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Abstract—The adoption of orthogonal frequency-division mul-
tiplexing by wireless local area networks and audio/video broad-
casting standards testifies to the importance of recovering block
precoded transmissions propagating through frequency-selective
finite-impulse response (FIR) channels. Existing block transmis-
sion standards invoke bandwidth-consuming error control codes
to mitigate channel fades, and training sequences to identify the
FIR channels. To enable block-by-block receiver processing, we
design redundant precoders with cyclic prefix and superimposed
training sequences for optimal channel estimation and guaranteed
symbol detectability, regardless of the underlying frequency-selec-
tive FIR channels. Numerical results are presented to access the
performance of the designed training and precoding schemes.

Index Terms—Block transmissions, channel estimation, multi-
path, orthogonal frequency-division multiplexing (OFDM), pilot
tones.

I. INTRODUCTION

B LOCK transmissions relying on linear redundant filter-
bank precoding with cyclic prefixed (CP) or zero-padded

(ZP) blocks have gained increasing interest recently for mit-
igating frequency-selective multipath effects (see, e.g., [2],
[11], [17], [19] and references therein). Redundancy removes
interblock interference (IBI), and facilitates (even blind)
acquisition of channel state information (CSI) at the receiver.
It also leads to data efficient, low-complexity linear equalizers
[zero-forcing (ZF) or minimum mean-squared error (MMSE)]
with guaranteed symbol detectability regardless of the zero
locations of the underlying finite-impulse response (FIR)
channel [17].

When CSI is available at the transmitter (e.g., through a
feedback channel), optimal precoders and decoders become
available under various criteria [16], [17]. However, rapid
variations of the wireless channel render CSI feedback to
the transmitter outdated, and motivatechannel-independent
precoders. On the other hand, because CSI is indispensable at
the receiver, training sequences are needed to acquire it. Blind
schemes offer bandwidth-efficient alternatives, when frequent
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retraining is required, but they are often more complex and
require longer data records than training-based approaches.

Instead of long training sequences at the beginning of the
transmitted record, inserting training symbols during the trans-
mission is known as pilot symbol-aided modulation (PSAM),
and was originally developed for time-selective channel estima-
tion [3], [7] and synchronization [11], [15]. The inserted pilot
symbols in PSAM are separated from the information symbols
in the time domain [3], while the so-termed pilot tones (com-
plex exponentials in time) are separated from the information
symbols in the frequency domain [13], [14]. In the superim-
posed (or spread-spectrum) pilot schemes of [7], [8], and [18],
a pseudonoise sequence is added to the information sequence.
PSAM is also useful for decision-feedback (DF) equalization of
block transmissions [10] (see also [1], where optimum alloca-
tion of pilot symbols is pursued for DF equalization). However,
jointly optimal design of pilot tones and precoders for mitigation
of frequency-selective channels with block-by-block processing
has not been addressed.

This paper deals with linearly precoded symbol blocks with
superimposed training blocks that can be jointly modeled as an
affine precoder. Affine precoding was also discussed in [12],
but the type of affine precoders suitable for optimal channel
estimation and guaranteed symbol detection was not specified.
After developing our unifying block-modeling framework
(Section II), we specify the design constraints for IBI can-
cellation, and block-by-block reception which enables linear
channel estimation that is decoupled from symbol detection
(Section III). Affine precoders are then designed to decouple
channel estimation from symbol detection and optimize the
least-squares (LS) channel estimator. Decoupling channel
estimation from symbol detection naturally leads to linearly
precoded (LP) orthogonal frequency-division multiplexing
(OFDM) systems with pilot tones. Subsequently, we design
pilot tones for optimal LS channel estimation in the presence of
white or colored noise (Section IV). We also investigate optimal
power loading on information bearing and pilot symbols, and
design LP-OFDM systems that ensure symbol detectability
regardless of channel nulls (Section V). LP-OFDM is found
to exhibit enhanced frequency diversity in mitigating channel
and noise color effectsdeterministically. Simulations are
presented to corroborate LP-OFDM’s improved performance
over conventional OFDM, and compare LP-OFDM against
coded OFDM.

II. BLOCK MODELING AND PRELIMINARIES

We consider the block transmission model depicted in Fig. 1.
The information-bearing sequence is parsed into blocks
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Fig. 1. Schematic diagram for block transmissions.

of size . Each block is precoded by a tall
precoding matrix with generally complex-valued entries.

Selecting introduces redundancy, which will turn out
to be beneficial in mitigating the effects of frequency-selective
propagation. An block of training symbols, which are
also known to the receiver, is added to the precoded information
block to obtain

(1)

which is parallel-to-serial (P/S) to , digital-to-analog
(D/A) converted, and pulse shaped to yield the continuous-time
signal , where denotes
the transmit filter, and stands for the symbol duration.

The transformation in (1) with models linearly pre-
coded block transmissions such as those considered in [2], [10],
[16], and [17]. On the other hand, with precoder , (1)
describes a block transmission with superimposed training (or
pilot) symbols that in serial (nonredundant) form has been used
by [3], [7]. Note that can describe both superimposed as well
as inserted training symbols (the latter is implemented when

has nonzero entries, where has zero entries). To cap-
ture the generality of the redundant precoding in (1), we will,
henceforth, borrow the terminology of [12] and call itaffinepre-
coding. For the mapping in (1) to be invertible, we will choose
the redundant precoder so that:

C1. The precoding matrix is tall, and has full
column rank .

