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Abstract

The time-varying tap coefficients of frequency-selective fading channels are typically modeled as random processes with
low-pass power spectra. However, traditional adaptive techniques usually make no assumption on the channel’s time variations
and hence do not exploit this information. In this paper, Kalman filtering methods are derived to track the channel by
employing a multichannel autoregressive description of the time-varying taps in a decision-feedback equalization framework.
Fitting a model to the variations of the channel’s taps is a challenging task because the tap coefficients are not observed
directly. Higher-order statistics are employed in this paper in order to estimate the model parameters from input/output data.
Consistency of the proposed method is shown, and some illustrative simulations are presented.

Zusammenfassung

Die zeitvarianten Impulsantwortkoeffizienten von Kanélen mit frequenzselektivem Schwund werden typisch als Zufalls-
prozesse mit TiefpaB—~Leistungsspektren modelliert. Traditionelle Adaptionsverfahren treffen jedoch keine Annahme iiber die
zeitliche Kanalvariation and niitzen daher diese Information nicht aus. In dieser Arbeit werden Kalmanfilterverfahren zur
Kanalverfolgung hergeleitet, indem eine mehrkanalige autoregressive Beschreibung der zeitvarianten Koeffizienten in einem
entscheidungsriickgekoppelten Entzerrer eingesetzt wird. Die Anpassung eines Modells an die Variationen der Kanalkoef-
fizienten stellt eine anspruchsvolle Aufgabe dar, da die Koeffizienten nicht direkt beobachtet werden. In dieser Arbeit werden
Statistiken hoherer Ordnung eingesetzt, um die Modellparameter aus Eingangs/Ausgangsdaten zu schitzen. Die Konsistenz
des vorgeschlagenen Verfahrens wird gezeigt und einige Simulationen werden zur Illustration vorgestellt.

Résumé

Les coefficients a variation temporelle de canaux d’étouffement sélectifs en fréquence sont typiquement modélisés comme
des processus aléatoires caractérisés par des spectre de puissance passe-bas. Cependant, les techniques adaptatives tradi-
tionnelles ne font habituellement aucune hypothése sur les variations temporelles du canal, et n’exploitent donc pas cette
information. Dans ce papier, des méthodes de filtrage de Kalman sont dérivées pour suivre le canal en utilisant une
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description multicanal autorégressive des coefficients dans un modéle d’égalisation par rétroaction de décisions. Ajuster
un modéle aux variations des coefficients du canal est une tache ardue, parce que les coefficients ne sont pas observés
directement. Ici, des méthodes statistiques d’ordres supérieurs sont employées pour estimer les parameétres du modele & partir
des données en entrée/sortie. La consistence de la méthode proposée est montrée, et quelques simulations sont présentées en

guise d’illustration.

1. Introduction

Frequency-selective fading is encountered in
several communications applications and presents a
major impeding factor for high-speed digital trans-
mission. It may occur because of random changes in
the reflection medium (e.g., in ionospheric channels
[20, Chapter 7]) or due to transmitter/receiver motion
(e.g., TDMA? mobile radio channel, appearing in cel-
lular telephony [2, 8]). Frequency selective fading is
also common in underwater communications due to
random local changes in the salinity and temperature
of the ocean [14].

Fast adaptive algorithms, of the recursive least-
squares (RLS) family, are typically employed in
fading environments to track the channel’s variations
and equalize the received symbols [3,23]. Periodic
retraining and (when possible) diversity combining
are commonly used to guard against deep fades and
runaway effects.

In order to analyze the performance of these algo-
rithms under fading conditions, a number of stochas-
tic models have been used to describe the channel’s
time evolution [15;14;18;20, Chapter 7] Each tap
coeflicient is usually considered as a random process
with respect to time, as opposed to a constant in
time-invariant channels. The statistical description, or
average characteristics of the taps, reflect the average
characteristics of the channel. Similarly, in general
linear regression problems arising in systems theory,
statistics and economics, random coefficient models
have been used to account for unmodeled dynamics
or perturbations of the system under study. In most of
these applications, however, the problem of interest is
to estimate the mean of the random coefficients, rather
than track their time variations [4,7,12,21,11]. On
the contrary, in communications applications, track-
ing of the time varying (TV) coeflicients is of utmost

Py L .
< Time-division multiple access.

importance. Moreover, a richer structure exists in fad-
ing channel models, compared with simpler i.i.d.* per-
turbations often adopted in regression theory [21]. The
channel taps are usually assumed to be low-pass cir-
cular complex Gaussian processes [6, p. 89] in or-
der to model progressive time variations (slow fad-
ing) [17; 16; 20; Chapter 7]. They may have either zero
mean (Rayleigh fading) or non-zero mean (Rician fad-
ing), depending on the presence or absence of a line-
of-sight path [18].

The information on the channel dynamics, provided
by this stochastic framework, can be exploited to de-
velop more accurate tracking algorithms. However, in
most cases, these models have only been used for an-
alyzing and simulating existing algorithms in fading
environments, rather than improving them.

An exception to this rule is the work of Iltis and
Fuxjaeger, who have proposed Kalman filtering ideas
to track the code delay, Doppler shift and multipath
parameters in a direct-sequence, spread-spectrum
communication link [13, 14,9, 10]. They model the
TV tap coefficients and code delay as autoregres-
sive (AR) processes with respect to time (uncorre-
lated with each other), and then employ an extended
Kalman filter to adaptively estimate them. Their
method takes advantage of the channel’s time evo-
lution model (assumed to be AR), but no method is
provided to estimate its parameters. This limits its ap-
plicability to channels with fixed and a priori known
structure. Hence, it cannot be used in channels whose
statistics change slowly with time, as for example
in mobile radio communications, where the territory
slowly changes due to the receiver/transmitter motion.
Finally, the assumption of uncorrelated tap coeffi-
cients further limits the applicability of the method,
since it is not valid in several applications [14, §].

