Bχ(t − 1)+ η(t)
requires learning the entries of B. Since the state vector is
not directly observed, estimation of B is usually significantly
more difficult [16], [22], [23]. Such a model would also need
a longer training phase, and may exhibit poor generalization
performance if the amount of training data is limited [24].
This problem also arises when trying to use the model
Cν = R�RT , where additionally, � is not uniquely identi-
fiable, as explained earlier. Finally, it is remarked that if the
delays exhibit frequent abrupt changes, it is quite possible
that the random walk model is too simple to capture their
dynamics. The performance will then be dominated by the
data (namely, the innovations) rather than the queuing delay
model, and the KKF will be unable to properly capture the
temporal correlation present in the delays.

IV. ONLINE EXPERIMENTAL DESIGN

This section considers the problem of optimally choosing
the set of paths S(t) (equivalently, the matrix S(t)) so as
to minimize the prediction error. To begin with, a simple
case is considered where the set S(t) is allowed to contain
any S paths. Operational requirements may however impose
further constraints on S(t), and these are discussed later.

The prediction error can be characterized by using a scalar
function of My

s̄ (t); see e.g., [25]. To this end, the so called
D-optimal design is considered, where the goal is to minimize
the function f (S(t)) := log det(My

s̄ (t)). The paths selected
at time t are therefore given by the solution of the following
optimization problem

S∗(t) = arg min
S∈P

f (S) (17)

s. t. |S| = S. (18)

Clearly, tackling (17) incurs combinatorial complexity and is
challenging to solve exactly, even for moderate-size networks.
Indeed, (17) is an example of the so called subset selection
problem, which is NP-complete in general; see e.g., [26] and
references therein.

Interestingly, it is possible to solve (17) approximately by
utilizing the notion of submodularity. Consider a function
g(S), which takes as input sets S ⊂ P . Given a set A ∈ P
and an element p ∈ P \A, the increment function is defined as
δ

g
A(p) := g(A∪{p})−g(A). Function g(·) is submodular if its
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increments are monotonically decreasing, meaning δ
g
A(p) ≥

δ
g
B(p) for all A ⊂ B ∈ P . Likewise, g(·) is supermodular

if δ
g
A(p) ≤ δ

g
B(p) for all A ⊂ B ∈ P . In the present case, the

following proposition holds.
Proposition 2. The function f (S) is monotonic and super-

modular in S.
The proof of Proposition 2 is provided in Appendix B, and

relies on related results from [25].
An important implication of Proposition 2 is that a

greedy forward selection algorithm can be developed to solve
(17) approximately [27]. Upon defining the shifted function
h(S) := f (S)− log det(M(t − 1)+Cη+Cν +σ 2IP ), a result
from [27] ensures that the solution of the greedy algorithm
Sg(t) satisfies the inequality

h(Sg(t)) ≤
(

1− 1

e

)
h(S∗(t)). (19)

While performance of the greedy algorithm is usually much
better in practice, this bound ensures that it does not break
down for pathological inputs.

The greedy algorithm involves repeatedly performing the
updates S ← S ∪ arg minp /∈S δ

f
S (p) until |S| = S. This is

useful in the present case, since the increments can be eval-
uated efficiently using determinant update rules. Specifically,
the updates are given by

δ
f
∅ (p) = − log

(
1+ [

M(t − 1)+ Cη + Cν

]
p,p

)

∀p ∈ P (20a)

δ
f
S (p)

= − log

(
1+

[(
(M(t − 1)+ Cη + Cν)

−1 + ST S
)−1

]

p,p

)

∀p ∈ P \ S. (20b)

Further, each iteration requires a rank-one update to the matrix
inverse in (20b), which can also be performed efficiently. The
full greedy approach is summarized in Algorithm 1, where
� := (M(t − 1) + Cη + Cν)/σ

2. Algorithm 1 involves only
basic operations, and it is easy to verify that its worst case
complexity is O(PS3). Further, the final value of the matrix V
evaluated in the last iteration (Algorithm 1, line 11) is exactly
the inverse term required for evaluating the Kalman gain in (7).
In fact, the operational complexity can be further reduced
using lazy updates [28]. Finally, it is worth mentioning that the
low-complexity of Algorithm 1 is also a result of the random-
walk model used here. In particular, the state space model
χ(t) = Bχ(t − 1) + η(t) would result in significantly more
complicated expressions.

