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Abstract—Optimal transmitter designs obeying the water-filling princi- ~ approach relies on the Chernoff bound on SER. Optimal pre-
Pel s deterministicaly khown and reqularly Updated at the transmiter. CO0GTS (UM out 0 be eigen-beamformers with multiple beams
gicause channel sta%le information mgy beycogtly or impossible to acqtiire pointing to Ortthonal dlrectlor_ls along the elgenvectors_ of
in rapidly varying wireless environments, we develop in this paper statis- the channel's covariance matrix; hence, the name optimal
tical water-filling approaches for stationary random fading channels. The transmitter eigen-beamforming. The optimal eigen-beams are
resulting (_)pt_imal designs require' only knowledge of the channel’'s secqnd power loaded according to a spatial Water-filling principle. To
order statistics that do not require frequent updates, and can be easily : . .
acquired. Optimality refers to minimizing a tight bound on the symbol ~ iNCrease the data rate without compromising the performance,
error rate. Applied to a multiple transmit-antenna paradigm, the opti- ~ we also propose parallel transmissions equipped with orthogo-
mal precoder turns out to be a gengraliz_ed eigen—beamf_ormer with multi- 5| space time block coding (STBC) [l, 3, 10] across optimally
ple bearps pointing to orthc_)gonal dlr_ectlons along the eigenvectors of the loaded eigen—beams. Interestingly coupling optimal precod-
channel's covariance matrix, and with proper power loading across the : ’ J - .
beams. Coupled with orthogonal space time block codes, two-directional ing with orthogonal STBC leads to a two-directional eigen-
eigen-beamforming emerges as a more attractive choice than conventional hpeamforming that enjoys uniformly better performance than
\?v?tf]f&rter‘;tt'g?:'d fgﬁ)?fg?gg”rgblgg?y ‘i’nnc'fr‘;gz'g’_ better performance, and o conventional one-directional beamforming without rate re-

duction, and without complexity increase.
Notation: Bold upper (lower) letters denote matrices (col-
. INTRODUCTION umn vectors)(-)*, ()7 and(-)** denote conjugate, transpose,

Multi-antenna diversity is well motivated for wireless comand Hermitian transpose, respectively;| stands for the ab-
munications through fading channels. In certain applicatiorsglute value of a scalar and the determinant of a matr{x} E
e.g., cellular downlink, multiple receive antennas may be estands for expectation,{t} for the trace of a matrix; Rg-}
pensive or impractical to deploy, which endeavors diversigtands for the real part of a complex numhig; denotes the
systems relying on multiple transmit antennas. identity matrix of sizeK’; 0k« p denotes an all-zero matrix

When perfect or partial channel state information (CSI) isith size K x P; diag(x) stands for a diagonal matrix with
made available at the transmitter, multi-antenna systems @amits diagonalf-], denotes theth entry of a vector.
further enhance performance and capacity [7]. For slowly
time-varying wireless channels, this amounts to feeding back Il. SYSTEM MODEL
to the transmitter the instantaneous channel estimates [7, 11Fig. 1 depicts the block diagram of a transmit diversity sys-
But when the channel varies rapidly it is costly, yet not meagem with a single receive- and, transmit- antennas. In theh
ingful, to acquire CSI at the transmitter, because optimal tranansmit-antenna, the information-bearing siga@)) is first
missions tuned to previously acquired information become ogpread (or, precoded) by the codge := [c,(0),...,c.(P —
dated quickly. Designing optimal transmitters based on stat'@iT of length P to obtain the chip sequenceu,(n) =
tical information about the underlying stationary random chag—:;’i_m s(i)cy(n — iP). The transmission channels are flat
nel, is thus well motivated. faded (frequency non-selective) with complex fading coeffi-