Fitting a model to describe a system’s time
evolution, and estimating its parameters can be a

3 Independent, identically distributed.
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challenging problem since the time-varying parame- The rest of the paper is organized as follows. In
ters are not directly observed. In the system identifica- Section 2, the problem statement is presented and
tion literaure, only very simple i.i.d. or random walk some modeling aspects of fading channels are dis-
models have been considered in order to simplify the cussed. In Section 3, Kalman-based channel esti-
problem [5]. Whenever more accurate models have mation methods are developed, while in Section 4,
been used, their parameters have been arbitrarily as- the necessary model parameters are obtained using
signed [13]. It has been successfully argued that even higher-order statistics. The novel algorithm is dis-
a crude, approximate model of the time variations is cussed in detail in Section 5, and some illustrative
better than no model at all [5]. However, a more ac- simulations are presented in Section 6.

curate estimation of the model parameters can only
be expected to improve the performance of these ap-

proaches. 2. Modeling the multipath fading channel

In this paper we bridge this modelling gap by deriv-
ing novel higher-than second-order statistics (HOS) Digital transmission through a fading channel is
methods for estimating the model parameters. We ad- usually accomplished via the setup of Fig. 1. Discrete-
dress the estimation and equalization problem for gen- time, complex symbols are transmitted every T sec-
eral fading channels, not restricted to spread spectrum onds through a system consisting of the transmitter’s
communications. The TV channel taps are modeled as pulse shaping filter, the TV multipath channel, and
general, multichannel AR, circular complex Gaussian the receiver’s matched filter and sampler. We assume
processes, thus allowing Raleigh or Rician fading with symbol spaced sampling in this paper, i.e., every 7
correlated tap coefficients. Conditions for the identi- seconds, although the extension to fractionally spaced
fiability of the model from input/output statistics are receivers is an interesting future direction.
derived and consistency of the proposed method is Let A.(¢; T) be the continuous-time, TV impulse re-
shown. Based on the estimated model, a Kalman fil- sponse (notice the explicit dependence on t) of the
tering procedure is proposed to track the TV tap co- overall system, including the multipath channel and
efficients. Finally, the TV tap estimates are used to the transmitter/receiver filters. Then, the system of
decode the transmitted symbols, either in a Viterbi de- Fig. 1 is equivalent to Fig. 2. The received signal y.(7)
coder (maximum likelihood input estimation), or us- is 4 (see Fig. 2)
ing simpler decision-feedback schemes.

By combining a model-fitting procedure with ye(t) = iw(k)hc(t; t — kTy) + ve(1). (1)
Kalman-tracking algorithms, we introduce a novel k=0

viewpoint to the fading channel equalization prob-
lem. We broaden the applicability of Kalman based
equalization methods which are expected to outper-

After the sampler, the discrete-time received signal is

A oC
form traditional adaptive LMS and RLS techniques, y(n) = ye(t) oy = > w(kYhe(nTs;nTs — kT)
since the latter do not exploit the tap’s variation =0
dynamics. +oe(nTs). 2)
ve(t)
w(n) Spectral vV { Matched velnTs)
Pulse Channel Filter

Fig. 1. Actual setup.

4 We use the subscript ¢ to denote continuous-time signals.
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ve(t)

h(t; ) —_—

nT,

Fig. 2. Equivalent channel model.

If we define v(n)2 v(nTy), h(m; k)2 ho(nTy; kT,),
Eq. (2) becomes

Yn) = Sowlkdh(n;n — k) + ofn)
k=0

(e
= > h(n;k)w(n — k) + v(n), 3)

k=0
where the last equality is due to a change of variables.
The impulse response h(n; k) geneally extends to
infinity, but in communications applications it is com-
mon practice to truncate it at some order g, yielding

the discrete-time model

W) = kéh(n;k)w(n — k) + v(n). @)

In many applications the number ¢ may be a rather
small number. Signal propagation studies have shown
that the delay spread rarely exceeds one symbol period
in the North American Cellular Standard [23,8], while
it can be up to five (g = 5) symbol periods for the
European standard GSM [2,22].

Eq. (4) provides a generic input/output relationship,
which describes the fading channel. However, unless
the time variations of /(n; k) are further specified, the
model (4) is incomplete, and of rather limited use. In-
deed, if A(n; k) can arbitrarily vary with », then there
exist infinite different channel responses, which satisfy
(4), even in the absence of noise and when y(n) and
w(n) are available. The approximation of A(n; k) by
constants has proven to be unsatisfactory for modeling
fading channels. Instead, the tap coefficients have been
typically modeled as circular complex Gaussian ran-
dom processes (w.r.t. n), by appealing to central limit
theorem arguments. Processes with low-pass spectral
characteristics are usually considered to model the rel-
atively progressive time variations (slow fading).

A number of additional assumptions have been
used in the past to simplify the model of Eq. (4).

In general regression problems, A(n;k)’s have been
considered to be i.i.d. sequences [21], an assump-
tion not valid in communications applications. The
uncorrelated scattering assumption has been ex-
tensively used, although it is not valid for several
fading channels [14,17]. Under this assumption, the
tap coefficients are uncorrelated with each other,
ie., E{h(n;k))h*(n + 1;k2)} = 0 for k; # ko, V1.
Different channel paths indeed exhibit uncorrelated
fading, but mixing those paths toegether in the re-
ceiver filters results in correlated A(n; k)'s in general.
Under the uncorrelated scattering assumption, sim-
ple AR(1) models have been considered in [13],
h(n;k) = ah(n — 1, k) + u(n), where the parameter
a is arbitrarily chosen close to unity, so that h(n; k)
represents a generic low-pass process for each k; u(n)
was an i.i.d. Gaussian sequence.
In this work we consider the random vector

h(n) & [h(n;0),....h(n;q)]'", (5)

as a general multichannel process and do not restrict
ourselves to the uncorrelated scattering case. The vec-
tor A(n) may have zero or non-zero mean depending
on whether the direct line-of-sight path is blocked or
not (e.g., as in ionospheric links). It turns out that the
mean of A(n) is relatively simple to estimate, as ex-
plained in Section 4. In order to simplify the notation,
however, the main results are presented assuming the
mean of A(n) to be zero, while the details of the non-
zero mean case are delineated in Sections 4 and 6. In
Section 4, we derive algorithms to estimate the spectral
characteristics of k(n) from the data y(n) and w(n).
In this way, the channel is adjusted to the fading en-
vironment, providing a more accurate description. We
will use a parameteric spectral estimation approach,
thereby modeling the vector process #(n) as a multi-
channel AR process of order p,