At the receiver, we assume perfect timing and carrier syn-
chronization, and sample the output of the front-end filter
(that is matched to the transmit pulse) at the symbol rate.
As detailed in [11] and [15], preamble-based training can be
used for acquisition of timing and carrier frequency offsets at
the beginning of each transmission burst, e.g., by setting the in-
formation-bearing symbols to zero in (1). During the transmis-
sion, these offsets can be tracked using existing synchronization
schemes (see [11], [15], and references therein).

Let denote the overall impulse response of the transmit
filter, the continuous-time channel, and the receive filter. With

denoting the maximum delay spread of , our dis-
crete-time baseband equivalent FIR channel, ,
has order , where stands for integer ceiling.
The channel is considered linear time invariant over one
received block, but is allowed to vary from block to block. Be-
cause we will only consider block-by-block receiver processing,
we will omit time dependence and express the impulse response
of the discrete-time baseband equivalent channel as {}.

Fig. 2. Discrete-time baseband equivalent block model.

The information block size is chosen to satisfy .
We collect noisy samples in an received vector
that can be expressed as (see, e.g., [19])

(2)

where and are square Toeplitz channel convolution ma-
trices with first column , and
first row , respectively; and

is a zero-mean additive noise. Presence of two succes-
sive transmitted blocks in each received block arises due to the
channel of length ; the second term in (2) captures
the IBI.

To enable low-complexity block-by-block processing at the
receiver, we first eliminate IBI by utilizing the so-called CP,
which is also employed by OFDM, the basic multicarrier mod-
ulation that has been adopted by many standards [4], [9].

Fig. 2 shows our discrete-time baseband equivalent model.
Discarding the CP at the receiver removes the IBI, provided that
the following design condition holds at the transmitter.

A1. The length of the redundant transmitted block is
chosen to satisfy .

Let be defined as . To describe the CP insertion
in matrix form, consider placing a cyclic replica of the last
entries of an vector at its top to create an vector .
This augmentation can be represented by an CP-inducing
matrix as with , where

; denotes the identity matrix of size; and
stands for the zero matrix. To enable

insertion and removal of the CP, and thus, cancellation of IBI,
we select our general design in (1) such that:

A2. Matrix and vector incorporate the CP; i.e.,
, , where is an matrix and

is an vector.
IBI can be removed also by ZP [19], but in order to adhere

to existing OFDM standards, this paper focuses on block trans-
missions with CP.

TakingA2 into account, we can rewrite the transmitted block
in (1) as , where

(3)

Discarding the CP from can be described by the matrix
, whose leading zeros cancel the

nonzero entries of , and remove the IBI since
[cf. (2)]. Specifically, we form , and use (2) to
arrive at

(4)
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where ; ; is an
circulant matrix with first column ; is

an column-wise circulant matrix with first column
; and in deriving (4), we used the commutativity of circular

convolution to obtain .
The model (4) can be viewed as avirtual two-user model,

where one user transmits , and the other one through
equivalent channels and , respectively. They interfere
with each other and, thus, it is desirable to decouple them, which
in our single-user model amounts to separating channel estima-
tion from symbol detection. Two questions arise at this point.
What are the classes of precoders that decouple channel from
symbol estimation? And what are their degrees of freedom and
bandwidth characteristics? We address these questions in the
next section, where we design affine precoders () that en-
able such a separation using only linear operationsregardless
of the underlying FIR channel .

III. D ECOUPLINGSYMBOL FROM CHANNEL ESTIMATION

Estimating and recovering from in (4) is a non-
linear detection-estimation problem, and its optimal (e.g., in the
maximum-likelihood (ML) sense) solution is often computa-
tionally prohibitive, and sometimes even impossible. As a coun-
terexample, consider , a channel with impulse response
having sample mean equal to zero ( ), and a block

with all entries equal to one. Since , symbol
detection is impossible. We will see that judicious design of
can not only prevent this case, but also convert the nonlinear
problem to two low-complexity (albeit suboptimum) linear es-
timation problems.

With reference to (4), let us suppose temporarily that
acts as noise in the linear model

. To be able to estimate from using linear LS, we
should select our training vectorsuch that:

C2.The tall training circulant matrix has full
column rank .

We wish to characterize the class of pilots satisfyingC2.
Let us first recall that circulant matrices (like ) can be
diagonalized by the fast Fourier transform (FFT) matrix
and its inverse (IFFT), with the diagonal entries being the
frequency-response values of evaluated at the FFT grid
[6, p. 202]. Specifically, let be the FFT ma-
trix with ( )th entry , where

. Let be the transform of defined
as , and a diagonal matrix defined
as . Since is a tall
(column-wise) circulant matrix, its FFT-based diagonalization
yields

(5)

where is a submatrix of , corresponding to the first
columns of , and denotes conjugated transposition. Equa-
tion (5) links the time-domain pilot matrix with its frequency-
domain counterpart .