Next, consider a more practical scenario, where the software
installed at each end-node can measure delays on all paths
originating at that node. At any time t however, delays are
measured from only N end-nodes. Let Ve denote the set of all
end-nodes, and Pv , the set of paths which have the node v ∈ Ve

as their origin (likewise, PN :=
⋃

v∈N Pv for N ⊂ Ve).
For any subset N (and its complement N̄ := V \N ), define
the selection matrix N (N̄) consisting of canonical vectors eT

p
as rows, for all p ∈ PN (p ∈ PN̄ ). Defining the cost function
fn(N ) := f (PN ), the online optimal design problem for this

Algorithm 1 Greedy Algorithm for Solving (17)

1: function GREEDY(�, S)
2: s ← arg max

1≤p≤P
[�]p,p

3: V := [
1/

([�]s,s + 1
)]

4: S ← {s}
5: for k = 2 : S do
6: wp ← �S,p for all p ∈ P \ S //wp

has entries [�]s,p for all s ∈ S
7: s ← arg max

p /∈S
[�]p,p − wT

p Vwp

8: S ← S ∪ {s}
9: d ← [�]s,s − wT

s Vws + 1
10: u←−Vws

11: V←
[

V+ uuT /d u/d
uT /d 1/d

]

12: return S

scenario is expressed as

N ∗(t) = arg min
N⊂Ve

fn(N ) (21a)

s. t. |N | = N. (21b)

It follows from the properties of submodular functions that
the cost function fn(N ) is also monotonic and supermodular
in N . In particular, observe that the increments δn

N (v) =
fn(N ∪ {v}) − fn(N ) = f (PN ∪ Pv ) − f (PN ) for v /∈ N
satisfy the non-increasing property, i.e., δn

A(v) ≤ δn
B(v) for

all A ⊂ B ⊂ Ve and v /∈ B. A greedy algorithm similar
to Algorithm 1 can therefore be developed to obtain an
approximate solution with the same (1− 1/e) guarantee as in
(19). Complexity of the greedy algorithm in this case would
be however higher, since evaluating δN (v) now requires rank-
|Pv | updates in the determinant and inverses. Nevertheless,
the algorithm would still be efficient as long as |Pv | � P
for all v ∈ Ve. In the special case when delay measurements
are performed by only one node per time slot (N = 1), the
solution of (21a) is simply given by

N ∗(t) = arg min
v∈Ve

log det
(
I|Pv | +

[
M(t − 1)+ Cη + Cν

]
vv

)

(22)

where
[
M(t − 1)+ Cη + Cν

]
vv

is the |Pv | × |Pv | submatrix
containing the rows and columns of M(t − 1) + Cη + Cν

corresponding to the paths in Pv .
In some networks, it may be relatively straightforward to

install delay measurement software on every end-node, while
allowing each end-node to measure delay on only one path
per time slot. This amounts to replacing the budget-constraint
(18) in (17) with

|S ∩ Pv | = 1 ∀ v ∈ Ve. (23)

Interestingly, constraints of this form can also be handled
using the greedy approach by simply imposing (23) while
searching for the best increment at every iteration. Specifically,
the search space of path p [cf. Algorithm 1, line 7] now
becomes p ∈ P \ PN , where N = {v : S ∩ Pv �= ∅}.
More general constraints of the form |S ∩ Pv | ≤ Sv can
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similarly be incorporated. Constraints of this form are referred
to as partition matroid constraints, under which the greedy
algorithm provides an approximation ratio of 1/2 [29].