P

h(n) = > A(Dh(n — 1) + u(n), (6)
=1

where #(#) is an i.i.d. circular complex Gaussian vec-

tor process with correlation matrix® R, (1) 2E {u(n)

uf(n+1)} = 02 I5(1). The choice of the order p rep-
resents a tradeoff between the accuracy of the model

3 Superscript H denotes Hermitian transpose.
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(6) and the increased variance of the estimated param-

eter matrices A(/). For low-pass processes, however,

even a low-order AR model may be sufficient [13]. In

[25], a simplified version of (4) and (6) was studied

with g = 0, in a different context.

The following assumptions are imposed on (4)—

(6):

AS1: v(n)and u(n) are zero mean, i.i.d., circular com-
plex Gaussian processes, uncorrelated with each
other, with variance 62 and o2 I, respectively.

AS2: w(n) is a zero mean, i.i.d. sequence with values
drawn from a finite complex constellation with
variance ¢Z. The constellation is also assumed
to be circularly symmetric, i.e., E{w?(n)} = 0.

AS3: The transmitted signal satisfies E{|w(n)|*} # 0
and [E{[w(m)[2}T? # E{jw(m)l*}.

Regarding the models (4) and (6), the goals of this
work are:

1. To estimate the unknown coefficient matrices
{4O}Y,.

2. To derive minimum variance estimators of the tap
coefficients A(n; k), based on estimates of the ma-
trices A(/).

3. Toultimately decode w(n), given the data y(n) and
the estimated channel A(n; k).

In order to motivate the use of the proposed model, let

us concentrate on point 2 above, and derive channel

tracking algorithms based on Egs. (4) and (6). This
will also motivate the estimation algorithms for the

model parameters A(/), developed in Section 4.

3. Tracking the channel coefficients

In this section, we are interested in deriving mini-
mum variance estimators for the coefficients A(n; k),
under the model (4) and (6). For the time being the
matrices A(/) are considered known (see Section 4
for ways of estimating them).

The proposed method is based on Kalman filtering
ideas and yields an adaptive algorithm, which can be
implemented on-line. Like most adaptive algorithms,
it requires a training period to adjust to the channel,
after which one switches to a decision-directed mode.
During the training period, the transmitted symbols are
known to the receiver, while in the decision-directed
mode, the previously decoded symbols v(r) are used
in their place.

Let w(n), y(n) be given (training mode) in (4) and
(6), and let the determinant |4(z)| have zeros inside
the unit circle, where A(z) = I — 30 A(Dz"" If
we define h(n) 2 [AT(n),....h"(n — p + 1)]", then
Eq. (6) can be written in state space form

A1) AQ) - A(p)
h(n + 1) = )
0 I 0
u(n)
0
+ .- (7
0

Let . be the block square matrix in the RHS of (7),
then the state equation becomes

h(n+ 1) = oh(n) + Ju(n), 8)

where J é[1,0,...,0]. In order to obtain the mea-
surement equation, define w(n)é[w(n), wn — 1),

—ow(n — g)]T and w(n) S[wT(n),07,...,0"]". Then
Eq. (4) can be written as

¥(n) = W' (n)h(n) + v(n). ®)

We point out that because A(n) is time varying, it
cannot be identified using RLS on Eq. (9) alone.

Eqgs. (8) and (9) offer a state-space representation
of the fading channel model with transition matrix .o/
(assumed known in this section). Based on this repre-
sentation, the minimum variance estimator for the state
vector, i.e., the conditional expectation of h(n), given
{w(k), y(k)};Z, can be computed using the Kalman
filter [1]. The recursions are summarized in Table 1
(see also [1, p. 44]). Matrices K(n) and Z(n|n) de-
note the Kalman gain and the covariance of the state
vector h(n) given data {w(i), y(i)}}_,, respectively.

Extended Kalman filtering ideas were employed in
[9] in a spread-spectrum environment. The state vector
there consisted of the code-delay, the Doppler spread
and the tap coefficients (assumed to be uncorrelated).
However, no method for estimating the state transi-
tion matrix ./ was given. In this paper, we apply
state-space approaches to general fading channel en-
vironments allowing for correlated coefficients, and as
explained in the next section, we couple the Kalman
filter with algorithms which estimate .o/,
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Table 1
Kalman-based, channel-tracking algorithm

Initialization #(0] — 1) =0, Z(0|—1)=0

Recursion:  k(n + 1|n) = [ — K(n)w ' (n)lh(n|n — 1)
+K(n)y(n)
K(n) = #Z(n|n — 1)w*(n)
x[WI(m)Z(n|n — DwW*(n) + 62]7!
Z(n+ ln) = L[Z(nn - 1)
—Z(n|n — Dyw*(n)[w(n)
Z(nln — L)w*(n) + o217}
xwl()E(njn — D]oH + g22JH

After the training period, the Kalman filter of
Table 1 should also be combined with a decision
feedback or Viterbi equalizer to provide the decoded
symbols w(r), needed in the Kalman recursion. These
issues are discussed in Section 5.