Suppose has nonzero entries, and denotes
the corresponding submatrix of with all nonzero

diagonal entries. Since is full rank, we have from (5) that
, where is

the matrix formed by the rows of corre-
sponding to the nonzero entries of . Sylvester’s inequality
now implies that

, or equivalently, that
. To specify and interpret the , consider

, and define the frequency-domain training block
as . The
following can be verified readily.

Lemma 1: The -point FFT vector of the training block
has nonzero values if and only if the training-based
matrix satisfies the design conditionC2.

When is selected so that satisfiesC2, the LS channel
estimator is given by [cf. (4)]

(6)

where is the (minimum norm) pseudo-
inverse of . Equation (6) contains a symbol-dependent noise
term which must be eliminated for the LS channel estimation
error to be minimized. Eliminating this term amounts to de-
signing the affine precoder ( ), or equivalently, ( ), such
that:

C3. Matrix for any FIR channel of order .
Interestingly, if one is able to design a class of affine pre-

coders satisfyingC3 for all FIR channels up to a given order,
then LS-optimal channel estimation becomes possible; and
more important, channel estimation is no longer coupled to
symbol detection.

To design affine precoders possessing the decoupling prop-
erty C3 while also satisfyingC1 and C2, we will start with
a characterization of the class using properties of circulant
matrices. Let be a column-wise circulant matrix with first
column the th column of , which we denote as . Then, we
can write ; and since is
circulant, it follows from the commutativity of circular convolu-
tion that ; hence, .
Based on this, we have that if and only if

, . Because the latter is to hold true
for any , we arrive at the following lemma.

Lemma 2: If matrix satisfiesC2, then it also satisfiesC3
if and only if

(7)

Lemma 2shows that for decoupling channel from symbol esti-
mation, not only but also its circular shifts should be orthog-
onal to .

As perLemma 2, whetherC3 is satisfied or not depends on the
number of the nonzero diagonal entries of . Letting
be the number of zero ’s, we define the set of ordered
integer indexes

(8)

and its complement containing these indexes , for which
. If we define the vector to contain the
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nonzero entries of the FFT pilot vector, then the time-domain
training vector can be written as

(9)

where is a permutation matrix collecting the pos-

sibly dispersed nonzero entriesof at the top (bottom). Based
on these notational conventions, we can state our first result as
follows.

Theorem 1: Consider transmissions of information blocks of
length through an FIR channel of order using CP to avoid
ISI as perA1 andA2. Let be the number of nonzero entries
of the FFT pilot vector (note that corresponds to the redun-
dancy added for training). For , symbol
detection from precoded symbols can be decoupled from linear
channel estimation based on training symbols (C2), regardless
of the FIR channel (C3), if and only if the precoded blocks have
length , and the affine precoders ( ) are selected
from the class

(10)

where is any full column rank matrix, and are the

permutation matrices, and is the nonzero vector defined in
(9). Clearly, the minimum redundancy choice corresponds to

, and after accounting for the CP, the transmitted
block must have length .

Proof: See Appendix A.
With and in (10), the fact that and

contain nonoverlapping indexes implies that the precoded
symbols are loaded on subcarriers (the columns of

) that are distinct from the subcarriers which correspond
to the pilots used for channel estimation; i.e., (10) includes, as a
special case, OFDM with inserted pilot tones. Notwithstanding,
OFDM was not assumeda priori; we reached it starting
from block transmissions with CP. Interestingly, separation
of information from pilot subcarriers in OFDM is necessary
and sufficient for channel-irrespective decoupling of symbols
from linear channel estimation with minimum redundancy.
Although training is inserted in the frequency domain (via
pilot tones), the training vectorhas generally nonzero entries,
and it is, thus, superimposed on in the time domain.
This can be thought of as the dual of PSAM [3], where pilot
symbols are inserted periodically in the time domain to cope
with time-selective channels.

But Theorem 1goes beyond OFDM ( ). It introduces
the class of LP-OFDM, which generalizes OFDM in three di-
rections of practical importance.

1) It allows (and accordingly, ) to vary from block to
block, which corresponds to shifting (or hopping) infor-
mation and pilot subcarriers that will turn out to improve
performance without CSI knowledge at the transmitter.

2) It provides degrees of freedom to optimize the power
allocation (via ), and the pilots’ location (via )

for reliable channel estimation decoupled from symbol
detection.

3) It also offers degrees of freedom in choosing to
optimize performance and guarantee symbol detection
without CSI knowledge.

The bandwidth efficiency (that depends on the relative redun-
dancy ) is given by

(11)

By selecting and so that
, we can have .

However, we will henceforth focus on the minimum possible
block lengths, because they minimize complexity and decoding
delay.1 It follows readily fromTheorem 1and (11) that:

Corollary 1: The precoders( ) of Theorem 1 achieve
maximum bandwidth efficiency and minimum decoding delay
when . In this case, .

With assured decoupling, we next address optimum place-
ment and power loading of pilots for channel estimation.