V. EMPIRICAL VALIDATION

Performance of the proposed network-wide latency predic-
tion schemes is validated using two different datasets, which
include delays measured on:

(a) Internet2 backbone network,1 a lightly loaded network
that exhibits low delay variability; and,

(b) New Zealand Active Measurement Project (NZ-AMP),2

a network deployed across several universities and ISPs
in New Zealand, characterized by comparatively higher
variability in delays.

The delays in the Internet2 are measured using one-way
ping (OWAMP), while those in NZ-AMP are measured using
ping. Using the aforementioned datasets, the performance of
KKF is also compared against that of competing alternatives
in [5] and [6]. It is remarked that for the sake of comparison
and generality of conclusions, dependence on factors such
as probe-sizes, header fields, network policies, and traceroute
errors are ignored. Also omitted are the physical constraints
that might limit the delays from taking arbitrary values on
the real line. Indeed, none of the three algorithms prevent
the delay predictions from taking values that are either too
large or too small. In practice however, these predicted delays
should be clipped to a reasonable interval, e.g., negative delay
predictions should be read as zeros.

Before proceeding, a brief description of the nonlinear
estimation technique in [6] is provided. The approach hinges
on a sparse representation of the network-wide delays, and
employs �1-norm minimization to recover the sparse basis
coefficient vector. Specifically, the path delays adhere to the
postulated linear model y(t) = Hβ(t), where ‖β(t)‖0 � P ,
and the matrix H ∈ R

P×P is constructed using diffusion
wavelets [30]. The diffusion matrix used for computing the
wavelet basis is obtained by applying Sinkhorn balancing [31]
to the matrix W ∈ R

P×P , whose (p, q)-th element is defined
as

[W]p,q = [G]pq

[G]pp + [G]qq − [G]pq
(24)

where G is the Gramian defined in Sec. III-A. The overall
algorithm amounts to solving the following minimization
problem

β̂
′
(t) = arg min

β ′
‖β ′‖1 (25a)

s. t. ys(t) = S(t)HLβ ′ (25b)

where L is a diagonal matrix whose (n, n)-th entry is given
by [L]n,n = 2k , with k ∈ N denoting the scale corresponding
to the diffusion wavelet coefficient βn [6]. Subsequently, ys̄(t)
is predicted as ŷs̄(t) = S̄(t)HLβ̂

′
(t).

Under the premise that delays change slowly with time,
the described algorithm can be used to estimate ys̄(t) over

1[Online] http://www.internet2.edu/network
2[Online] http://erg.cs.waikato.ac.nz/amp

Fig. 1. Internet2 IP backbone network.

a sequence of τ > 1 contiguous time-steps jointly. In this
case, problem (25) is solved by replacing ys(t) with ȳs(t) :=
[yT

s (t−τ+1), yT
s (t−τ+2), . . . , yT

s (t)]T , and by computing the
Pτ × Pτ diffusion wavelet matrix based on W and temporal
correlations as shown in [6]. Although this is a viable way to
capture temporal correlations of delays, observe that it requires
solving �1-norm minimization problems with Pτ variables
every τ time slots. This increase in complexity prohibits the
use of a large value of τ , and the simulations here only report
performance with τ = 5. It is also worth mentioning that such
a batch solution also does not compare favorably to a real-time
implementation, such as that provided by the KKF where delay
predictions become available every time new measurements
arrive.

A. Internet2 Delay Data

The One Way Active Measurement Project (OWAMP) col-
lects one way delays on the Internet2 backbone network.3 The
network has 9 end-nodes and 26 directional links as depicted
in Fig. 1. Delays are measured on the 72 paths among the
end-nodes every minute. The data {y(t)} is collected over
tP = 4500 minutes (about three days) in July 2011.

The model KKF covariances Cν and Cη are estimated using
data from the initial 1,000 time slots. In this phase, 50 paths
are randomly selected per time slot. The KKF is initialized by
setting γ = 1, Cη = Cν , and run for 500 time slots. Next,
γ̂ (t) and Ĉη(t) are updated in an online fashion, as outlined
in Sec. III-A. The final values are obtained at the conclusion
of the training phase at t = 1, 000.