4. Determining the channel’s statistics

In this section we employ higher-order statistics to
estimate the state transition matrix .o/ in (8), or equiv-
alently the parameter matrices A(/),! = 1,..., p, in
(6), given the data y(n) and w(#n). It is well known
in multichannel time-series analysis that the AR
parameters are uniquely identified by the correlation
matrices Ryui(t) = E{h(n)h"(n + 7)}. Indeed, by
postmultiplying (6) by hH(n — 1) and taking expected
values of both sides, we arrive at the multichannel
normal equations [19, Chapter 9]

R (1) = lZf:lA(l)R?h(r — D)+ a2,
1=0,...,p (10)

By solving those equations, the parameter matrices
A(l) are obtained, provided that some estimates of
the correlation matrices R;(t) are available. How-
ever, h(n) is part of the state vector h(n), and is not
directly measured. Hence, the estimation of its cor-
relation matrix is not a trivial task. In the sequel we
employ higher-order statistics to estimate Rj(7). In
particular, we seek estimates of the (J,j) element of

the matrix (cf. (5)) fort =0,..., p,

[Rupn())i; = ru(Tsi— 1,j = 1),
=l g+l (11)

ra(t3i,j) 2 E{h(m; D" (n + 75 /). (12)

4.1. Least-squares methods

Let us consider the conditional expectation of

y(n)y*(n + 1), given the data {w(), y(1)}_,_,
Then from (4) and the independence between h(n; k)
and w(n) we obtain

E{y(n)y*(n + D)w(n)}

= i E{h(n; ko)™ (n + 1, ky)}
ko k1 =0

xw(n — ko)w*(n+ 1 — k) + 628(1)
q
= Y rltkok)win — ko)W (n+1— k)
kouk1 =0

+ald(z). (13)
We wish to solve for the parameters r4(1; ko, k1) from
(13). Note that the conditional expectation is a time-
varying statistic which depends on n. If (13) is written
for a fixed tand n = 0,...,N — 1, then it provides a

set of linear equations involving r,(t; ko, k1 ).
Let us consider the general linear expression

E{y(n)y*(n+ 0)|w(n)}

q
> H(f(”k’ )w(,,_ko)w*(n +1-k)+ 055(1),

koo k1 =0
(14)
for some parameters %K) or in vector form
E{y(n)y*(n+1)|w(n)}
= ¢"(m;0)0; + old(x) + e(n; 1), (15)
where the parameter vector
0, & (000, 609 90O gaaT (16)
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is indexed according to {(ki.k2)j _o}f_, and
oM (m;7) is a row vector defined accordingly as
P (n;1) & W (n+ 1), w(nwH(n + 1—q),
win — Dw*(n+1),...,
w(n — gw*(n+ 1 — g)l. (17)

Notice that (13) represents a particular solution of (15)
with

01 = o‘r,truea
or,true é [rh(T; 070)7 DR ] rh(‘[; 0’ q)y
(13 1,0),...,74(7; 4, 9)] (18)

We intend to solve (15) via LS using an approx-
imation of the LHS, in an effort to recover 6. .
We propose to use the instantaneous approximation
y(n)y*(n + 1), as an estimate of the random variable
E{y(n)y™(n+1t)|w(n)}. It can easily be checked that
this estimate is unbiased, i.e., E{e(n; 1)} = 0, where
e(n;1) = y(n)y*(n + 1) — E{y(n)y*(n + 1)|w(n)}
is the estimation error. Also the error is uncorrelated
with the regressors w(n — ko)w*(n + © — ky); ie.,
E{e(n;t)w(n — ko)w*(n + © — k1)} = 0. Hence, the
LS solution of the linear regression

y(n)y*(n+ 1) = ¢ (m; 00, + a23(x) + e(n; 1),
(19)

forn =0,...,N—1, will yield an unbiased estimate of
01 under some further assumptions. The following
proposition quantifies this claim and shows strong con-
sistency of the proposed method under some condi-
tions.

Proposition 1. Let y(n), w(n) be related by (4) and
(6) under assumptions (AS1)—(AS3). If ér, ~ denotes
the solution of (19) for n =0,...,N — 1, then under
these assumptions, ér,N — 050) as N — oo in the
mean square sense and with probability one, where
0&0) is defined in (16).

Proof. See Appendix A.
Some remarks are now in order:

1. The fact that an instantaneous approximation is used
in (19) may raise some questions on the variance of

the resulting estimator and the accuracy of the pro-
posed method. It should be kept in mind, however,
that the approximate relationship in (19) holds for
every time point n = 0,...,N — 1. Thus, N such
equations will be used in this regression problem
and the approximation errors will be averaged out
in the LS solution.

2. It turns out it is not hard to show that the solu-

tion of (19) converges to the solution of (15) for
large N, i.e., the approximation involved in (19)
is immaterial as far as consistency is concerned.
The crucial question, however, on which the suc-
cess of the method depends is whether (15) has a
unique solution, in which case 0. n, is identifiable.
An equivalent question is whether the regressors
w(n — ko)w™*(n + t© — k) are linearly independent,
or become ‘linearly independent’ in some sense as
N grows large. As Proposition 1 shows, this can be
guaranteed under certain assumptions.

3. It appears as if only second-order information is

present in the LS problem of (19). A more careful
consideration, however, reveals that in the process
of solving the LS problem, fourth-order auto- and
cross-moments are implicitly computed (see Ap-
pendix A). Proposition 1 shows that, under some
conditions, the statistics of the TV taps can be re-
covered from these moments. A short discussion on
those assumptions follows.
Classical analysis of digital transmission through a
fading medium models 4(n; k) as zero mean random
variables as in (AS1). In certain applications, how-
ever, like cellular communications, a direct non-fading
path may also exist, superimposed on the fading path.
In this case, the coefficients A(n; k) have non-zero
means (Rician fading). However, we may treat the
h(n; k)’s as zero mean without loss of generality in the
current framework. Indeed, if the overall channel is

h(n; k) = hu(k) + h(n; k), (20)
where (k) is a constant mean (in general # 0) and

E{h(n;k)} = 0, then by substituting (20) into (4), we
obtain

5(n) = ki'o i yW(n — k) + (), @1)

y(n) = zq: h(n; k)w(n — k) + v(n). (22)
k=0
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The constants (k) can be consistently estimated
from the LS solution of Eq. (21) and y(n) can be
recovered. Hence, Eq. (22) becomes identical to the
modeling Eq. (4), once y(n) has been recovered from
y(n).

