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Cooperative Synchronization and Channel Estimation
In Wireless Sensor Networks

Mi-Kyung Oh, Xiaoli Ma, Georgios B. Giannakis, and Dong-jalPa

Abstract: A critical issue in applications involving networks of wire-  sue channel and carrier frequency offset (CFO) estimatigo: a
less sensors is their ability to synchronize, and mitigate the fading rithms for wireless sensor networks.
propagation channel effects. Especially when distributed “slave”

sensors (nodes) reach-back to communicate with the “masteres- We suppose that each sensor node has a single antenna to

sor (gateway), low-power cooperative schemes are well motiel. transmit and receive .data, Wh||¢_3 the central proce_ssmg uni
Viewing each node as an antenna element in a multi-input multi- (ak.a. gateway, or fusion center) is capable of deployavgsal
output (MIMO) multi-antenna system, we design pilot patterns fe€ceive-antennas. In this setting, the overall sensororétean

to estimate the multiple carrier frequency offsets (CFO), and the b€ viewed as multi-antenna point-to-point link. The ergdav-
multiple channels corresponding to each node-gateway link. Our erage) capacity of wireless multi-antenna channels caease
novel pilot scheme consists of non-zero pilot symbols along with linearly with the number of antennas at the transmitteefres,
zeros, which separate nodes in a TDMA fashion, and lead to low- provided that perfect channel estimates are availableeateth
complexity schemes because CFO and channel estimators per nodesejver [3, 22, 23]. Errors in the channel and synchroniratio
are decoupled. The resulting training algorithm is not only suit-  estimates can significantly degrade error performance cand
able for wireless sensor networks, but also for synchronization ath pacity. On the other hand, as the number of sensor nodes in-

Fham;.el ?sttlrr?atlor; of single- "’f‘nd multt_l-catrner M”\l"?_ SVHStemZ' V\I/ne creases, channel estimation becomes more challengingseeca
Investigate the perrormance or our estimators analytcally, ana wi the number Of UnknOWnS InCI’easeS aCCOrdlneg

simulations. ) _ ) ] R ]
Since this multi-sensor environment is similar to a multi-
Index Terms: Sensor networks, Synchronization, Channel estima- antenna system, existing multi-input multi-output (MIMO)

tion, MIMO, Cram ér-Rao Bound. channel estimators apply. For example, the channel estimat
in [8,12] and [15] can be recast in a wireless sensor network
| INTRODUCTION setting, even though they do not address CFO estimation. The

importance of the latter can be appreciated if we recalldbat

There has been a growing interest towards wireless senser oscillators can never be perfectly synchronous. Furtbee,
networks that emerge as a new wireless network paradigm cagen with ideal oscillators CFOs are present in a mobile en-
italizing on the cooperation among a large number of sewironment with pronounced Doppler shifts. For point-tdeo
sors [2]. A distinct feature of such networks is that reliépi |inks, existing CFO estimators can be either data-aidefi(p,
and fault tolerance is achieved through combining inforamat or non-data aided [7]. Blind methods typically require leng
from distributed sensors. These characteristics arectitefor data records, and have rather high computational complexit
both commercial and military communication networks [B]4, On the other hand, data-aided schemes based on training sym-
Moreover, efforts are under way to standardize the variayesk  bols (known to both transmitter and receiver) are bandwidth
of wireless sensor network communications; the IEEE 802.1%onsuming, but they are computationally attractive. Seee-
Low Rate Wireless Personal Area Network (WPAN) standargors are generally limited in power and computational céipab
and IEEE 1451.5 Wireless Smart Transducer Interface stdndges, training schemes with low-complexity and low-dutyley
[21]. are well motivated.

A bulk of researgh in wireless sensor networks focuses Oy this paper, we consider cooperative synchronization and
low-power cooperative schemes. However, most WOrks_a_ssugP]%nnel estimation in wireless sensor networks. Spedifical
error-free communication ghannels., and perfect §ynghmmn we design training patterns for estimating the associataii-m
between each r_lode-gatg link [6]. Since pragmatu? ereleksl ple CFOs and frequency-selective channels. Our goal should
entail channel—lr_1d_uced interference, as well as timing fed be contrasted with previous works that either estimate a sin
quency offsets, it is necessary to account for these ef@tes 1o cE6 common to all transmit antennas [5], or a singleinpu
designing distributed sensor networks. This motivate® psit- single-output (SISO) channel [10]. We design training sgtab
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output of the PU can be written as:

Ny L
_______ 9—# zy(n) = > BN RO ()py (n = 1)+ mu(n), (1)
- p=1 1=0

PU

Wireless Links

wheren € [0, N — 1]; W = 27rf(§””‘)T is the normalized
CFO with T' denoting sampling period which is chosen equal
to the symbol period; ang, (n) is zero-mean, white, complex
Gaussian distributed noise with variarcf%.
Sensor Field The PU is responsible for scheduling sensor transmissions.
To facilitate scheduling, we require that the sensor siyhal
delivered to the PU with a small delay, which can be ensured if
the PU transmits a beacon, that sensors can synchronizesto. A
each transmit-receive link, which has not been considerady timin_g acquisition is beyof‘d the scope of this paper, We 88pp
that it has been accomplished, and incorporate residuadim

existing literatures. errors in the channel orddr. The information-bearing sym-

The rest of the paper is organized as follows. In Sectionél, W5 are transmitted following the training preamble. Besen
describe our system model. The algorithms for estimating M,e channel is frequency-selective, time-dispersiverietence
tiple CFOs and channe!s are derived in Section III_. In S_eCti%merges between information and training symbols. The re-
IV, we show that our estimator can be used for multi-user multejved samples, (n) in (1) correspond solely to the transmitted
carrier systems. Performance of our estimators is analyred,jjots, excluding those that contain interference fromittier-
Section V. In Section VI, simulation results demonstrate thy,ation symbols.
potential of our algorithms, while Section VII concludessth  op, the other hand, sensor networks need to handle thousands
paper. of sensor nodes. We assume that this problem can be solved by

