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Abstract—Optimal transmitter designs obeying the water-filling princi-
ple are well-documented, and widely applied when the propagation chan-
nel is deterministically known and regularly updated at the transmitter.
Because channel state information may be costly or impossible to acquire
in rapidly varying wireless environments, we develop in this paper statis-
tical water-filling approaches for stationary random fading channels. The
resulting optimal designs require only knowledge of the channel’s second
order statistics that do not require frequent updates, and can be easily
acquired. Optimality refers to minimizing a tight bound on the symbol
error rate. Applied to a multiple transmit-antenna paradigm, the opti-
mal precoder turns out to be a generalized eigen-beamformer with multi-
ple beams pointing to orthogonal directions along the eigenvectors of the
channel’s covariance matrix, and with proper power loading across the
beams. Coupled with orthogonal space time block codes, two-directional
eigen-beamforming emerges as a more attractive choice than conventional
one-directional beamforming, with uniformly better performance, and
without rate reduction or complexity increase.

I. I NTRODUCTION

Multi-antenna diversity is well motivated for wireless com-
munications through fading channels. In certain applications,
e.g., cellular downlink, multiple receive antennas may be ex-
pensive or impractical to deploy, which endeavors diversity
systems relying on multiple transmit antennas.

When perfect or partial channel state information (CSI) is
made available at the transmitter, multi-antenna systems can
further enhance performance and capacity [7]. For slowly
time-varying wireless channels, this amounts to feeding back
to the transmitter the instantaneous channel estimates [7, 11].
But when the channel varies rapidly it is costly, yet not mean-
ingful, to acquire CSI at the transmitter, because optimal trans-
missions tuned to previously acquired information become out-
dated quickly. Designing optimal transmitters based on statis-
tical information about the underlying stationary random chan-
nel, is thus well motivated.

So long as the channel remains stationary, it has invariant
statistics. Through field measurements, or theoretical models,
the transmitter can acquire such statistical CSI a priori [8]. Al-
ternatively, the receiver can estimate the channel correlations,
and feed them back to the transmitter on line (this is referred
to as covariance feedback in [5,11]). Based on channel covari-
ance information, optimal transmitter design has been pursued
in [5, 11] based on a capacity criterion. Focusing on symbol
by symbol detection, optimal precoding was designed in [2]
to minimize the symbol error rate (SER) for differential BPSK
transmissions, and in [4] for PSK based on channel estimation
error, and conditional mutual information criteria.

In this paper, we design optimal transmit-diversity precoders
for widely used constellations, and our performance-oriented
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approach relies on the Chernoff bound on SER. Optimal pre-
coders turn out to be eigen-beamformers with multiple beams
pointing to orthogonal directions along the eigenvectors of
the channel’s covariance matrix; hence, the name optimal
transmitter eigen-beamforming. The optimal eigen-beams are
power loaded according to a spatial water-filling principle. To
increase the data rate without compromising the performance,
we also propose parallel transmissions equipped with orthogo-
nal space time block coding (STBC) [1,3,10] across optimally
loaded eigen-beams. Interestingly, coupling optimal precod-
ing with orthogonal STBC leads to a two-directional eigen-
beamforming that enjoys uniformly better performance than
the conventional one-directional beamforming without rate re-
duction, and without complexity increase.

Notation: Bold upper (lower) letters denote matrices (col-
umn vectors);(�)�, (�)T and(�)H denote conjugate, transpose,
and Hermitian transpose, respectively;j � j stands for the ab-
solute value of a scalar and the determinant of a matrix; Ef�g
stands for expectation, trf�g for the trace of a matrix; Ref�g
stands for the real part of a complex number;IK denotes the
identity matrix of sizeK; 0K�P denotes an all-zero matrix
with sizeK � P ; diag(x) stands for a diagonal matrix withx
on its diagonal;[�]p denotes thepth entry of a vector.

II. SYSTEM MODEL

Fig. 1 depicts the block diagram of a transmit diversity sys-
tem with a single receive- andNt transmit- antennas. In the�th
transmit-antenna, the information-bearing signals(i) is first
spread (or, precoded) by the codec� := [c�(0); : : : ; c�(P �
1)]T of length P to obtain the chip sequence:u�(n) =P1

i=�1 s(i)c�(n � iP ). The transmission channels are flat
faded (frequency non-selective) with complex fading coeffi-
cientsh�, � = 1; : : : ; Nt. The received samples in the pres-
ence of additive Gaussian noisew(n) are thus given by:

x(n) =
P1

i=�1

PNt

�=1 h�s(i)c�(n� iP ) + w(n): (1)