The assumption on the circular symmetry of the
constellation (AS2) is also not crucial for our develop-
ments. It is included for technical convenience as most
constellations fulfill it. On the contrary, (AS3) is nec-
essary to obtain consistent estimates. It turns out (see
Appendix A) that correlations of the form ry(7; &, k +
1), k = 0,...,q, cannot be estimated if (AS3) does not
hold. The corresponding regressors in (19) become
dependent, and only the quantity > 1_ rx(t; k, k + 1)
can be obtained.

(AS3) holds true for most constellations, with the
exception of certain constant modulus schemes such
as 4-PSK and 8-PSK. In such cases, the easiest way
to obviate the problem is to estimate r4(7; ko, k1) only
for 7 > q, where the troublesome regressors do not ap-
pear. Then, the normal equations (10) can be solved
fort=¢g+1,...,9+ p+ 1, mimicking the approach
used to estimate AR parts of ARMA models. A differ-
ent approach is to estimate directly the higher-order
moments of the data and obtain closed-form solutions,
as explained in the sequel.

4.2. Closed-form solutions

Cumulants of order £ are defined as combinations
of moments up to order & [6, p. 19]. In this paper, only
third- and fourth-order cumulants will be used, which
for zero-mean random variables are defined as

cum{xl,xz,x3} = E{)C[X2X3}, (23)

cum{x),x2,X3,X4}
= E{x1x2nx4} - E{X1X2}E{X3)C4}
—E{x1x2}E{x2xs} — E{x1x4 }E{x2x3}. (24)

Second-order cumulants coincide with the covariance,
Le.,

cum{x;,x2} = E{xix2} — E{x1 }E{x2}. (25)

The simplest method for estimating the lags 7,,(7; k&, k+
7), which may not be recoverable through the LS so-
lution, employs third-order cumulants. Consider the

quantity E{y(n)y*(n + 11)w(n + 12)}. Substituting
¥(n)y*(n +11) using (4) we obtain

E{y(n)y*(n+1)w(n + 12)}

q
= Y E{h(n;k)h*(n+11;k1)}
korkr =0

xE{w(n — ko)w*(n + 11 — k))w(n + 72)},
(26)

due to the mutual independence among h(n; k), w(n)
and v(n). Under the i.i.d. assumption for w(n) (26)
reduces to

E{y(n)y*(n+ t)w(n + 1)}
=y E{h(n; —t)h*(n + ;11 — 12)}, (27)

where 73, 2 E{w*(n)w*(n)}. Eq. (27) shows that
the desired tap correlations coincide, within a scaling
factor, with the triple correlations in the LHS. For
1, = —ky, 71 = 1, (27) becomes

E{y(n)y*(n+ t)w(n — ko)} = y3ru(t; ko, 7 + ko),
(28)

providing a closed-form solution for r,(; ko, T + ko).
Hence the simple estimator

Pr(ts ko, T+ ko)

N1
- | L 0 Otk @)

V3w N n=0
can be used, provided that y3, # 0. This approach
is not applicable to non-skewed (symmetrically dis-
tributed) input signals which have y;,, = 0. This may
happen whenever w(n) is drawn from an equiprob-
able, symmetric constellation. Hence, caution should
be used during the training period, in selecting a train-
ing pattern that is non-equiprobable, and therefore
skewed.

When 73, = 0, closed-form expressions for the
desired tap correlations can be derived using fourth-
order statistics. If we introduce product processes
ya(m;t) & y(m)y*(n + 1)), and wa(n;1a,73) 2
w(n + t)w*(n + 13), then the cross-cumulant
Cyng(rl772’r3)a

Coawy (11,72, T3) & cum{ y2(n; 11), wa(n; 72, 73)}, (30)
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can be expressed as
Crw (71,72, T3)

q
= Y cum{h(n; ko)h*(n + 1 k) )w(n — ko)
ko, ky=0

xw*(n+ 11 — k), w(n + )w*(n + 13)}
(31)

using (4) and the multilinearity property of cumulants
[6, p. 19]. Substituting the cumulant in the RHS of
(31) from (25) we obtain

Cyom, (T1,72,73)

= Y E{h(mko)h*(n+ 13k)}

ko, k1 =0
X[E{w(n—koWw*(n + 1, —k))w(n+1,)
xw*(n + 3)}
—E{w(n —kp)w*(n+ 1, — k1)}
xE{w(n + t)w*(n + 13)}].  (32)

Substituting the fourth-order moment in the RHS from
(24) and using the fact that E{w?(n)} = 0 we obtain

Cram:(T1,72,73)

. e ko ko feum w(n — ko),

wh(n + 11— k), w(n + 1), w (n + 13)}
+E{w(n — ko)w™(n + 13)}E{w(n + 13)
xw*(n+ 1 — ki )}, (33)

If w(n) is 1.1.d., then (33) reduces to

Cyoms(T1,72,T3)
= Yawln(T1; —T2, T1 — 12)0(T2 — 73)

+ahrn(t; — 13,71 — 1), (34)

where 74, = cum{w(n), w(n),w*(n),w*(n)}. Hence,
for 1y = 1, 13 = —ky, 7, = T — k;, we obtain the

closed-form expression

Cyow, (T1,72,73)

{ ahra(t; ko, k1), ky # ko + 7,
(Vaw + G Ira(Ts ko k1), ko = ko + 7.