Notation: Upper (lower) bold face letters indicate matsiceadapting a very efficient medium access control (MAC) tech-
(column vectors). Superscript)” will denote Hermitian(-)T  niques to accommodate thousands of sensor nodes [21], which
transpose, an@l)* conjugate. The real and imaginary parts ang beyond the scope of this paper. In this paper, we consider
denoted ast[-] andS3[-]. E[:] and Varf] will stand for expec- multiple access in the physical layer, for which limited rem
tation and variance, [tf for trace operation, and diag) for a of sensor nodes can access the channel at the same time.

diagonal matrix withz on its main diagonal. For a vectdr, ||
denotes the Euclidean norm. We will ugk];..,,, to denote the !ll. ESTIMATING MULTIPLE CFOS AND CHANNELS

(k,m)th entry of a matrixA, and|x],, for the mth entry of  we wish to estimate the carrier frequency offset§”*)} V=
the column vector; Iy to denote theV x N identity matrix; 5.4 the channelsh(’*”)}g;l, whereh®#) .= [ (0),. ..

[Fn]mn = NO/2exp(—j2mrmn/N) the N x N fast fourier
transform (FFT) matrix.

Fig. 1. Schematic system model for wireless sensor networks

AW ()T, based on thevth antenna received samples
{z,(n)}}=y and the pilots{p,(n)})2,, n € Z. Equation (1)
shows that estimating CFOs and channels figitn) andp,, (n)
IIl. SYSTEM MODEL AND ASSUMPTIONS is a non-linear problem, whose solution is computationgitty-
hibitive. We will thus decouple CFO and channel estimatiam f
Fig. 1 depicts our system model that includ®s sen- each sensor using a TDMA scheme, and we will show that the
sors (nodes) in the sensor field communicating with a cefesulting estimators enjoy low-complexity and guarantkmni
tral processing unit (PU) equipped with multiple antenrigs s tifiability. TDMA is chosen because it leads to the desirable
nalling over wireless channels. The fading channels betweew-duty cycle sensor operation, which is important forrgge
each sensor and the PU entail rich scattering and have ded#fitiency.
spread greater than the symbol period; i.e., they are frepde  For clarity, we will start our design of pilot symbols with a
selective. Define the discrete-time baseband equivalemtreh single sensor. Design of pilot symbols for multiple sensuitks
from theyuth sensor to theth receive-antenna a@8"*) (1), I € be described in Section I1I-B.
[0, L]. We note that the channel sounder can be used to char-
acterize the wireless channel [19]. In addition to multilpa A. Single sensor
this equivalent channel incorporates also transmit- agélive-  For g single sensor, we drop the sensor indeand thus (1)
filters, as well as timing offsets in the form of pure delayté#s. | eqyces to
Let the CFO between oscillator of theh sensor and theth

receive-antenna of the PU be denotedfﬁ’s‘” (in Hz), which &

’ — eJwo ' (v) _
could be due to Doppler, or, mismatch between sensor-receiv zy(n) = ¢’ > hOp(n = 1) +m(n), (2)
oscillators. =0

To estimate theN, channels and théV, CFOs for each wheren € [0, N—1], andN is the total number of pilot symbols.
receive-antenna, pilot symbo{%(n)}ﬁ[;l, n e€Z:=[0,N — Letusdefine the set of pilot symbolsBs:= [0, N, —1], where
1], are transmitted by theth sensor. Samples at thth antenna N, = N — L.
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To further reduce complexity, we also wish to separate CF&ror (LMMSE) channel estimator can be used instead of the LS
from channel estimation. Note that the CFO appears as a-muttie in (8), which can be expressed as:
plicative factor in each received symbol. This suggesescsielg < () N Mo 1
pilots to keep the sum in (2) identical for at least twg(n)’s, hiyivse = (R0 + PP) " Py, 9)
and estimating the CFO from their phase difference.