IV. OPTIMAL PLACEMENT AND POWERLOADING OF PILOTS

We want to optimize the location (i.e., select the
set ) as well as the power (i.e., choose) of pilots
in (10). Our criterion will be to minimize the channel
mean-square error (MSE) for a given transmit power budget

, where denotes
the Euclidean norm, and the second equality follows from
Parseval’s Theorem. Considering (6) with , the
channel MSE is given by

(12)

where and denote the expectation and the trace oper-
ator, respectively, and is the correlation matrix of in (4).
In addition to additive white noise (AWN) with ,
we will allow to be correlated in order to account for struc-
tured (e.g., adjacent channel) interference. But let us first study
the white noise case.

Selecting in (12), we obtain
. It is easy to show

that for an positive definite matrix ,
we have , where the equality
holds if and only if for some nonzero con-
stant . Using this and the fact that is positive
definite, we find that , with
equality if and only if for some nonzero
constant . It follows from the constraint
that , and the equality in

holds if and only if . But,

from with denoting
complex conjugation, we obtain .

1Although not dealt with in this paper, we have shown that forK > K =

2L + 1, the class of necessary and sufficient precoders forC1-C3 is different
from that ofTheorem 1. Different precoders result also when the CP is replaced
by ZP.
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Since is diagonal, if and only if
is diagonal. Recalling that is an

submatrix of the FFT matrix, we deduce that
if and only if , and

hence, . Thus, the minimum
channel MSE is attained if and only if we select:

1) for some nonzero integer;
2) the spacing of pilot tones to satisfy

for some , and ;
3) the same power is loaded on each pilot tone.

Design rule 2) suggests choosing in (10) so that the pilots
(entries of ) are equispaced nonzero entries of(when
equispaced should be understood in a circular sense; i.e., after
periodically repeating).

This shows that in AWN, the optimal pilots in the sense of
minimizing the channel MSE [or in the ML sense when
is additive white Gaussian noise (AWGN)] are those that are
equispaced and equipowered. This is also corroborated intu-
itively if we think of probing harmonics that are to be resolved
in the output of a system identification experiment. In AWN,
these harmonics are easier to retrieve when they are maximally
separated over the finite-length observation record. But max-
imum separation over a finite length is a necessary and suffi-
cient condition for equidistant spacing. In summary, we proved
the following.

Theorem 2: If is AWN with variance , then the min-
imum channel MSE for a fixed power constraint is
attained for if and only if the pilot tones are equi-
spaced and equipowered. Then, the minimum channel MSE is
given by

(13)

Recalling that the channel has taps,Theorem 2implies
that the minimum channel MSE is achieved even with the
minimum number of pilot tones required for channel estimation.
It also asserts that equispaced as well as equipowered pilot
tones are necessary and sufficient to attain the minimum MSE.
In contrast, [13, Th. 1]assumedequipowered pilots in order
to establish optimality of equispaced pilots, in the presence
of AWN. Interestingly, it will turn out that if the noise power
spectral density (psd) is available at the transmitter, white
noise is the worst-case scenario in terms of channel estimation
accuracy, which motivates looking into the colored noise case
as well (also not addressed by [13]).

Let the number of pilot tones be minimum for block-by-block
channel estimation, i.e., . Recalling the
discussion following (5), we can write the pseudoin-
verse of as

. Substituting this into (12), we
obtain .
For sufficiently large, can be diagonalized
by FFT and IFFT matrices; hence, we have

, where is an
diagonal matrix with th entry

equal to the psd of the noise evaluated at for . With

diagonal and , the channel MSE
can be rewritten as

(14)

Since is positive definite and is
diagonal, is bounded as follows:

(15)

Notice that does not depend on the
channel MSE. Targeting designs that do not require knowl-
edge of the noise statistics at the transmitter, we design
our pilot tones so that they minimize .
From , we deduce that

.
Hence, is minimized if and only if

, i.e., when the pilot tones
are equispaced.

If the pilot tones are equispaced, then we have from (14) that

(16)

Under the constraint , this upper
bound is minimized if and only if we set to
be constant, such that for

, i.e., when the pilot tones are equipowered. For
equispaced and equipowered pilot tones, with

and ,
we obtain from (14) that

(17)

We can summarize our results in the presence of colored noise
as follows.

Theorem 3: Let the number of pilot tones be minimum for
channel estimation; i.e., . Suppose that the addi-
tive noise is stationary with zero mean and psd . Under
the power constraint , the upper bound (15) on the
channel MSE is asymptotically (as ) minimized if the
pilot tones are equispaced and equipowered, and the minimum
channel MSE is given by (17).

Theorem 3implies that without knowing the noise psd at
the transmitter, equispaced and equipowered pilot tones are op-
timal in the sense of minimizing the upper bound of the channel
MSE. If we set , Theorems 2and3 show the opti-
mality of conventional OFDM transmissions with equispaced
and equipowered pilot tones in terms of bandwidth efficiency
and MMSE channel estimation performance. Recall, however,
that (10) offers degrees of freedom in designing.
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According to our pilot design rules 1) and 2), there are
possible sets of indexes for equispaced pilot tones, defined as

for . For colored
noise, these sets yield different channel MSE in general (cf.
(17)). For colored noise with variance , one readily finds that

. This implies
that if the noise psd is available at the transmitter, one can se-
lect the optimal set to obtain the minimum channel MSE, which
is always less than the channel MSE for the white noise case.
Otherwise, shifting (or hopping) these sets from block to block
is well motivated, because theaveragechannel MSE will be
lowered.