(335)

From (35), we obtain closed-form solution for the
estimation of #;(7; ko, k1) using fourth-order statistics
as follows:

ru(T; ko, k1)

_ { 0, ¢y (73T — ki, —ko), ki # ko + 1,
(V4w +O'3v )_lcyzwz(‘r; —kOa —kﬂ )’ k] = k() + 7.
(36)

5. Equalization algorithm — discussion

In previous sections, a Kalman filtering procedure
was developed to track the TV tap coefficients, based
on some modeling parameters. Methods to estimate
those parameters were also given. All those pieces
have to be linked together now and be coupled with a
specific equalization technique, in order to eventually
compose a practical system. In this section, we discuss
the implementation details of a complete equalization
algorithm based on the novel approach.

We assume the typical scenario of periodic retrain-
ing, found in mobile wireless communications (usu-
ally in the order of 10% of the transmission time
[23]). Hence, at each training period, the estimates
of the model parameters from the previous ones have
to be improved. In order to avoid instabilities, we do
not update the model parameters during the operating
mode. In the operating mode, only the Kalman filter
is run, in parallel with a decision feed-back equalizer
to jointly track the channel and equalize the received
symbols. The equalizer used has orders L; and L,
for the feedforward and feedback branch, respectively
(DF(Ly,L;)), and is of the form

0
wn) = > g(nj)y(n—j)

j==L

Ly
+2_ g(n; jyw(n — j). (37)

j=1
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Once the channel A(n; k) has been estimated, the opti-
mal parameters g(n; k) of the feedforward part, which
minimize J(Lj,L;) = E{|w(n) — w(n)*|h(n)} are
given by the solution of the following equations (see,
e.g., [20, p. 595]):¢

0
> yg(njy=h*(n;-1), 1=—L),...,0,

j=—L

(38)
where
Y = a?vk_zfoh*(n;k)h(n;k +1-)
+a20(1 — j), 1,j=—Ly,...,0. (39)

The coefficients of the feedback filter are given in
terms of the coefficients computed in (38) as

[
gln k) = — ZL g(n; Ph(nsk — j),
==L

k=1,...,L,. (40)

The steps of the algorithm are explained in detail next.

Training mode. Assume that some estimates of the

tap correlations f?t, the AR matrices /f(l ) and the chan-

nel coefficients A(n) are available from past iterations.

The first time, initialize to zero.

Step 1. Collect the training data p(n) and w(n),
n=0,..., Nyain — 1. A

Step 2. Form Eq. (19) and update the current 8, using

RLS.
Step 3. Solve the normal equations (10) to obtain
a new estimate A(/),/ = 1,..., p. In order

to save computations, an adaptive gradient
method to solve (10) and update A(l ) can be
used.

Step 4. Run the Kalman filter (Table 1) to estimate
h(n) based on the updated /f(l ).

®In order to simplify Eqgs. (38)-(40), we locally approximate
the channel by a TI one, ie. h(n + k) =~ h(n;k) for 7 €
[n—Lyn~+ L]

Operating mode. Assume 0., A(/), h(n) have been
initialized during the training period. Then, for every
new data point y(n):

Step 1. Solve Eqgs. (38) and (39) to obtain the equal-
izer coefficients g(n; k). Adaptive gradient
methods may be used to solve the equations,
to reduce computations.

Step 2. Equalize the data using (37). X

Step 3. Decode the equalized w(n) and update A(n)
using the Kalman recursion.

A number of different variations on this algorithm
may be used. For example, a Viterbi decoder may
replace the decision feedback one. Alternatively, the
parameter matrices may be updated during the oper-
ational mode as well based on the decoded symbols.
Finally, the closed form solutions of Section 4.2 may
be used as an alternative to estimate 6,. The com-
plete study of all the variations however, is outside
the scope of this paper. In the next section, some rep-
resentative simulations are given in order to compare
the proposed method with existing techniques.

6. Simulations

The purpose of this section is to demonstrate our
proposed algorithm and compare it with existing al-
gorithms.

6.1. Description of the problem

We consider a random channel h(n) £ [h(n;0),
h(n; 1)]" (of order ¢ = 1), whose mean is given by
hy = [1 +0.2j,—0.5 + 0.5j]". The equivalent mean
removed channel, k(n) = h(n) — h,,, is modeled as a
multi-channel AR(1) process (p = 1),

h(n) & [Zgzm = A(Dh(n— 1) +u(n),  (41)

where u(n) is a zero-mean i.i.d. circular complex
Gaussian process with correlation matrix R, (1) =
625(t), and

0.3 —0.8]. (42)

A= [—0.5 03
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We first generate A(n), obtain h(n) = h(n) + hy,
and then simulate the noisy channel output as

F(n) = h(n;0)w(n) + h(n; Dw(n — 1) + v(n), (43)

where the input symbol w(n) is drawn from a 16-QAM
constellation, and the additive noise v(n) is a zero-
mean i.i.d. circular complex Gaussian process with
variance o2,

We shall illustrate and evaluate three different al-
gorithms: our proposed method, the Kalman-based
method of [13], and the plain RLS algorithm. For all
three methods, a periodic re-training period of 16 sam-
ples is used, alternating with an operating period of
128 samples. In all cases the receiver starts decoding
the data after an initial training of 1024 points, or an
equivalent of 64 idle frames.

6.2. Description of the algorithms

Let us explain first what happens during the initial
training mode. The objective here is to obtain esti-
mates of the A(1) matrix, the mean of the channel
hy, and the channel k(n) itself, from the input w(n)
and the output j(n). Our first step is to solve for
by 2 [h(0), hn(1)]" from

P(n) = ha(0)w(n) + hn()w(n — 1)+ p(n), (44)

via least squares. Recursive estimates of Ay can be
obtained by employing RLS, after which we can form
the zero-mean equivalent output process y(n) of (44).
Note that the KF procedure of Table 1 is based on the
zero-mean processes y(n) and A(n).