Targeting such an approach, we select pilot symbols as fg
lows:

The natural question that arises at this point is whether we
an always fingp such thatif (") (p) # 0. If p in (3) satisfies
JE ot nel H®™)(p) = 0, then CFO is non-identifiable. To guarantee iden-
p(n) = { % ’ P (3) tifiability, one needs to collect additional observatiod$ for
more thanl distinctp's. If we choose(L + 1) pointsp; € C,
wherep is an arbitrary complex number witp|? = 1, and€, is | =0,..., L, such thap,, # p,, Vm # n, we have
the energy of the training symbol, which could be chosen lequa

)
,ne€l,,

. . (v) -1 . —L ()
to the energy of the information symbé|,. The set of zero H(V)(p()) 1 pgl ng h(y)(())
pilots is defined ag,, , := [N,, N — 1]. HO(p) | _ | Lo op ht)(1)
Substituting (3) into (2), we obtain : o : :
. H(”)(pL) 1 PZl . PZL h(¥) (L)
iwn n v —
2,(n) = /& - "> W (1)pT 4 mu(n),  (4)
=0 = ©h).
(10)

forn € [L, N, — 1. It H®) (p) := 2 A (1)p~t # 0, the
noise free version of (4) can be written as: We note that the Vandermonde matéxin (10) has always full
o rank, sinceh®) # 0, and we can obtain at least one nonzero
z,(n+1) = pe’> x,(n), forn e [L,N,—2]. (5) H"(p,)among(L + 1) blocks. The sefp,}L_, is clearly not
unique. For example, if we selept = e727/(L+1) for | =
Clearly, we requireV,, — 2 > L in (5), which implies that the (1, ... L, then® in (10) becomes unitary matrig/(Z + 1) -
minimum number of pilots isV, > L + 2. The CFO estimator FL.1, whereF, isan(L + 1) x (L + 1) FFT matrix.
follows easily from (5) in closed-form:
B. Multiple sensors

Np,—2 . . . .
(V) a1 N - In the previous subsection, we designed the pilot pattern to
W, ’ = tan Z Slaw(n+)p*a,(n)] | / estimate the CFO and channel corresponding to a singlersenso
n=L (6) We found from (3) that at leadt + 2 consecutive nonzero pilot
Np—2 symbols guarded by. zeros are sufficient. In this subsection,
Z Rz, (n+ 1)p"z,(n)] ) we consider multiple sensors, where distinct pairs of seresed
n=L receive-antenna elements have distinct channels and GEQs;

there areV, channels, andVy, CFOs to be estimated per receive-
and should be intuitively expected since in the absenceiseno antenna. In the following, we will show how relying on TDMA,
the phase ot (n + 1)p*x%(n) equaISwE,”). We also note from we can desigr{p,t(n)}ﬁfgl, n € Z for the uth sensor, so that
(6) that the accuracy of CFO estimator increases, as the eumdignals from different sensors can be orthogonally seedrat
of training symbolsV,, increases. the PU. Let us recall from (1) th&at was defined as the set of

Based on the estimated CFO in (6), we can compensate ifiticesn € [0, N — 1] := 7.

the CFOw{"” from z,(n) in (2), and proceed with channel esti- To estimate{w((,”’“), h("»“)}ffgl on a per sensor basi§,
mation. To derive our channel estimator, we temporarilyass should be orthogonally separated iifg non-overlapping sub-
that the CFO estimate is perfect; i.e{” = w”. By simply sets, i.e.{Z#} 7, should obey[}* NItz = @, Vpi # o
formingy, (n) = exp (—j@$" n)z, (n), we then obtain If a sequence of length,, is linearly convolved with a chan-
nel of lengthL + 1, the resulting sequence has length + L.
L This means that. guard zeros should be appended\ip con-
yo(n) = > h¥(I)p(n —1) +n(n), for n € [0, N —1]. (7) secutive non-zero pilots to avoid interference among senso
1=0 Thus, time is divided in sensor-specific slots, with eachado-
taining IV, + L symbol periods. This implies that the whole

Using the least-squares (LS) approach, we can easily eetin}?aining block per sensor should have length= N, (N, + L).
the channel as [c.f. (7)}; Now we can divide theV,, 4- L slots per sensor into two sets:

by = (P"P)~'P"y,, 8) Ty =[Ny + L) (u— 1), (N + L) (i — 1) + N, — 1],
[ — —
whereP is a Toeplitz matrix with entriefP], ; := p(i—j), 0 < I} o =[(Np + L)(p — 1) + Ny, (N + L) — 1],

i<N-1,0<j<Landy, := [(0),... ’y"(NH_ DT I whereZt N 7#, = @, ¥y, and the setg andZ#, represent
the channel covariance mati;,, := E[h*)h(*) "] and the the parts ofV,, nonzero pilot symbols anfl guard zeros corre-
noise varianca?7 are available, a linear minimum mean squargponding to the:th sensor.
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Similar to (3), our pilot pattern can be chosen as: Training . Payload
N, L » i L , i Li L
Vép-pt ,nell P, o 0o o| o ]o]o Sensor 1
n) = ’ P, . 11
Pu(n) { 0 , otherwise (11)
P, 0 0 0 0 0 0 Sensor 2

The data in (1) can now be orthogonally separated Micsets i P i N i
of observations, each having the same structure as thasfor a p3’| 0 | 0 | 0 | 0 | | 0 ‘ 0 ] | Sensor 3
gle sensor. For thgth sensor, we thus have