So long as the channel remains stationary, it has invarimntshu, i =1,...,N;. The received samples in the pres-
statistics. Through field measurements, or theoretical modelgce of additive Gaussian noiegn) are thus given by:
the transmitter can acquire such statistical CSl a priori [8]. Al-
ternatively, the receiver can estimate the channel correlations, z(n) = >~ ij;l hus(i)ey(n —iP) +w(n). (1)
and feed them back to the transmitter on line (this is referred . . . .
to as covariance feedback in [5, 11]). Based on channel covayi- © ¢ast (1) into a convenient matrix-vector form, we define
ance information, optimal transmitter design has been pursuBf?”x 1 vectorsk(i) := [z(iP+0), ..., z(iP+P—1)] (I|k7e:
in [5, 11] based on a capacity criterion. Focusing on symbWfS€ forw (i), theN; x1 channelvectoh := [hi, ..., hn,]",
by symbol detection, optimal precoding was designed in [2]d theP’ x N; code matrixC := [c1, ..., cn,]. EQ. (1) can
to minimize the symbol error rate (SER) for differential BPSK/€N be re-written asx(i) = Chs(i) + w(i). Because we

transmissions, and in [4] for PSK based on channel estimatifffll focus on symbol by symbol detection, we omit the symbol
error, and conditional mutual information criteria. indexi, and subsequently deal with the input-output model

In this paper, we design optimal transmit-diversity precoders x = Chs + w. )
for widely used constellations, and our performance-oriented

At the receiver, the channhlis acquired first to enable maxi-
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Notice that the SNR expression (6) coincides with that
of the MRC output forV; independent channels [9], with
du|hi,|>Es/ Ny denoting theuth subchannel's SNR. Averag-

i 5(1) ing over the Rayleigh distributefh/, |, closed form SER ex-

pressions are found in [9] fak/-ary phase shift keyingM/-
PSK), and squaré/-ary quadrature amplitude modulation
(M-QAM) constellations, as:

receiver

transmitter

(M-1)m N,
1 M
Fig. 1. Discrete-time baseband equivalent model Ps psk = p /0 H I, (‘suES/NOa gPSK, e)dev (7
p=1
The MRC receiver maximizes the signal to noise ratio (SNR) b

atits output, and yield$ = g, x = h*C*"x. Psgam =
For a given precoddt, eq. (3) specifies the optimal receiver

g in the sense of maximizing the output SNR. The question that = N,

arises is how to select an optimal preco@r In the follow- /2

ing, we design optimaC for random fading channels, based +doan = HI“(éuES/NO’gQAM’O)dO’ ®

on knowledge of the channel’'s second-order statistics: namely

Ry = E{hh™}, andR.,, := E{ww*}. wherebgay = 4(1—-1/vVM)/x, I,(z,g,0) is the moment

generating function of the probability density function (p.d.f)

. . of |h'(u)| evaluated at—gz/sin®@ [9, eq. (24)], and the
Throughout this paper, we adopt the following assumptionggnstellation-specifig is given respectively, by:

a0) the channeh is complex Gaussian distributed, with zero-

mean, and covariance matrR,,; gpsk =sin’*(r/M), and goan = 3/[2(M —1)]. (9)
al) the noisew is zero-mean, white, complex Gaussian with R

each entry having variancd, /2 per real and imaginary di- Becauseh,, | is Rayleigh,l,(z, g,6) has the form: [9]:
mension, i.eRyw = Nolp;

T N
QAM/4HI(5E/N 9
u(OuEs/ No, goan,0)do
VM Jo =

4

IIl. OPTIMAL EIGEN-BEAMFORMING

a2)the channeh and the noisev are uncorrelated. I,(z,9,0) = (1+ gz/sin”)~". (10)
a3) channel correlation informatiofR , Nolp) is available
at the transmitter. A. Chernoff Bound Criterion

Our performance metric for optimal p_recoder design will be oy ultimate goal is to minimize the SER in (7), or (8), with
symbol error rate (SER). We next derive a closed-form SERspect toC. However, direct optimization based on the ex-
expression. The SNR at the MRC output for a fixed channel rget SER turns out to be difficult because of the integration in-
alization isy = E{|h"*C*Chs|*}/E{h*C*ww" Ch}. De- \qlved. Instead, we will design the optimal preco@based
noting £, := E{|s|?} as the average energy of the underlyingy, 5 tight Chernoff bound on SER.