If we randomly choose one set with equal probability (or shift
the set from block to block), then the average channel MSE is
found after scaling (17) with

(18)
For sufficiently large, the average channel MSE is asymp-
totically given by . Interestingly, it is equal to
the minimum channel MSE for AWN with the same variance
[cf. (13)]. Recall that the precoder must also shift (or hop) ac-
cording to the set of pilot tones through in (10), and hence,
the resulting bit error rate (BER) will be also averaged.

V. OPTIMAL POWERALLOCATION AND PRECODERSELECTION

The ultimate goal is to allocate power and design affine pre-
coders that minimize BER for a given transmit-power budget.
However, we will rely here on an approximate (but tractable)
expression for the symbol MSE at the output of the ZF equal-
izer constructed from the LS channel estimate given by (6).
We assume that the information block is white with zero
mean, and correlation , and that the AWN has variance

. Because MSE (or BER) performance depends critically on
the channel estimation accuracy, we will confine ourselves to
equispaced and equipowered pilot tones that we have found op-
timal for channel estimation (Theorem 2).

For the moment, let us consider the ZF equalizer based on
the exact CSI which generates , and let us
bound the symbol MSE using (4) andC3 ( ) as
follows:

(19)
where . If CSI is available at the
transmitter, then minimizing the symbol MSE amounts
to minimizing over . However, targeting a
channel-independent precoder, it is reasonable to look for an
that minimizes in (19).

Under the power constraint ,
and using the fact that , we find that
is minimized if and only if is orthogonal, i.e., ,
where . If the channel estimation error is suf-
ficiently small, the same argument applies asymptotically to the
symbol MSE of the ZF equalizer output that is based on the

channel estimate. Thus, we henceforth restrictin (10) to be
orthogonal.

The ZF equalizer output based on the channel estimate
is given by . Define the normalized symbol
MSE as

(20)

Since and is orthogonal, we may approximate
as . Based on this approximation, we show in
Appendix B that if is invertible and well conditioned, then

can be approximated as

(21)

We will allocate power on information bearing and pilot sym-
bols so that the symbol MSE in (21) is minimized. For sim-
plicity, and without loss of generality, we can set

with
, and for . The value of

dictates the power allocated to information symbols and can
be considered as the effective symbol power (rate).

Rewriting (13) as , we can express
(21) as

(22)

By differentiating (22) with respect to, the minimum
and are found as

(23)

(24)

Thus, we arrive at the following theorem.
Theorem 4: Let the information block be white with zero

mean and correlation and the noise be AWN with vari-
ance . Suppose that the number of pilot tones is

and that the precoder is orthogonal. If we set the effective
symbol power (rate) as in (24), then the minimum symbol MSE
of the ZF equalizer constructed from the LS channel estimator
is approximately attained and is given by (23), provided that the
channel matrix is invertible and well conditioned.

Theorem 4holds true for most practical constellations, which
provide white information blocks. Interestingly, depends
only on the ratio of the number of pilot tones over the
number of information symbols. As increases,
increases, and more power is loaded on information symbols.
Conversely, as the channel orderincreases, decreases,
and more power is allocated to pilot tones to obtain reliable
channel estimates.

The minimum number of pilot tones per block
is dictated by our objective of coping with fast-fading channels
that may change from block to block. However, there are wire-
less settings (e.g., low-speed HIPERLAN2) where the channel
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does not change as fast. Certainly, if theth-order channel re-
mains invariant over a frame of at least OFDM symbols
(blocks), then we can have only one pilot per block which should
shift (hop) from block to block, so that equipowered pi-
lots are equidistant within the frame. Similarly, if the channel
changes, say, every two blocks, then we can have (forodd)

pilots in each block that are equipowered and re-
main equidistant over the two blocks. One could argue that these
options are subsumed by our analysis if the frame of blocks
is viewed as a single superblock. However, further research is
needed to delineate the following tradeoffs that appear in such
cases: smaller block sizes imply shorter and faster FFTs whose
output exhibits lower peak-to-average power ratio (PAR) that
leads to higher power efficiency; furthermore, having to allo-
cate power to less than pilots per subblock increases the
percentage of power dedicated to the information-bearing sym-
bols. On the other hand, one increases the decoding delay (since
the channel estimator requires pilots anyway) and also re-
duces bandwidth efficiency because more than one CP of length

is needed to remove IBI.
So far, we assumed that the circulant channel matrixin (6)

is invertible. If the channel has nulls on the FFT grid, thenbe-
comes singular, and hence, symbol detection is not guaranteed
[17], [19]. To assurechannel-independentinvertibility of ,
we rely on the judicious selection of suggested by [5], [19],
and [20] for generalized multicarrier (GMC) CDMA. With this

choice, our block transmission in (10) can be viewed as
an LP-OFDM modulation. LP-OFDM uses subcarriers for
pilots and adopts an orthogonal matrix in (10),
which distributes each symbol across subcarriers by assigning
different linear combinations of symbols per subcarrier. Matrix

introduces redundancy of length, such that:
A3. Any rows of are linearly independent.
The channel matrix can be diagonalized

by to obtain , where
for

( if ), is the channel transfer function

defined as , and is an
matrix with th column equal to the th column of for

. Because the channel has order, at
most, values of are zero. UnderA3, , and
hence, have full column rank, regardless of the channel
nulls. Therefore, channel-independent symbol detectability is
guaranteed, while bandwidth efficiency and optimal symbol
power are given, respectively, by