Pictorially, the performance of different algorithms can be
assessed through delay maps shown in 2. Such maps can
succinctly represent the network health, and are especially
useful for networks which otherwise have low delay vari-
ability, such as the Internet2. The map in Fig. 2(a) corre-
sponds to the true delays, wheres maps (b), (c), and (d)
depict the predicted values obtained from the network krig-
ing, wavelet-based approach, and KKF respectively. Predic-
tions are performed using measurements over an interval of

3[Online] http://ndb1.net.internet2.edu/cgi-bin/owamp.
cgi
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Fig. 2. True and predicted delay map for 62 paths in the Internet2 network
over in interval of 100 minutes. (a) True map. (b) Kriging. (c) Wavelets.
(d) KKF.

100 minutes on 10 random paths (same paths are used through-
out the considered interval), and the delays are predicted on
the remaining 62 paths are reported. In these maps, paths are
arranged in increasing order according to the true delay at
time t = 1. It can be seen that the map produced by the

Fig. 3. NMSPE as a function of S, Internet2 network with random path
selection.

kriging and compressive sensing approaches are very different
from the true map. In contrast, the map obtained when using
the KKF is close to the true map. In particular, observe that
the delays of several paths change slightly around t = 80 in
Fig. 2(a). However, of the three maps, this change is only
discernible in the KKF map in 2(d). The delay predictions
provided by the KKF are thus sufficiently accurate for human
inspection at control centers, even when monitoring a few
paths.

It should be remarked that the maps in Fig. 2 are
only for demonstration purposes, and not much can be
inferred about the relative performance of different algorithms
from these depictions alone. For a more detailed analysis
of the different delay prediction approaches, consider the
normalized mean-square prediction error (NMSPE), defined
as

NMSPE := 1

(tP − tL)(P − S)

tP∑

t=tL+1

∥
∥ŷs̄(t)− ys̄(t)

∥
∥2

2 . (26)

The prediction performance of the three algorithms is
first assessed by using delay measurements on randomly
selected paths for each t . The (same) randomly selected
paths are used for all three approaches. Fig. 3 depicts the
NMSPE as a function of S, the number of paths on which
delays are measured. Clearly, the KKF markedly outper-
forms the other two approaches across the entire range
of S. As expected [6], the compressive sampling-based
approach provides a more accurate prediction than network
kriging.

Next, the performance of the three algorithms is analyzed
for the case when paths for delay measurement are selected
optimally. For the network kriging and the wavelet-based
approaches, the optimal paths are obtained according to the
selection procedures provided in [5] and [6], respectively.
As pointed out in [6], performance of the wavelet-based
approach can be improved by capitalizing on temporal corre-
lations. This is done by solving (25) using measurements from
τ = 5 consecutive time slots in a batch form. The temporal
correlation is set to 0.5 and the optimal paths are obtained
again using the selection strategy outlined in [6]. For the
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Fig. 4. NMSPE as a function of S, Internet2 network with optimal path
selection.

Fig. 5. NMSPE as a function of S, NZ-AMP network with random path
selection.

Fig. 6. NMSPE as a function of S, NZ-AMP network with optimal path
selection.

KKF, optimal paths are selected in an online fashion using
Algorithm 1. Again, a significantly more accurate prediction
of the path delays for the entire range of S is obtained via the
KKF.

Fig. 7. Scatter plot for the NZ-AMP network, S = 30 with optimal path
selection. (a) Kriging. (b) Wavelets. (c) KKF.

B. NZ-AMP Delay Data

The KKF algorithm is tested here using delay data from
NZ-AMP. The project continuously runs ICMP and scamper
to determine the topology and delays between a set of nodes
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in New Zealand. The data collected for this paper consist of
end-to-end delays measured every ten minutes over the month
of August 2011. The network has a total of 186 paths, whose
delays range from almost constant to highly variable, at times
reaching up to 250ms.