signal constellation, the SNftbecomes: Using the definite integral form for the Gaussian Q-function,
v =h"CHChE,/N,. (4) the well-known Chernoff bound can be easily expressed as:
To simplify (4), we diagonaliz®,;, as: 3 2
gona e, @ Q@) == [Tew (—x—> 46 < % exp(—a?/2), (11)
Run = UhDhUh , Dy = dlaQ)\l, . )\Ni), (5) ™ Jo 2sin” 0 2

where U}, is unitary, and), denotes theith eigenvalue of for anyz > 0, by observing that the maximum of the integrand

Ry, that is non-negative. Wlthout Ioss of ge_nerahty, we agccurs a = /2 [9]. Likewise, I,,(z, g, ) in (10) peaks at

sume that\,'s are arranged in a non-increasing ord&f: > ¢ = /2, and thus the Chernoff bound for the SER in (7) and

- > An, > 0. Using (5), we can pre-whiteh to h, so (8) can be obtained in a unifying form:
1~ ~
thath = U, D} h, and the entries di are i.i.d with unit vari- N,
ance: Ehh™} = Iy,. Therefore, the SNR of (4) reduces p, bound:aHI“ <%,g, g) =a
~ 1 1. ’
toy = h*D?UXCH*CU,D?h E,;/N,. Let us now define p=1
1 1 . . . _

A := D;UJ}!C*CU,Dj, which is non-negative definite, wheren := (M — 1)/ M, andg takes on constellation-specific

and thus it can be decomposed @:= U4D U, where values as in (9). The upper bound in (12) can also serve (within

D, := diag(di, ..., dn,) contains theV; non-negative eigen- a scale) as a lower bound of the SER, €08 Ps pouna <

values ofA.. BecausdJ 4 is unitary, the vectoh’ := U%h has P; psk < Ps pouna for QPSK andV, = 2[12].

i.i.d entries (denoted by, := [h'],), with covariance matrix ~ The optimal precode® will be chosen to maximize:

In,. The SNR can then be further simplified to B
gLs

v = (0D E, /Ny = SN 6,7, PEs/ No. (6 No

-1

, (12)

E;s

) E(C) = ‘INi-l-A

1 1LgKE
- ‘IMJrD;U,l(:HCUhD,ZLgNs ,
0



under the constraint§C*C} = 1, i.e., the average transmit-B. Optimally Loaded Eigen-beamforming Interpretation
ted power per symbol i&;.

The cost function£(C) is maximized when the matrix
UtC*CU,, is diagonal [12]. We subsequently express:

The P x N; optimal precode€ in (18) can be interpreted as
a generalized beamformer. Different from conventional beam-
forming that transmits all available power along the channel’'s

UCc*CU, = D}, whereD; :=diag(fi, ..., f,), (18) Strongestdirection (implemented via the first rowldf), here

N; beams are formed pointing t; orthogonal directions

with f, > 0, Vu € [1,N;]. Sincelog,(-) is @ monotoni- along the eigenvectors of the channel covariance mRy;i;
cally increasing function, we can equivalently optimize the cog{us, the name eigen-beamforming. The mabix takes care
function£'(C) = log, £(C) = log, |1y, + D3DygE,/No|, of power loading across all beams. Notice that more power
that will turn out to be more convenient. The equivalent coRs distributed to stronger channels sinfe > f7--- > f12vt-

strained optimization problem is simplified to Furthermore,fg + (1/X\,)(No/gE,) is constan¥/y; thus, the
"(C) subiectto C:=SM_ f2_1—0 (14) Power allocation obeys the water-filling principle.
I%%X £(C) subj ¢ Zﬂzl Tu 0. (14 When the system operates at a prescribed po#efN, €

. . o, . o [Fth,r> Yen,r+1], itis clear thatonly: = rank D) eigen-beams
Differentiating the Lagrangiafi'(C) + vC with respect tof,, are used, and a diversity orderofs achieved. Full diversity

wherev deno_tes the Lagrange multiplier, and equating it tgchemes correspond o= N,. Based on (17), one can easily
zero, we obtain: ’ '

determine what diversity level to be used for the best perfor-
fr=1-1/(wIn2) = No/(gMu E5)], (15) mance with a given power budglt. We thus have:

) i ) Corollary 1: The optimal diversity order is, whenE;/ Ny
vv_|th the special notatiofr] := max(z,0). Szlfppose _that the falls in the interval:[Yes ., Yeh.r41], With 3,1, defined in(17).
given power budgek’; supportsV; non-zerof,’s. Solvingfor - corgllary 2: Full diversity schemes are not SER-bound opti-
v using the power constraint, we arrive at the optimal loading, 5| across the entire SNR range; their optimality is ensured

Y only when the SNR is sufficiently high; / Ny > ip,n, -

N,
2= 1 N (L 3 1 1 . (@e) Notice that apart from requiring it to be orthonormal, so far
. Ni  gEs \ Ne = A A we left theP x N; matrix ® unspecified. To fully exploit the
+ diversity offered byV; antennasP > N, is required. On the

The non-increasing order of tHR,;, eigenvalues implies other hand, the choicB > N; does not improve performance;
that: f2 > f2--- > ffvi, as confirmed by (16). We first setit is thus desirable to choode as small as possible to increase
Ny = Ny, and test ifffvi > 0. The entryffvi > 0in (16) with the transmission rate. When the desired diversity orderas
N; = N; imposes the following lower bound on the requireg‘ Corollar[y~1, we can r(]adufle téx N; matrix & to E”T x Ny I

. t — ix[®,0 _m], where® is anyr x r orthonorma
SNR: E,/Ny > (1/9)(Ne/An, — SN 1/0) = Yenn,. @t MatX[®, 0.y, )|, Where : ;
If E, is not large enough to afford Sptimal power allocatiofatrix, without loss of optimality. This way, we can achieve

across allV; beams, causing?. < 0, eq. (16) suggests thatfate1/r for a diversity transmiss_ior_l of order _
we should turn off theV,th beg:’n by setting?. = 0, and set On the other hand, one carpriori force the matrixC (and

7 — - thus @) to be fat with dimensionalityl x N;, which corre-
N; = N; — 1; and so on until we will find the desiredl;. ) vi !

h ical loadi lqorithm i ved as: sponds to settingfy+1,..., fn, = 0, deterministically. Op-
Thepractical power loading :jlgont M IS SUMMArZE€d as. jmg power loading can then be applied to the remaining
Sl)Forr =1,..., Ny, calculatey,, , based only on the firgt

. beams. We will term this scheme (wi chosen beforehand
channel eigenvalues as to bed x N,) and-directional eigen-beamformer. As a conse-
Yinw = (1/g)(r/Xpr — 2221 /). (17) quence of Theorem 1, we then have: o _
Corollary 3: With d < N, the d-directional eigen-
S2)With the given power budgét; ensuring that; / \p falls  heamformer achieves the same average SER performance as
in the intervalln,r, Yen,r4+1], S€tfria, ..., fn, = 0,and ob- an N,-directional eigen-beamformer, whéfy / No < yin.a11-
tain f1,..., fr according to (16) based only dq, .. ., A,. Two interesting special cases of Corollary 3 arise. The
Having specified the optimgf;, we have found the optimal first is conventional one-directional (1D) eigen-beamforming
th in (13). The optimalC can be factored from (13) as: with d = 1, [5,7,11]. As asserted in Corollary 3, the 1D
” eigen-beamformer will be optimal wheli;/ Ny < Yp2 =
C=®D;Uy, (18) (1/x, — 1/A1)/g; i.e., when the first and second eigenvalues

where the columns c® are orthonormal, and the diagonal en@r€ disparate enough, or, whéh/ N, is sufficiently low. _
tries of D are given by (16). We summarize our resultas: ~ The more interesting case is 2D eigen-beamforming which
Theorem 1 Suppose a0)-a3) hold true. The optimum receivéorresponds ta = 2. The 2D eigen-beamformer is optimal
filter g,,¢ is given by(3), and the optimum precoding matrixWhenEs/No < Jin,3 = (2/Xs —1/A —1/X2)/g. Notice that
Copt = ®D; U} hasU, andD; formed as in(5), (16) and the optimality condition for 2D beamforming is less restrictive
(13) with @ an arbitrary orthonormalP x N; matrix. Op- than that for the 1D beamforming, singg. s > 7,2, and
timality in g, refers to maximum-SNR, while optimality irf/:»,3 do€s not depend oky andX,. As we shall see in Sec-