(25)

For a fixed block size , LP-OFDM incurs a small efficiency
loss compared to OFDM. In addition, LP-OFDM necessitates
an extra multiplication by at the transmitter as well as matrix
inversion and multiplication for ZF equalization, which requires

computations. The latter requires compu-
tations due to two FFTs at the receiver. For hard-decision de-
coding, as OFDM entails only one IFFT at the transmitter and

one FFT at the receiver, it is computationally more efficient than
LP-OFDM. The bandwidth efficiency loss along with the extra
computations is the price we have to pay for the universal prop-
erty of assuring symbol detectability over all FIR channels of
order .

Precoders ensuring channel-independent symbol de-
tectability enable the full multipath diversity that becomes
available with the underlying frequency-selective channel,
hence, for channels with independent identically dis-
tributed (i.i.d.) complex Gaussian taps, LP-OFDM unleashes
the maximum possible diversity of order [20]. Tradi-
tionally, error control codes have been used to increase the
diversity of uncoded OFDM over fading channels, from order
one, to an order equal to , where is the Hamming
distance of the code used. For a given ( ) code, the
Singleton bound asserts that .
However, as codes with are not available ,

sizes, LP-OFDM can enjoy higher diversity gain than coded
OFDM (COFDM) [20]. Certainly, to collect the full diversity
gain that LP-OFDM enables, ML decoding is required, which
can be computationally more demanding than ML decoding
of convolutionally coded OFDM that typically relies on the
soft Viterbi algorithm (SOVA). However, there are LP-OFDM
precoders that allow application of SOVA decoding, and others
that can afford near-ML (soft) decoding with complexity as low
as cubic in the block size (those include the sphere decoding,
semidefinite programming, or probability data association
algorithms) [20]. For detailed derivations on diversity and
coding-gain analyses of LP-OFDM, batch and iterative de-
coding options, complexity versus performance tradeoffs, and
comparisons between LP-OFDM and COFDM, we refer the
reader to [20].

One special satisfyingA3 is the submatrix formed by
columns of the FFT matrix; e.g.,

that has the first columns of the
FFT matrix. This selection generates a simple pre-

coding matrix with 0 and 1 entries, and results in nothing but
a CP, single carrier, block transmission.

Suppose, for simplicity, that the channel estimate is perfect,
and that the channel has no nulls on the FFT grid. Then, the
symbol estimate is ,

where . For sufficiently

large, the correlation matrix of is asymptotically
diagonal with th entry . It follows that the diagonal
entries of are equal, and are given by

; that is, all entries of are
corrupted by (scalar) i.i.d. noise. In other words, the channel
and noise effects on each entry of areaveraged over one
block. This implies that the affine precoder with FFT-based
is robust to the channel frequency response and the noise color.
It enables one to control the BER averaged over one (even
uncoded) information block only by selecting the appropriate
transmit power without knowledge of the channel and the noise
spectrum at the transmitter. In contrast, for the conventional
OFDM with , the th entry of is contaminated by
a noise term with variance . This means
that the BER for the th entry of the symbol block degrades
when is large and/or when is small. Thus,
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TABLE I
CHANNEL MSE (IN DECIBELS) FOR DIFFERENT EQUISPACED

PILOT TONES(SNR = 10 dB)

error control coding and interleaving are the only remedies for
conventional wireless OFDM transmissions. Unlike wireless,
wireline (e.g., X-DSL) modems have the extra option of power
and bit-loading strategies to control the average BER across
each information block.

VI. SIMULATED PERFORMANCE

A. COFDM and LP-OFDM

We set the block size to be , and the guard interval
length (channel order) to be . With

, we compared two OFDM transmission systems over fre-
quency-selective channels; namely, COFDM with and
(63,57) Bose–Chaudhuri–Hocquengem (BCH) codes, against
LP-OFDM with . We randomly generated binary
messages of length 57. For COFDM, messages were coded by
BCH (63,57) with minimum Hamming distance

and then binary coded, while for LP-OFDM, they
were only binary coded. As LP-OFDM enables the full diver-
sity of order , while COFDM can enable diversity
only up to order , we expect LP-OFDM to outper-
form COFDM with soft ML decoding. With superior diversity
gains, LP-OFDM can afford hard (or even linear) suboptimum
decoding. For this reason, we employed ZF equalization and
suboptimal hard-decision decoding, which also reduces com-
plexity and decoding delay.