In Fig. 5, the NMSPE as a function of S is reported, for the
case where paths that are to be measured are chosen randomly.
Again, same paths are used for the three considered schemes.
The KKF provides a markedly lower prediction error also for
the NZ-AMP delay data. On the other hand, Fig. 6 shows the
NMSPE on optimally selected paths for all three schemes. The
KKF performs relatively better than the competing schemes
for this data set as well. Observe though that the actual
values of the NMSPE incurred for this dataset is at least an
order of magnitude higher than those in the Internet2 dataset.
Indeed, given the high variability in the data, it is possible
to improve upon the prediction accuracy of KKF by training
it better. This is showcased by the considerably lower pre-
diction error curve for training interval tL = 2,000 shown in
Fig. 6.

While the NMSPE is useful for characterizing the average
performance, network operators are also interested in the
prediction accuracy over the entire range of delay values.
Towards this end, Fig. 7 shows the scatter plots of ŷs̄(t) versus
ys̄(t) for all t and S = 30 optimally selected paths. The points
cluster around the 45-degree line ŷs̄(t) = ys̄(t), and the thinner
the “cloud” of points is, the more accurate the estimates are.
Indeed, it can be seen that the points generated from the
KKF estimates are crammed in a very close area around the
45-degree line, and accurate estimates are produced for

the entire range of experienced delays. Furthermore, the scatter
plots corroborate the unbiasedness of the KKF predictor.

VI. CONCLUSION

The present paper develops a spatio-temporal prediction
approach to track and predict network-wide path delays using
measurements on only a few paths. The proposed algorithm
adapts a kriged Kalman filter that exploits both topological
as well as historical data. The framework also allows for the
use of submodular optimization in the selection of optimal
delay measurement locations. The problem of path selection
is formulated for different types of constraints on the set
of selected paths, and solved in an online fashion to near-
optimality. The resulting predictor is validated on two datasets
with different delay profiles, and is shown to substantially
outperform competing alternatives.

APPENDIX A

ERROR COVARIANCE MATRIX

Towards deriving an expression for My
s̄ (t), observe that

the prediction error can be written as shown in (27a). The
expressions in (27b) and (27c) follow from (6a), that allows
the term χ(t)− χ̂(t) to be written as

χ(t)− χ̂(t) = χ(t)− χ̂(t − 1)

−K(t)
[
S(t)(χ(t)+ ν(t))+ εs(t)− S(t)χ̂(t − 1)

]

= χ(t)− χ̂(t − 1)+K(t)S(t)(χ(t)− χ̂(t − 1)+ ν(t))

+K(t)εs(t)

= (IP −K(t)S(t))χ̃(t)−K(t)S(t)ν(t)−K(t)εs(t) (28)

ys̄(t)− ŷs̄(t) = S̄(t)χ(t)+ S̄(t)ν(t)+ ε s̄(t)− S̄(t)χ̂(t)− S̄(t)CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1 [
ys(t)− S(t)χ̂(t)

]

= S̄(t)(χ(t)− χ̂(t)+ ν(t))+ ε s̄(t)−S̄(t)CνST (t)
(
S(t)CνST (t)+σ 2IS

)−1

× [
S(t)(χ(t)− χ̂(t)+ ν(t))+ εs(t)

]
(27a)

= S̄(t)(IP −K(t)S(t))(χ̃(t)+ ν(t))− S̄(t)K(t)εs(t)+ ε s̄(t)− S̄(t)CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1

×
[
S(t)(IP −K(t)S(t))(χ̃(t)+ ν(t))− S(t)K(t)εs(t)+ εs(t)

]
(27b)

= S̄(t)(IP −K(t)S(t))(χ̃(t)+ ν(t))− S̄(t)CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1S(t)(IP −K(t)S(t))(χ̃(t)+ ν(t))

−S̄(t)K(t)εs(t)− S̄(t)CνST (t)
(
S(t)CνST (t)+ σ 2IS

)−1

×(IS − S(t)K(t))εs(t)+ ε s̄(t) (27c)

Q(t) = (M(t − 1)+ Cη)ST (t)
[
S(t)(M(t − 1)+ Cη + Cν)ST (t)+ σ 2IS

]−1 + CνST (t)(S(t)CνST (t)+ σ 2IS)−1

−CνST (t)(S(t)CνST (t)+ σ 2IS)−1S(t)(M(t − 1)+ Cη)ST (t)
[
S(t)(M(t − 1)+ Cη + Cν)ST (t)+ σ 2IS