Fig. 2. Pilot pattern p,, with N, = 3 sensors

L
jw )y v,
2y pu(n) = e R (D, (n = 1) + 1, (n)
=0 . (12) nonlinear and statistical, requires many data blocks, aitl g
jw My v — search.
=& - N R ()T 4y (n), o ,
s 4. For CFO and channel estimatioh,+ 2 non-zero pilots,
equal to the number of unknowns ¢ 1 channels and CFO),
wheren € [(N, + L)(u — 1), (N, + L)p — 1]. are only needed. This minimal training confirms band-width
By using the fact that,, , (n+1) = pei®s"" z,, ,(n) in (12), efficiency.
we can estimate’{”* andh®» for the uth sensor in theith 5. Our algorithm can be easily applied to packet transmis-

antenna of the PU using (6) and (8) as follows: sions, where the pilot part is attached to the payload pdre T
latter may be quite long, anfl guard zeros are required to de-

o = couple it from the pilot part. In this case, CFO estimatiomgs
(Np+L)(u—1)+N,—2 two id.entical packet's'r.equired by [9] can not pe used, sihee t

tan1 Z Sy, (n+ 1)p*a, ,(n) resulting CFO acquisition range shrinks considerably.
n=(Np+L)(u—1)+L 6. There is a tradeoff between estimation accuracy and band-

(N,+L)(u—1 B width efficiency: if more pilots are used, the performancédf

R be improved, at the expense of bandwidth-efficiencychvhi
_ can , -
/ > Rlw(n+1p"e;,, ()] | o b b ¥

e (No 4 T (1) 4 L will be demonstrated in Example 4 of the Section VI.

(13) Additional remarks for the multi-sensor case are now inorde
1. The number of pilot slots per sensorNs= (N, + L)N;,
and <o) whereN,, > L + 2. The pilot pattern is depicted in Fig. 2, to-
hig" = (P7P) Py, ,, (14)  gether with the payload part separatedibguard zeros. It fol-

lows by inspection that the training sequences of multiple-s
wherey, . = [y (Np + L)1t = 1)), . 90 (Np + L) — y Insp g seq i

P () sors are scheduled in a TDMA fashion.
)] with entryy, ,(n) = exp(—jws "'n)x,, ,(n), andP has , . o
the same structure as that of (8). Notice that we utilize max-2: 1he duty cycle for the pilot part is just, /N, which im-
imally the advantages of TDMA scheduling to estimate CFGY/eS that our scheme is energy efficient per sensor.
and channels.

C. Further Considerations IV. APPLICATION TO MULTI-USER MULTI-CARRIER

' SYSTEMS

We have proposed CFO and channel estimators for wireless
sensor networks. Following remarks are pertinent to our CFOIn the previous section, we proposed a training patternder e
and channel estimators in (6) and (8): timating multiple CFOs and multiple channels in wirelesssse

1. The training patten for a single sensor consistd/pfcon- networks where single-carrier transmissions were consitle
secutive non-zero pilots, andguard zeros. To guarantee idenBecause orthogonal frequency division multiplexing (OFDM
tifiability for any channel and any CFO\"M ¢ [, ), one has been widely adopted by many standards such as DAB, DVB,
needs to collect at leagk. + 1) blocks for distincty’s. HyperLAN, IEEE 802.11a and IEEE 802.16a, we want to ap-

2. Our CFO estimator in (6) is reminiscent of the one iRly our scheme to OFDM systems which exhibit sensitivity to
[9], where [9] employed two consecutive and identical tirzgn CFO [20]. I.n.this case, mobile users in an uplink orthogonal
blocks with block lengthV for the single antenna system. How{réquency division multiplex access (OFDMA) system are-con
ever, the acquisition range of our CFO estimatdi-is, ) for S|dered._ln this section, we will show th._':lt the training pa_ttof _
any channel of ordek, which is to be contrasted with [9] whoseth€ previous section can be also exploited to synchronize-wi
acquisition range is limited tl /N)[—, 7) and [11] whose ac- less MIMO systems that employ multi-carrier transmissions
quisition range depends on the number of identical parts in aConsidering multi-carrier operation, we suppose thatake t
block. The performance comparison regarding this issueb&il number of subcarriers & := N, (N, + L), whereN, of them
shown in Example 1 and Example 4 of the Section VI. are used for data transmission, ahds the number of guard

3. The closed form estimator in (6) has lower complexity thagvirtual, or null) subcarriers per mobile user. Notice thatis
the maximum likelihood estimator (MLE) in [10], which beingthe number of mobile users. The received samples avthe
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antenna in the base station are given by same structure as in (17). Now we can directly use our estima-
N1 tors in (13) to estimate multiple CFQ@s/{""*" }f)’;‘l and channels
Z el Z R (1 Z o (k)e2mkn=D/N {h® l‘)}ﬁle from x,, in (18) for these multi-carrier systems.
k=0
+nl/( )a [03N+L71]a

V. PERFORMANCE ANALYSIS

(15) To benchmark the performance of our estimators, we de-
rive the Crangr-Rao lower bound (CRLB) of CFO. Because

where the first samples equal the lagtones and thus consti- our CFO estimators among sensors are independent, the-singl
tute the cyclic prefix (CP), and,, (k) is the pilot symbol trans- sensor CRLB is considered. Now the system model in (17) be-
mitted on thekth subcarrier of theith mobile user. What is dif- comesx = Dy (w,)Hp + n, where we drop the sensor indices
ferent in (15) relative to (1) is the transmission modalify;, N (v, ). In this case, we can derive the CRLB as follows:
carriers are used here. We note that the other parametdrS)in ( . o
are the same with those in (1): the same models of the channel (L H
and CFO. The vector-matrix counterpart of (15) after didicay CRLB., = < o1 [D(k)PRhP D(k)]) ’ (19)
the CP from (15) can be obtained as (see Appendix C):