Copt pertains to m|n|m|z|ng the Chernoff bound on the aveFiDn IV, the 2D eigen-beamforming also achieves the Same rate
age symbol error rate. as 1D beamforming, and subsumes the latter as a special case.
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IV. EIGEN-BEAMFORMING AND STBC

In the system model (2), we transmit only one symbol over
P time slots (chip-periods), which essentially amounts to rep- time _
etition coding (or a spread-spectrum) scheme. To overcome
the associated rate loss, it is possible to séndsymbols 5.5 _| | 51 =
s1,..., S8k Simultaneously. Certainly, this would require sym-
bol separation at the receiver. But let us suppose temporarily
that the separation is indeed achievable, and each symbol is es-
sentially going through a separate channel identical to the one
we dealt with in Section Ill. The optimal precod€y, for sy,
will then be

Q=

*
sz 8]

K=

space-time | power | antennaweighting

block coding | loading (eigen beamforming)

— H —
Cr=®:D;Uy, k=12, K. (19) Fig. 2. The two-directional (2D) eigen-beamformey, ; := [Up]p.q

Because the factdd U} in (19) is commorvk, designing . . .
separable precoders is equivalent to choosing sepadalie that (23) is nothing but the MRC output for the single symbol

Fortunately, this degree of freedom can be afforded by our &@nsmission studied in_Section III; thus, the 09“”?3' Ioadin_g
sign in Section Il because so far ths,'s are only required to In (16) enables space-time block coded transmissions to min-
have orthonormal columns imize the Chernoff bound on SER, but with rak&/ P. The

The desired means of data multiplexing that enables sy ymbination of orthogonal STBC with beamforming has also

bol separability at the receiver is possible through orthogo en studied in [6]. However, the_ focus in [6] is on channel
space-time block coding (STBC) [1, 3, 10]. Our combinin ean feedback [11] for slowly fading channels, while our ap-

of optimal eigen-beamforming with STBC is treated next f roach here is tailored for fast fading random Ch‘?‘””e's-
com%lex symgbols (see [12] fo?real symbols). For complex symbols, a rate 1 GCOD only exists Mgr =

Let s® ands! denote the real and imaginary partsg, re- 2. It corresponds to the well-known Alamouti code [1]:

spectively. The following orthogonal STBC designs are avail-
able for complex symbols [3, 10]: O, = [

Definition: For complex symbol§s, = s +js£}£{:1, and
P x N; matrices{®y,, \Ilk}le each having entries drawn fromFor N; = 3,4, rate3/4 orthogonal STBCs exist, while for

$1 sz} — space (24)

—s5 st J time

{1,0, -1}, the space time coded matrix N; > 4, only ratel /2 codes have been constructed [10], [3].
Therefore, for complex symbols, the;-directional eigen-
Opn, = Z,{;l sk +j2£(:1 Uyt (20) beamformer of (22) achieves optimal performance with no

_ _ . rate loss only whenV; = 2, and pays a rate penalty when
is termed a generalized complex orthogonal design (GCOD) M, > 2. To tradeoff the optimal performance for a constant
variables{sk},{,{:1 of sizeP x N, and rateK/P, if either one rate 1 transmission, it is possible to construct a 2D eigen-

of two equivalent conditions holds true: beamformer with the Alamouti code applied on the strongest
) O% Oy, = (Zkal |sk|*)I, [10], or, two-directional eigen-beams. Specifically, we can construct
t t = t i — H i
ii) The matrices{®;,, ¥}, satisfy the conditions [3]: a2 x N, matrix Zo.q = [O3,055(n,—2]D;U,", which
= achieves the optimal performance as Mjedirectional eigen-
‘I’?f@k =1y, ‘I’zf‘I’k =1y, vk beamformer whetl’; / Ny < 45,3, as specified in Corollary 3.