Next, we wish to solve for the 6y and 0; vectors
(cf. (18)) which contain correlation information of the
zero-mean channel A(rn). For our problem here (p =
g = 1), we have that

rh(oyoao) rh(laoso)

o | 7(0;0,1) 4 o
0= 1010 BT Loy | @Y

ra(0;1,1) r(1;1,1)

B (n;0)R(n; 1)

[g(n; —1)} _ ay/y + [h(n; 0)?
g(n;0) 02/a% + |h(m; 02 + [A(m 1) A" (n;1)a(n;0)

Using (19) for 7 = 0 and 7 = 1 we obtain

|y(n)?
= [lw(r)2, w(mw™ (n — 1), w(n — Dw*(n),
w(n — 1)]*10y + 62 + e(n; 0), (46)

and

y(n)y*(n+1)
= [w(m)w*(n + 1), |w(m)2, w(n — Dw*(n + 1),
w(n — Dw*(n)10; + e(n; 1), 47

which can be solved recursively for 6, and 6, via RLS.
Since

o [7(0;0,0) 7(0:0,1)
Ru(0) 2 {m(o; 1L,0) 701, 1)} ’

(1;0,0) rh(l;o,l)}

(48)
Ru(1) £ [rh(l;l,O) re(1;1,1)

they are available once 6, and 8, are found, and A(1)
can be solved according to (cf. (10))

R, (1) = A(1)R},(0). (49)

After A(1) is estimated, we run the KF following
the steps of Table 1 to find A(n). Note that in our case
here, o/ = A(1),h(n) = h(n), and J = I. Once k(n)
is found, we then compute h(n) by incorporating the
recursive estimate of A,.

The estimates A(1), A, and h(n) are necessary
quantities for the operating mode. In the operating
mode, we first use the DFE to obtain preliminary sym-
bol estimates w(7). These estimates are subsequently
transformed into W(n) using the nearest-neighbor cri-
terion, where W(n) are valid 16-QAM symbols. For
our particular problem here (g = 1), the DFE employs
the current channel output y(n) and the previously
decoded symbol w(n — 1) to infer

w(n) = g(n; —1)3(n + 1) + g(n;0)3(n)
+g(n; Dw(n — 1). (50)

The feedforward coefficients can be computed as fol-
lows [20, p. 595]:

} [iz*(n;O)iz*(n;l)], (51)
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and the feedback coefficient is found from
g(n; 1) = —g(n; 0)a(n; 1). (52)

Note that in the operating mode, w (n) replaces w(n) in
(44) in order to obtain y(n) and run the KF to update
h(n). Quantities 4(1) and A, are kept the same as at
the end of the training mode.

It is well known that ‘run-away’ effect may incur to
the DFE. A brief retraining mode is hence introduced
after each operating mode in order to cope with a pos-
sible run-away sequence, and to update the estimates
of A(1) and Ay, in case the latter two are slowly vary-
ing as well.

In the Kalman procedure of [13], the matrix zf(l)
is a priori set to

A1) = [0'39 0.29}'

In the training mode, one only estimates itm using RLS
and updates &(n) using KF, whereas in the operating
mode, A(n) (and hence A(n)) is updated using KF
based on the a priori chosen value of A(1) and the
estimate of Ay,. The DFE is then implemented to re-
cover the symbols w(n).

In the plain RLS method, one first estimates a
constant vector g £ [g(—1), g(0), g(1)]’ during the
training mode, by minimizing E{|lw(n) — w(n)*},
where

w(n) =g(=1)y(n+ 1)+ g(0)y(n)
+g(Lw(n 1), (54)

via RLS and based on the available data w(n) and
¥{(n). In the operating mode, the preliminary symbol
estimate
w(n) =g(=Dy(n+1)+g(0)¥(n)

+g(1)W(n = 1) (55)

(53)

is first obtained, and then translated into w(#n) using
the nearest-neighbor criterion, w(n) being a valid
16-QAM symbol.

6.3. Simulation results

In our simulations, the average signal-to-noise ratio
(SNR) is defined as

N E{|7(n) — v(m)]*}
SNR £ 10 logig — o

(56)

For our first example, we used 62 = 0.002 and o2 =
0.01, which yields SNR =25.75 dB. In Figs. 3(a)—(d)
we show elementwise the recursive estimate of the
real part, and in Figs. 3(e)—(h) the imaginary part, of
A(1) in dotted lines. The true values are indicated by
the dashed line. The figure shows that after the first
200 samples, the estimates converge close to the true
system’s parameters.

Following the initial training period, there was an
operating period, and Figs. 4(a)—(d) and Figs. 4(e)—-
(h) show, respectively, the tracking of the same
channel taps using our method and that of [13].
The latter seems to have relatively worse track-
ing performance due to the inaccurate guess of
the A(1) matrix, but the difference was not sig-
nificant for this particular operating period. We
repeated the retraining-operating modes for nine
additional times, and Fig. 5 shows a run-away phe-
nomenon occurring for the method of [13]. The
final symbol error rate in w(n) was 0 for our method,
0.0236 for that of [13], and 0.0173 for the plain RLS.

Next, we wish to illustrate and compare the perfor-
mance of the algorithms in terms of their abilities to
equalize the symbols. In Fig. 6(a) we show the con-
stellation of 128 received symbols j(n) with 62 =
0.005 and 62 = 1 x 1075, Figs. 6(b)—(d) show the
equalized symbols using the proposed, that of [13],
and the plain RLS method, respectively. The proposed
method is seen to have the best equalizing ability.