Tn

whereD(k) := diag0,1,...,N — 1], R, := E[hh*], and

P is a Toeplitz matrix as in (8). We observe from (19) that as
the number of training symbol¥,, (and thus\) increases, the
CRLB for CFO decreases.

where y, = [1,(0),....5(N — 1)]7, and u, = For our estimator in (13), we consider the conditional mean

[, (0), ..., u,(N — 1)]7 should be judiciously designed to@nd variance ot givenws™", and 8 (n) = /€, -
exploit the advantages of simple estimators in the pre\axp(]wf) vik) n)p" Z R (D)p~tforn = (Np+L)(u—1)+
ous section,H*) is a circulant matrix with first column L,. ,(Np + L) (1 — 1) + N, — 1. For small errors, we can
[R®1(0),..., K" (L),0,..., 0]7, and Fy is an N-point approximate the conditional mean and variance as follows:
FFT matnx The CFO matrix is defined &y (w"*")) =
dlagjl,eiw >’...7 jwSH) (N — D]. We note that (16) is differ- E[@f,”’“)— “)‘W ) ABuu(n )}TLN(;FVL-)‘:-(Z)(/IJ)+11;[+L1] =0
ent from that in [13], where we derived CFO and channel es- (20)
timators for MIMO-OFDM having common CFO between all
transmit and receive antennas. In contrast, CFOs betwetn ¢'d
transmit-receive link are allowed to be distinct here. (v, v, (Np+L)(p—1)+N,—1

To estimate{w”"/ 12+, and{h®#)} "=  in (16), we can use Var(@§ ) | Wl (B () 2N ey |
the cooperative synchronization scheme in the previougsec . 1 (21)
for which {uu} 1=, should be cooperatively designed for each (N, — L — 1) - SNR’
mobile user. To further study this application and the perfo
mance of our estimator, we introduce the vector-matrix tetn whereo, = N,/2, and SNR= (&, /07, )Zl o [RER (D)2,
part of (1) as: We note from (20) that the CFO estimator is conditionally

unbiased for small errors, and from (21) the variance of tR@C

. » . estimator decreases as the number of training symbols aRd SN
= Z Dy (W )HMp, +1,, A7) increase.

p=1

N
= s LD (W AW F T, + v, (16)

. : . . VI. SIMULATIONS
where H*#) is an N x N Toepliz matrix having the
first column [ (0),..., K" (L),0,...,0]7, andp, := We conducted simulations to verify the performance of our
(1, (0), ..., pu(N —1)]T. Recall that our focus on determmmgdeS'gnS for wireless sensor networks. In all experiments, w

training symbols has been to flt{d)u} , so that estimators of considered an exponential channel model, for which taps are
h= independent complex Gaussian random variables with aver-

age power profile that decays exponentially, and additivikewh
Gaussian noise with zero-mean and vanamﬁ:e The informa-
tion symbols were drawn from a QPSK constellation.
Example 1 (acquisition range of CFO estimator): To con-
N. firm the acquisition range of our CFO estimators, we compared
x, = Z 9 LDy (WY p, 41, (18) against the single sens@N, = 1) algorithm in [9] where the
maximum likelihood estimator of the CFO was given based on
two consecutive and identical training blocks. We note that
We note that circulant and Toepliz matrices obey followeFQ estimation can be done within a block as shown in (3).
ing property: H*T,, = H®”AWT,, whereT., = Figure 3 depicts “true CFO” versus “estimated CFO” when the
[In_z On—ryxz]"- In our training scheme, the laétzeros channel order i€ = 3 and the block lengttV is 8 and 12. The
in p, allow H** to be replaced b **), which yields the ideal line, for which the estimated CFO exactly follows theet

CFOwo”’“) and channeh(*) for each sensor can be orthogo-
nally separated by TDMA.

If we select training symbols as, := Fyp,, in (16), where
p,, follows the training pattern in (11), then (16) reduces to

p=1
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Fig. 3. CFO acquisition range comparison with channel order L = 3 Fig. 5. Average normalized MSE for channels
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Fig. 4. Average normalized MSE for CFO Fig. 6. Average normalized MSE of CFO for different number of pilots

CFO, is also shown for comparison. We deduce from Fig. 3 th@imber of sensors.
our CFO estimator enjoys full acquisition range like ide@d€,  Example 3 (performance of channel estimator): To test
while the algorithm in [9] has the limited acquisition range., the performance of multi-channel estimation, we udéd =
the CFO estimator of [9] fails to estimate CFO in the out of its. 2. 4, andL = 3, with the CFOs being randomly selected in
acquisition range that is inversely proportional to thecklsize the range of—0.5x, 0.57]. Single sensor CFO estimators were
N. For example, if true CFO is, = , then our CFO estimator calculated first as in (5). Based on the estimated CFOs, Fig. 5
can give the estimated CFO, while [9] fails to estimate CFO, ghows channel estimation performance. To quantify chaesel
shown in Fig. 3. timation performance, we computed the average channel NMSE
Example 2 (performance of CFO estimator): Fig. 4 showgs E[|| h — h 2]/ || h ||2, whereh was obtained using the
average normalized mean square error (NMSE)ofor Ny = LS method. The ideal case assuming perfect CFO estimation
1, 2, 4, whereL = 3, and the CFOs are uniformly selecteds shown for a benchmark to isolate the performance of chan-
in the range{—0.57,0.57]. The number of pilot symbols pernel estimation, which is also confirmed to be independertief t
node isN, = 4(L + 2), which is more than the minimum re-number of sensors.
quired number of pilot symbols + 2. As a means of compari-  Example 4 (tradeoff between performance and the number
son, we calculated the normalized mean square error (NMS§thilots): Although the minimum number of pilots for our CFO
of CFO defined as:E[| @, — w, [?]/ || wo [°, where and channel estimator & + 2, the use of large number of pi-
(1) w(”’N“)]T, and likewise ford,. The CRLB lots gives better performance, which will be demonstratem h