2 2 2 2 The implementation of the 2D eigen-beamformer is depicted
PP =P, P, VY, =¥, k#I  (21) inFig. 2.
T, = U'P,, vk, 1 O Notice that the optimal scenario for 1D beamforming was
specified in [5] from a capacity perspective. The interestin 1D
For each complex symbe). = s + js!, we define two pre- bea_mforr_ning stems primarily f_rom the fact that'it allows scalar
coders corresponding tp®;, ¥} as: C,; = ®,D;U}, coding with [mear pre-processing atthetransmlt_—antennaarray,
andCy, = ¥, DU, The transmitted STBC is now and thus relieves the receiver from the complexity required for
decoding the capacity-achieving vector coded transmissions
Zn, :Zk{f_l Ch1s0+j Zf_l Crasl = ON, DU (22) [5,7,11]. Because each symbol with 2D eigen-beamforming
- - goes through a separate but better conditioned channel, the
At the kth detector output, the decision variable is formed bysame capacity-achieving scalar code applied to an 1D beam-
former can be applied to a 2D eigen-beamformer as well.
yr = Re{h™C}f,x} + jRe{—jh" C}f,x} 23) Therefore, 2D eigen-beamforming outperforms 1D beamform-
_hH 277H ing even from a capacity perspective, since it can achieve the
=bULD; U hsy 4w, ¥k €1, K], same coded BER with less power. Notice thdDif has only
where w;, has varianceNoh™U, D2U%h; and the second one nonzero entry,, the 2D eigen-beamformer reduces to the

equality in (23) can be easily verified by using (21) [3]. Notic&D beamformer, withy; and—s; transmitted during consecu-
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Fig. 3. Optimal vs. equal power loading

tive time-slots, as confirmed by (24). This leads to the follow-
ing conclusion:
Corollary 4: The 2D eigen-beamformer includes 1D beam-
former as a special case and outperforms it uniformly, without
rate reduction and without complexity increase.

Corollary 4 suggests that 2D eigen-beamformer is more at-
tractive than 1D beamformer, and deserves more attention.

V. NUMERICAL RESULTS

We consider a uniform linear array witN; = 4 antennas
at the transmitter, and a single antenna at the receiver. We as-
sume that the side information including the distance between
the transmitter and the receiver, the angle of arrival, and the
angle spread are all available at the transmitter. Lbe the
wavelength of a narrowband signal, the antenna spacing,
andA the angle spread. We assume that the angle of arrival is
perpendicular to the transmitter antenna array (“broadside” as
in [8]), andd; = 0.5\, andA = 5° (see [12] for additional []
setups). The correlation coefficients among the antennas are
then calculated by [8, eq. (6)]. [2

Fig. 3 shows the optimal power allocation among differB]
ent beams, for both QPSK and QAM constellations. No-
tice that the choice of how many beams are retained depefflls
on the constellation-specific SNR thresholds. For QPSK,
can verify thaty,;, » = 10.2dB, and¥;, 3 = 37.5dB. Since
gopsk/gegam = 5, the thresholdy,, , for 16-QAM is ]
10log,,(5) = 7.0dB higher for QPSK; we observe thaddB
higher power is required for 16-QAM before switching to the
same number of beams as for QPSK. ;

Figs. 4 and 5 depict the exact SER, and the Chernoff boqu
for: optimal loading, equal power loading, and 1D beamform-
ing. Since the considered channel is highly correlated, or{fi}
r = 2 beams are used in the considered SNR range for opti-
mal loading. Therefore, the 2D eigen-beamformer is overédl
optimal for this channel in the considered SNR range, and its
performance curves coincide with those of the optimal loadingo;
Figs. 4 and 5 confirm that the optimal allocation outperforms
both the equal power allocation, and the 1D beamforming. Tﬂq]
small gap between the Chernoff bound and the exact SER in
Figs. 4 and 5 justifies our approach that pushes down the CH&#
noff bound to minimize the exact SER.
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