Finally, we wish to evaluate the performance of the
algorithms by plotting the respective error probabili-
ties as a function of the SNR. We chose 2 = 0.004,
and varied o2 so that the SNR was changing. Fig. 7
shows the error rate in w(n) for the proposed method
{(solid line), the method of [13] (dashed line), and
the plain RLS method (dotted line). Fifty independent
realizations were carried out at each SNR, from which
the error rate was calculated based on five operating
periods per realization. The performance of the pro-
posed method surpassed that of [13] and plain RLSs
at about 18 and 21dB, respectively, and is much su-
perior at high SNRs. This figure also shows that the
severe and time-varying IS is the major impeding fac-
tor in this channel rather than the effects of the additive
noise.

Some remarks and observations are now in order:
I. When ¢2 is smaller, i.e., the channel has smaller

variations, the plain RLS method gains more
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advantage. This is consistent with the fact that the
g equalizer vector is assumed constant in the RLS
framework.

2. When aﬁ is larger; i.e., the channel has more vari-
ations, the proposed method shows a clear advan-
tage over either the method of [13] or the plain RLS
method. This is due to the fact that the proposed al-
gorithm is designed to cope with channel variations.

3. Both the proposed method and that of [13]
are reasonably robust w.r.t. error in the A(1)
estimate/guess. It turns out that when the true 4(1)
matrix is diagonal, the guess in (53) performed
quite well even for cases where the true A(1) was
much different. This corroborates the assertion of
[5, 13] that a rough guess is better than no guess
at all. However, when A(1) is a full matrix, the
guess in (53) often leads to poor performance, and

in some cases, worse than that of the plain RLS
algorithm.

7. Conclusions

The most important message this work conveys, is
that whenever some a priori information on the fading
channel’s behavior is available, it should be taken into
account to improve the equalizer’s performance. If the
channel is described by randomly varying coefficients,
a stochastic model for the time variations may allow
the use of Kalman tracking procedures. In this work,
we show how to estimate the parameters of this time-
variation model using HOS, and how to integrate the
estimator in a Kalman-based equalizer.
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Appendix A. Proof of Proposition 1

The LS solution of (19) is given by
R 1 N1 u -1
O = [ﬁ > d(m1)e (n;r)]
n=0

1N=1
X [ﬁ Y 1)y(n)y* (n+ T)]- (A.1)
n=0

By substituting y(n)y™(n+ 1) in (A.1) from (19) we
obtain

1 N=1

-1
O.n—0, = [ﬁ > ¢(n;r)¢H(n;t)]
n=0

1 N=l
x [— > d(n;v)e(n; ‘C):|, (A2)
Nrr:O

where e(n;7) £ 628(1) + e(n; 7). Hence, we need
to show that the estimation error 8. 5 — 0. converges

to zero as N — oo. Under assumptions (AS1) and
(AS2), we can show that the regression error e(n; 1)
is a zero-mean process with finite memory, and finite
moments of any order. Then, the bracketed terms in
(A.2) converge to their expected values as N — oo,
both in the mean square sense and with probability
one (see [24, Chapter 7]):

ér,N -0, — R(;J,Rd,e as N — oo w.p.l. (A3)

Using the fact that e(n;7) is uncorrelated with the
regressors, i.e., Ry = 0, we conclude from (A.3) that
ér, w~ is consistent if and only if Ry is invertible.

We now show that R, is invertible under (AS3).
Let i = ko(g + 1) + k1,j = ka(q + 1) + k3, and or-
der the regressors in (17) so that the (i, /) element of
R¢¢ is

[Ryg)i; = E{W* (n—k)ywn+rt—ky)

xwn—k)w (n+1-k)}. (A4)
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Eq. (A.4) can be written as

[Ryp)i; = cum{w™ (n — ko), w(n+1 — k),
w(n —k),w*(n+1—k)}
+E{W* (n —ko)w(n +1—ky)}
XE{w(n — k)w™(n+ 1 — k3)}
+E{w* (n —ko)w(n — k2)}
xE{w(n+ 1t - kl)w*(n +1—-k)}
= Yaw0 (ko — k2)
x0(ko — k1 + 1) (ko — k3 + 1)
+030 (ke — ki +1)0(ky — k3 + 1)
+ald(ko — k2)d (ki — k3), (A5)

where the last equality is due to the i.i.d. nature of
w(n). From (A.5) we can see that for columns where
ky # k3 — t only the third term is nonzero, yielding
[Rysli; = o40(i — j), ie., portions of a diagonal
matrix. For the columns where &, = k; — 1, however,
(A.5) becomes

[Rypli; = (yaw + 030 (ko — k2) 3 (ky — k3)
+6%8(ko — ki + 1). (A6)

Hence, those columns have nonzero entries (equal to
afv), whenever k; = ky + 7, with the exception of
the diagonal entry (k» = ko, k3 = k), which equals
Yaw + 20’:, = My

Let us collect those columns (with k3 = k3 + 1) sep-
arately, to examine whether they are linearly indepen-
dent. These columns are independent of the remaining
diagonal ones, since they have nonzero entries only in
the places where the diagonal columns are zero. Those
nonzero entries occur only for i = ky(g +2) 4+ 1, i.e.,
they are separated by ¢ + 2 zeros. If, for simplicity,
in the notation we drop the common zero entries, we
obtain the matrix

4 4
May O, -+ O,
Rop— | O ™o A7
b = (A7)
: ot
O'i, R O'i, My

In order to check if its columns are linearly indepen-
dent, we compute its eigenvalues. This matrix is cir-

culant and the eigenvalues are given by the DFT of
the first row [6, p. 73],

M—1 o
Ar =may, + Z G-j've*JZHkn,M
n=1

=ty — 00 +025(k), k=0,...,M -1, (A8)

where M denotes the size of the matrix. Since
ma, # 0, 4 = 0 only if myg,, = 62, which is impossi-
ble due to (AS3). Hence, R,y has full rank and ér, N
is a strongly consistent estimator of ..
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