wo = [we 7y, W
we derived in Section V is also shown as a benchmark. Tharnkse parameters used in this example are the same with those
to the TDMA-based cooperative scheduling, we infer that tlie Example 2 and 3. Since we already checked that the perfor-
performance of our CFO estimators does not depend on thance is independent of the number of sensors, we test the cas
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NMSE of Channel NMSE of CFO
10 T T 10 T
-7 # of pliots=1(L+2)
—& # of pliots=3(L+2)
—©~ # of pliots=5(L+2)
—— Ideal(w/ known CFO)

Channel NMSE
Average NMSE for CFO
=
S

—# Proposed (wo =m10)
—o— Morelli method (vvu =1710)
107k | = Proposed (wo =14)

—g— Morelli method (vvu =14)

-2 I I I I I
0 5 10 15 20 25 30 0 5 10 15 20 25 30

SNR SNR

Fig. 7. Average normalized channel MSE for different number of pilots Fig. 8. Average normalized CFO MSE for multi-carrier system (Ns; = 1)

N NMSE of Channel
10 T

of Ny = 1 with N = 32 andL = 3. Figure 6 and 7 show the
performance of CFO and channel estimator, respectivelgnwh
N, =1(L+2), 3(L+2)and5(L + 2) are used. Itis observed
that our estimator with larger number of pilots achievegdret 10° 1
performance.

Example 5 (multi-carrier transmissions): To examine the
performance of CFO and channel estimator with multi-carrie
transmissions, we compare our method with an existing ndetho
in [11] for single antenna. For our algorithm, we ude =
32 (i.e., the number of subcarriers), carrier frequency 5 GHz,
OFDM symbol (without CP) period 3.2s and signal band- 107
width 10 MHz. To maintain the same transmission rate, tha pil
length of [11] is 32 with 4 identical parts, i.e., the blockdgh
is also32. In Figure 8, two cases are considereg; = 7/10 . ‘ ‘ ‘ ‘ ‘
which is chosen within the acquisition range of the method in  * © s 10 & 2 % %
[11], andw, = =/4 which is out of the acquisition range. If
the CFO is chosen within the acquisition range of the methéi. 9. Average normalized channel MSE for multi-carrier system (N, =
in [11], our method has comparable performance with the one B
in [11]. For the case ab, = /4, we also observe from Fig.

8 that our algorithm still enjoys performance comparablthto
first case ¢, = m/10), while the method in [11] fails becaus
its acquisition range is, € [—7/8,7/8]. Moreover, differ-
ent from the method in [11], our method also considers cHanne
estimation. Figure 9 shows the performance of the chantiel es ) ,
mator. Although our channel estimator is not optimal for QD APPENDIX A: Cram ér-Rao Lower Bound

system, the proposed pilot design enables to estimate tkle CF We derive Crarar-Rao Lower Bounds (CRLB) to benchmark

—— propose
—©- propose (w/ perfect CFO)

10°

Channel MMSE

lation results confirmed improved estimation performareta-r
Ctive to competing alternatives.

and channel together within one OFDM block. our estimators. The input-output relationship for a sirggesor
is given as:x = Dy (w,)Hp + 1. Because convolution is a
VII. CONCLUSIONS commutative operation, we deduce tilp = Ph, whereP is

. — i i i i i=p(i—j <3<
In this paper, we addressed synchronization and channel %;r_oelpll(t)z !?TXLhalé?ghﬁfarggqg]ﬁjl) faEZ)PQ ’+(7)7_ t=
- 4 = > Ly, - N\Wo .

timation in the context of wireless sensor networks. Based . . )

on judiciously designed pilot symbols, we separated CFO andThe CRLB for the CFO estimator is defined as:
channel estimation per node. The low-complexity and low 57\ —1
duty-cycle features of our schemes make them attractive for CRLB, — |E ‘3|np(xwo’h)’ (22)
power-limited sensor network operation. In addition torgge ’ dw, ’
efficiency, our CFO estimator exhibits full acquisition gan We

also showed that our CFO and channel estimators can be usbérep(x|w,, h) is the probability density function of condi-
for multi-user multi-carrier systems. Both analytical asichu- tioned orw, andh.
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For a given(w,, h), the observation vectoris Gaussian with where G' == (pf3,,.(n) + 1, (n + 1)e=7"")(p* Bz, (n) +

meanD y (w,)Ph, and covariance matri(szN. Thus, the like-

lihood for the parametei, w, ) takes the form
p(x|wo, h) =

1 1 "

WeXp{g—%[x — Dy (wo)Ph]"[x — DN(wo)Ph}} .
For one observation block, the log-likelihood function igem
as:

Inp(x|w,, h) =

- %[x — Dy (wo)Ph]"[x — Dy (w,)Ph]. &

Nln(QWJz)

By differentiating Imp(x|w,, h) as in (23) with respect to,,
we obtain that
onp(x|w,, h) 2 4
0, = U%\s (n D(k)DN(wO)Ph) ,

(24)

whereD (k) := diag0, 1, .. .,
tion of CFO is given as

- Lu [DMPR,PMD(E)]. (25)
99

. ‘ammxwo,h) '

Ow,

whereR;, := E[hh"!]. As aresult, the CRLB of CFO estimator

is given as the inverse of the Fisher information.