For both OFDM systems, equispaced pilot
tones were inserted. Thus, both OFDM systems have the same
bandwidth efficiency . We generated
10 Rayleigh channels of sixth order with i.i.d. complex
zero-mean Gaussian taps, where each channel was normalized
to have unit norm. We tested 10OFDM symbols for each
channel realization, and averaged the results. The noise was
either white or colored first-order Markov with coefficient

0.9. We used the received signal-to-noise ratio (SNR) defined
as .

1) Channel MSE:Table I lists channel MSE (in dB) for
white and colored noise at dB. Empirical channel
MSE was computed by averaging. For equipowered and
equispaced pilots, the corresponding theoretical channel MSE
was evaluated by (13) for white noise, and by (17) for colored
noise. We also hopped equipowered pilot tones in different sets
{ } with equal probability. For a fixed set,
the empirically best and worst sets were and , which
coincide with the theoretical ones. The difference between
channel MSE of the empirically best and worst sets is 8 dB. The
channel MSE of hopped pilot tones lies between them, and is
almost equal to the channel MSE for white noise. From Table I,
we infer that hopping pilots leads to moderate channel MSE
without requiring knowledge of the noise psd at the transmitter.

Fig. 3. COFDM over a fixed channel: theoretical symbol MSE (solid
line) and empirical symbol MSE (dashed–dotted) atSNR = 10 dB. For
Rayleigh channels (SNR =10 dB, 20 dB): COFDM (solid lines); LP-OFDM
(dashed–dotted lines).

2) Power Allocation Between Information-Bearing and
Pilot Symbols: To validate our approximate expression (22)
for the symbol MSE, we evaluated and compared it with
empirical values for COFDM with a fixed channel and white
noise. The symbol MSE was computed from the difference
of the transmitted and the ZF-equalized information block.
The channel matrix is invertible with . The
optimum was found from (23) to be . Fig. 3
shows agreement between the theoretical symbol MSE and the
empirical symbol MSE. It is observed that the symbol MSE
is flat around its minimum. Since is a scale factor
in (22), the symbol MSE is robust to the choice offor any
channel not having nulls on (or close to) the FFT grid.

Fig. 3 also compares the symbol MSE of LP-OFDM and
COFDM as a function of at dB and

dB for Rayleigh channels. The fluctuation of the symbol
MSE with COFDM is due to some realizations having ill-con-
ditioned channel matrices. Except for the fluctuation, we infer
that both have minimum symbol MSE around , and that
the symbol MSE is flat around . LP-OFDM enjoys a 5-dB
gain over conventional OFDM across all SNR values. However,
it should be noted that the MSE of COFDM in Fig. 3 could
not exhibit frequency diversity gain, because the MSE are com-
puted based on undecoded outputs of ZF equalizers, and un-
coded OFDM does not have any frequency diversity gain.

Fig. 4 illustrates the BER corresponding to Fig. 3. The BER
curves for COFDM are smooth compared to its symbol MSE
curves in Fig. 3. In uncoded OFDM, this is due to channel
nulls located on (or close to) the FFT grid. The symbol error
probability for these “bad subchannels” can be very high. Even
when such a high error probability yields only a few detected
symbols in error, the corresponding symbol MSE that is aver-
aged over the information block is high. In other words, there is
no exact one-to-one correspondence between symbol MSE and
BER. However, as we can see from from Fig. 4, there exists a
strong correspondence between symbol MSE and BER, and the
minimum BER was also attained around , which validates
our design criterion.
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Fig. 4. BER versus� for Rayleigh channels (SNR =10 dB, 20 dB): COFDM
(solid lines); LP-OFDM (dashed–dotted lines).

Fig. 5. BER of COFDM and LP-OFDM for Rayleigh channels (� = 0:75):
COFDM (solid lines), LP-OFDM (dashed–dotted lines). For colored noise, best
shift (with �), worst shift (with *), hopping with equal probability (with). For
white noise, hopping with equal probability (with +).

The BER difference between COFDM and LP-OFDM can
not be discerned at 10 dB. The diversity gain can be deduced,
however, from the MSE of COFDM in Fig. 3. At 20 dB,
LP-OFDM has smaller BER, which confirms that LP-OFDM
enjoys higher diversity gain than COFDM. Further comparisons
between LP-OFDM and COFDM with respect to complexity,
diversity, and coding gains, as well as various decoding options
(hard, soft, and iterative) can be found in [20].

3) Colored Noise Case:For Rayleigh channels, Fig. 5
depicts the BER of COFDM and LP-OFDM as a function of
SNR. LP-OFDM outperforms COFDM above dB,
and the performance gain increases as SNR increases. For
COFDM, there is no significant difference between BER
performance with different pilot tones. For LP-OFDM, hopping
pilot tones leads to improved BER. Since hopping does not
require knowledge of the noise psd at the transmitter and is
easily implemented, it emerges as an attractive technique for
wireless OFDM. Particularly above dB, LP-OFDM
with hopping pilot tones outperforms COFDM with all the sets
of pilot tones considered here.

Fig. 6. BER of OFDM and LP-OFDM for each symbol in one block for a fixed
channel (SNR = 10 dB).