]−1 (31a)

= (M(t − 1)+ Cη + Cν)ST (t)
[
S(t)(M(t − 1)+ Cη + Cν)ST (t)+ σ 2IS

]−1
. (31b)

My
s̄ (t) = E

[
(ys̄(t)− ŷs̄(t))(ys̄(t)− ŷs̄(t))

T ]
(32a)

= S̄(t)(IP −Q(t)S(t))(M(t − 1)+ Cν + Cη)(IP − ST (t)QT (t))S̄T (t)+ σ 2S̄(t)Q(t)QT (t)S̄T (t)+ σ 2IP−S (32b)

= S̄(t)(M(t − 1)+ Cν + Cη)S̄T (t)− 2S̄(t)Q(t)S(t)(M(t − 1)+ Cν + Cη)S̄T (t)

+ S̄(t)Q(t)S(t)(M(t − 1)+ Cη + Cν)ST (t)QT (t)S̄T (t)+ σ 2S̄(t)Q(t)QT (t)S̄T (t)+ σ 2IP−S (32c)

= S̄(t)(M(t − 1)+ Cν + Cη)S̄T (t)− S̄(t)Q(t)S(t)(M(t − 1)+ Cν + Cη)S̄T (t)+ σ 2IP−S . (32d)
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where χ̃(t) := χ(t) − χ̂(t − 1). After some manipulations,
(27c) can be expressed as

ys̄(t)− ŷs̄(t) = S̄(t)(IP −Q(t)S(t))(χ̃(t)+ ν(t))

+Q(t)εs(t)+ ε s̄(t) (29)

where

Q(t) := K(t)+ CνS(t)(S(t)CνST (t)+ σ 2IS)−1

−CνS(t)(S(t)CνST (t)+ σ 2IS)−1S(t)K(t). (30)

Next, substituting for K(t) from (7), the expression for
Q(t) simplifies to that shown in (31). Utilizing the fact
that χ̃(t), ν(t), εs(t), and ε s̄(t) are mutually uncorrelated,
with E

[
χ̃(t)χ̃T (t)

] := M(t − 1) + Cη, the error covariance
matrix My

s̄ (t) becomes as shown in (32).
Finally, substituting for Q(t) [cf. (31b)] in (32d), and using

the Woodbury matrix identity [32], the expression for My
s̄ (t)

becomes as shown in (9).

APPENDIX B

PROOF OF MONOTONICITY AND SUPERMODULARITY OF f

Let � := 1
σ 2 (M(t − 1)+Cη +Cν), and observe that f can

be written as

f (S) = log(σ 2)+ log det
[
IP−S + S̄(�−1 + ST S)−1S̄T ]

= log(σ 2)+ log det
[
IP+S̄T S̄(�−1+ST S)−1] (33a)

= log(σ 2)+ log det
[
�−1 + ST S+ S̄T S̄

]

+ log det
[
(�−1 + ST S)−1] (33b)

where (33a) follows from Sylvester’s theorem for determi-
nants [32]. Next, observing that S̄T S̄+ST S = IP , it is possible
to write f (S) as

f (S) = log(σ 2)+ log det(�−1 + IP )

− log det
(
�−1 + ST S

)
. (34)

Next, consider the decomposition � = UUT , and define the
shifted function

h(S) := f (S)− log(σ 2)− log det (�+ IP ) (35a)

= − log det(IP + ST S�) (35b)

= − log det
[
IS + (SU)(SU)T ]

(35c)

where Sylvester’s theorem has again been used in (35c).
Finally, it is well known that a function of the form
log det(IP + (SU)T (SU)) is non-decreasing and submodu-
lar (see e.g., [25]), which allows one to deduce that f (S)
is non-increasing and supermodular. Note further that the
greedy approach from [27] can be used on h(S) by defining
h(∅) = 0.
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