CRLB,, = (iztr [D(k)PRhPHD(k)})l.

Th

(26)

APPENDIX B: Proof of (20)and (21)

We derive an approximate closed form expression for the

conditional mean and variance dfy"") given " and

Buu(n) = /&, - exp(jws”"'n)p" Sy K (1)p~" for n =
(Np+L)(p—1)+L,...,(Np+L)(n—1)+ N, — 1. To obtain
the tangent of the phase error in (13), we have

tan(d)g”’“) — u)(()v,u)) =

Q+Np—2
Z %[l'v,u(n + l)p*mwﬂ(n)*efngu,m}
(27)

n=Q+L

Q+Np—2
/ Z §R[Il”/‘(nJr1)/0*xu,u(Tl)*(fj‘*’éu’m] .

n=Q+L

whereQ := (N, + L) (1 — 1). As[&8"" —w$""| < 1 holds
for high SNR, the tangent can be approximated as:

Q+N,—2 Q+Np—2
s~ = |3 s(al) /| Y RiG)
n=Q+L n=Q+L

(28)

N —1]. Thus the Fisher informa- 2

p*ni(n)). At high SNR, (28) can be approximated by

&‘)(()Vvl‘) — w(()l’#‘) ~

Q+N,—2
> S (n(n+ 18, (n+ 1) + |p*n;(n)Byu(n)
n=Q+L
Q+Np,—2
D0 1P |
n=Q+L
(29)
from which we can find that
B0 — wlm) | wl) {8, ,(n)} 1 =0 (30)

The conditional variance of our estimate can be easily deter
mined by taking expectation of the square of (29) to resultin

2

1 Q+Np—2 Q+Np,—2
LEl S )8, 0t )+ S 7))
n=Q+L n=Q+L
Q+Np—2 2
/1oI"E Y 1B
n=Q+L

(31)

Notice that we designed training symbols so thdt = 1 and
noise variancefh = N, /2. Thus we can obtain from (31) that

1 1 1

1
1 Ho = 2
P AR A R A

whereé, is the received total signal energy for an interval where
CFO estimation can be performed, which is defined as:

Q+Np—2
&= Y. E[Bun)s,n)
n=Q+L i (33)
= (N, = L—=1)-& > [h"M 1)
=0
Finally, we have
(i) | () Q+Np—1y_ 1
Var[wo | Wo >{ﬁV7H(n)}n:Q+L } (Np _L— I)SNR’
(34)

where SNR= (&,/02) S/ [h9)(1)]2.

v

APPENDIX C: Derivation of (16)from (15)

Let us consider a vectar,, := [u,(0), ..., u, (N —1)]7 with
length N, for the uth mobile user. In OFDM system, we im-
plementN-point inverse FFT (via left multiplication WitlF?Q‘,)
on each blocks,, and insert the cyclic prefix (via left multipli-
cation with the matrix operatdf’,, := [I7, x Ixn]”, where
I N denotes the last columns ofI ). After parallel to se-
rial (P/S) conversion, the resulting blocka,, := T, Fyu,}
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of size P x 1 are transmitted through frequency selective chary I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayird $urvey on
nel, whereP = N + L sensor networks,/EEE Communications Magazine, vol. 40, pp. 102-114,
’ . : . . Aug. 2002.
The received samples at thvth antenna in the base station 9

; ; ; _ [3] G. J. Foschini and M. J. Gans, “On limits of wireless commatian in
are given by (15)' The Sequen@e(n) is then serial to par a fading environment when using multiple antennadfjieless Personal

allel (S/P) converted ¥1td3 x 1 blocks with entriesz, := Communications, vol. 6, no. 3, pp. 311-335, Mar. 1998.

[2,(0), .., 2, (P = 1)] " Then’ we ghscard the ,CyC“C pref|x[4] D. N. Jayasimha, S. S. lyengar, and R. L. Kashyap, “Inforomaintegra-
of length L by left multiplying x, with the matrix R, := tion and Synchronization in distributed sensor networkSEE Trans. on
[ONxL IN]- Denoting the resulting block ag, = chwl” Systemns, Man and Cybernetics, vol. 21, pp. 1032-1043, Sep./Oct. 1991.

we obtain the following vector-matrix input-output retatiship:  [5] Y. D. Kim, J. K. Lim, C. H. Shu, E. R. Jung and Y. H. Lee, “Carriee-
guency estimation for transmissions with antenna divetsigoc. of Intl.
Conf. on \ehicular Technology, vol. 3, pp. 1569 -1573, 2002.