B. Comparison Between Uncoded OFDM and LP-OFDM

To gain further insight into the performance of LP-OFDM,
we compared it with uncoded OFDM for and .
We set for OFDM, and for LP-OFDM.
For both OFDM systems, equispaced pilot tones
were utilized. We dealt with two cases, a fixed FIR channel of
seventh order with impulse response vector

and Rayleigh channels of seventh order with i.i.d. complex
zero-mean Gaussian taps. We conducted 10Monte Carlo
simulations and averaged the results. The symbols in infor-
mation blocks were drawn from a binary phase-shift keying
(BPSK) constellation, and the noise was either white or colored
first-order Markov with coefficient 0.9.

Fig. 6 reports the BER of each symbol in the information
block for OFDM and LP-OFDM with hopping pilot tones, re-
spectively. Recall that theth entry of the information block
for OFDM is loaded on the th subcarrier. It can be observed
from Fig. 6 that for white noise, the BER of theth symbol
depends on the frequency response of the channel. To mitigate
the channel effects, interleavers have been employed, tradition-
ally to average the channel effectsstatistically over multiple
blocks. On the other hand, the BER of each entry of the infor-
mation symbol for LP-OFDM is relatively flat regardless of the
channel, and the noise color except for the ends of each block.
In LP-OFDM, the channel effects are averageddeterministically
over one block by .

Fig. 7 plots the BER of each entry of the information block
for Rayleigh channels. Since the channel effects were averaged,
the BER dependence of OFDM on the noise psd can be clearly
seen. On the contrary, the BER curves of LP-OFDM are similar
to those for the fixed channel shown in Fig. 6, as discussed in
the last paragraph of Section V.
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Fig. 7. BER of OFDM and LP-OFDM for each symbol in one block for
Rayleigh channels (SNR = 10 dB).

VII. CONCLUSION

To enable low-complexity block-by-block processing,
redundant precoders with CP and superimposed training
symbols have been designed to decouple symbol detection
from LS-based channel estimation. Optimal pilot tones were
designed for channel estimation in the presence of white or
colored noise. Optimal power loading scheme on information
symbols and pilot tones was derived based on an approximate
expression for the symbol MSE of the ZF equalizer constructed
from the channel estimate. To assure channel-independent
symbol detection, an LP-OFDM modulation was developed,
and was shown to be robust to channel effects and correlated
noise. Simulations corroborated LP-OFDM’s improved perfor-
mance over coded OFDM with the same bandwidth efficiency.

APPENDIX I
PROOF OFTHEOREM1

To proveTheorem 1, we utilize the following lemma.
Lemma 2’: ConditionC3, or equivalently, (7) holds true if

and only if there exists an matrix sat-
isfying , where denotes complex
conjugation and is formed by the( )st to the
( )st columns of .

Proof: Similar to (5), the circulant matrix satisfies
, where is a diagonal matrix

defined as
with . Along with (5), this
decomposition implies that (7) holds if and only if

, where we also used .
If denotes theth column of , then
where , and

. Because diagonal ma-
trices commute, we arrive at

(26)
By direct substitution, one can verify that circularly shifts
the rows of so that for yields

matrices that have FFT rows with
. We note that (26) holds if and only if lies

in the null space of these matrices, which is spanned by the
remaining orthogonal FFT rows of . Thus, (26) is
true if and only if for some vector

. With , it follows from
that (26) and holds if and only if

, which completes the proof of the lemma.
Because and are full-rank matrices, we

can express without loss of generality our precoders as
, where and are

and submatrices to be determined. Using this decompo-
sition of in Lemma 2’, we infer thatC3 holds true if and only
if , or equivalently,

. Choosing

to be the permutation matrix that moves the
all-zero rows of at the top, the last equation leads to

(27)

where is formed by the top rows of
and by its last rows. Because

is full column rank if and only if it is square or tall (i.e.,
), we find that

for . Noting that is
square and full rank, we infer from (27) that ,
or equivalently, fromLemma 2andLemma 2’thatC3 holds if
and only if . Recalling that
is necessary and sufficient forC2, since is nec-
essary for (and hence, ) to be full column rank, we deduce
thatC2 andC3 are satisfied by the class of precoders given by
(10) if and only if and ,
which completes the proof ofTheorem 1.

APPENDIX II
DERIVATION OF (21)

For notational simplicity, we omit time indexes (in one block)
and define , , , and

. We assume that is full column rank, and
that is sufficiently small so that can be approximated
as . This approximation is valid if the
channel matrix is well conditioned.

By using , the symbol estimated by
the ZF equalizer (constructed from channel estimates) is given
by

If and are sufficiently small, so that
, then the error can be approximated as
. It follows that

(28)

Since and are statistically independent of
with zero mean, the second term vanishes because

.
From , we obtain



OHNO AND GIANNAKIS: OPTIMAL TRAINING AND REDUNDANT PRECODING FOR BLOCK TRANSMISSIONS 2123

Substituting , we can approximate as

(29)

Thus, the last term in (28) is given by
. On the other hand, the first term

can be approximated as

(30)

where we used the statistical independence betweenand .
Defining the channel error vector as , from

, each entry
of the channel error vector is found to be mutually independent.
Since is circulant with first column , it turns out that

. Substituting this into (30) and using
(29), we arrive at . It fol-
lows that:

and after dividing by , we obtain (21).
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