Ns
Yy, = Z RCpr(wg““))H(”’“)TCPFﬁu“ + R.ym,, (35) [6] J.N.Laneman and G. W. Wornell, “Distributed space-timdemprotocols
for exploiting cooperative diversity in wireless netwotkEEE Trans. on
Information Theory, vol. 49, pp. 2415-2425, Oct. 2003.

v € [1, Ng], wheren,, := [1,(0),1,(1),...,n,(P—1)]T, with [7] X.Ma, C. Tepedelenlioglu, G. B. Giannakis and S. Barisae “Non-data-
_ . (v,p) Px Pl . lar T l aided carrier offset estimation for OFDM with null subcarsieldentifiabil-
P=N+L H Isar X ower triangular Toeplitz ity, Algorithms, and PerformancelEEE Trans. on Commun., vol. 19, no.

p=1

matrix with first column[h*#)(0),..., h»*(L),0,...,0]7; 12, pp. 2504-2515, Dec. 2001.
andDP(wé”’“)) is a diagonal matrix defined dBp(wgy’“)) := [8] X. Ma, L. Yang and G. B. Giannakis, “Optimal training for MIO
. Gl jwlrm) (P-1) frequency-selective fading channelsZEE Trans. on Wireless Commun.,
diagl,e/«s ", ... eI¥o ]
S _ vol. 4, pp. 453-466, Mar. 2005.
Based on the structure ?f tl;]e matrices !nvowed’( It C)an bd}re?g] P. H. Moose, “A technique for orthogonal frequency divis multiplexing
; o vy o jwlrH L U, - M. '
||y verified that chDP(wo ) (_ )eiwo ?N)(Wo )ch, frequency offset correctionfEEE Trans. on Commun., vol. 42, pp. 2908-
whereD y (w"") := diag1, e/«s™ ... i@t (N=1)] Fol- 1314, Oct. 1994.

; o ; () (v,p) [10] M. Morelli and U. Mengali, “Carrier-frequency estimati for transmis-
lowing this identity, let us 9?;'2)@1 = Ro,H Tep, sions over selective channel$ZEE Trans. on Commun., vol. 48, no. 9 pp.
where theN x N matrix H " is circulant with first col- 1580-1589, Sep. 2000.
umn [A#(0), ..., AW (L),0,..., 0]7. Letting alsov, := [11] M. Morelliand U. Mengali, “An improved frequency offsestimator for
Rcz>77w we can re-write (35) as: aI;DI:\L/Igggplicatins,’l EEE Communications Letters, vol. 3, no. 3, pp. 75-77,

N, " ) [12] R. Negi and J. Cioffi, “Pilot tone selection for channetimation in a
_ jw L (v, g\ M pH mobile OFDM system,1EEE Trans. on Consumer Electronics, vol. 44, no.

Yu Z € Dy (w,")H " Fyu, + v, (36) 3, pp. 1122-1128, Aug. 1998.
pu=1

[13] X.Ma, M.-K. Oh, G. B. Giannakis, and D.-J. Park, “Hopgipilots for es-
timation of frequency-offset and multiantenna channels iMR}OFDM,”
|EEE Trans. on Commun., vol. 53, no. 1, pp. 162-172, Jan. 2005.

[14] J. G. ProakisPigital communications, McGraw-Hill, 4th edition, 2000.

é:LS] Q. Sun, D. C. Cox and H. C. Huang, “Estimation of continsifiat fading
MIMO channel,”|EEE Trans. on Wireless Commun., vol. 1, no. 4, pp. 549-

which turns out to be (16).

In the absence of CFQu{"*) = 0), taking the FFT ofy,
gives the frequency-selective channel equivalent to afddte
fading subchannels, i.e., the conventional MIMO-OFDM sy

tem [13] 553, Oct. 2002.
N [16] M. L. Sichitiu and C. Veerarittiphan, “Simple, accuraitme synchroniza-
_ : ~(v,1) tion for wireless sensor networksroc. of | EEE Wireless Communications
g:=Fny, = Z Dy(h " )uy + Fyu,,  (37) and Networking, vol. 2, pp. 1266-1273, March 2003.
pn=1

[17] Z. Wang and G. B. Giannakis, “Wireless multicarrier comgations:
Where Fourier meets ShannonEEE Sgnal Processing Magazine, vol.

where we use the fact thﬂNﬁ(V’“)F% is a diagonal matrix 47 Pp- 29-48, May 2000.

~ (v,p) SR D R A O 7 (v, [18] K. Yao, R. E. Hudson, C. W. Reed and D. Chen, “Blind beamiog
DN(h ?' fo! whichh T [h( _H) (0)’ R Rt QW(N— on a randomly distributed sensor array systelBEE Selected Areas in
1)/N)|T with h#)(27n/N) denoting the(v, uu)th channel’'s Commun., vol. 16, pp. 1555-1567, Oct. 1998.

frequency-response value on thth FFT grid, which is given [19] J. Kivinen, T. O. Korhonen, P. Aikio, R. Gruber, P. Vaiainen, and S.G.

by ) (2mn/N) := ZZL—O R (1) exp(—j27in/N). Haggman, “Wideband radio channel measurement system at 2GHEE
- Trans. on Instrumentation and Measurement, vol. 48, issue 1, pp. 39-44,
Feb. 1999.
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