To cast (1) into a convenient matrix-vector form, we define
theP�1 vectorsx(i) := [x(iP+0); : : : ; x(iP+P�1)]T (like-
wise forw(i)), theNt�1 channel vectorh := [h1; : : : ; hNt

]T ,
and theP �Nt code matrixC := [c1; : : : ; cNt

]. Eq. (1) can
then be re-written as:x(i) = Chs(i) + w(i). Because we
will focus on symbol by symbol detection, we omit the symbol
indexi, and subsequently deal with the input-output model

x = Chs+w: (2)

At the receiver, the channelh is acquired first to enable maxi-
mum ratio combining (MRC) using

gHopt := [g(0); : : : ; g(P � 1)] = (Ch)H: (3)
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Fig. 1. Discrete-time baseband equivalent model

The MRC receiver maximizes the signal to noise ratio (SNR)
at its output, and yieldŝs = gHoptx = hHCHx.

For a given precoderC, eq. (3) specifies the optimal receiver
g in the sense of maximizing the output SNR. The question that
arises is how to select an optimal precoderC. In the follow-
ing, we design optimalC for random fading channels, based
on knowledge of the channel’s second-order statistics: namely
Rhh := E

�
hhH

	
, andRww := E

�
wwH

	
.

III. O PTIMAL EIGEN-BEAMFORMING

Throughout this paper, we adopt the following assumptions:
a0) the channelh is complex Gaussian distributed, with zero-
mean, and covariance matrixRhh;
a1) the noisew is zero-mean, white, complex Gaussian with
each entry having varianceN0=2 per real and imaginary di-
mension, i.e.,Rww = N0IP ;
a2) the channelh and the noisew are uncorrelated.
a3)channel correlation information(Rhh; N0IP ) is available
at the transmitter.

Our performance metric for optimal precoder design will be
symbol error rate (SER). We next derive a closed-form SER
expression. The SNR at the MRC output for a fixed channel re-
alization is
 = EfjhHCHChsj2g=EfhHCHwwHChg. De-
notingEs := Efjsj2g as the average energy of the underlying
signal constellation, the SNR
 becomes:


 = hHCHChEs=N0: (4)

To simplify (4), we diagonalizeRhh as:

Rhh = UhDhU
H

h ; Dh := diag(�1; : : : ; �Nt
); (5)

whereUh is unitary, and�� denotes the�th eigenvalue of
Rhh that is non-negative. Without loss of generality, we as-
sume that��’s are arranged in a non-increasing order:�1 �
� � � � �Nt

� 0. Using (5), we can pre-whitenh to ~h, so

thath = UhD
1
2

h
~h, and the entries of~h are i.i.d with unit vari-

ance: Ef~h~hHg = INt
. Therefore, the SNR of (4) reduces

to 
 = ~hHD
1
2

hU
H

h C
HCUhD

1
2

h
~hEs=N0: Let us now define

A := D
1
2

hU
H

h C
HCUhD

1
2

h , which is non-negative definite,
and thus it can be decomposed as:A = UADAU

H
A , where

DA := diag(Æ1; : : : ; ÆNt
) contains theNt non-negative eigen-

values ofA. BecauseUA is unitary, the vector~h0 := UH
A
~h has

i.i.d entries (denoted by~h0� := [~h0]�), with covariance matrix
INt

. The SNR can then be further simplified to


 = (~h0)HDA
~h0Es=N0 =

PNt

�=1 Æ�j~h0�j2Es=N0: (6)

Notice that the SNR expression (6) coincides with that
of the MRC output forNt independent channels [9], with
Æ�j~h0�j2Es=N0 denoting the�th subchannel’s SNR. Averag-

ing over the Rayleigh distributedj~h0�j, closed form SER ex-
pressions are found in [9] forM -ary phase shift keying (M -
PSK), and squareM -ary quadrature amplitude modulation
(M -QAM) constellations, as:

Ps;PSK =
1

�

Z (M�1)�
M

0

NtY
�=1

I�(Æ�Es=N0; gPSK ; �)d�; (7)

Ps;QAM =
bQAMp

M

Z �
4

0

NtY
�=1

I�(Æ�Es=N0; gQAM ; �)d�

+ bQAM

Z �
2

�
4

NtY
�=1

I�(Æ�Es=N0; gQAM ; �)d�; (8)

wherebQAM := 4(1�1=
p
M)=�, I�(x; g; �) is the moment

generating function of the probability density function (p.d.f)
of j~h0(�)j evaluated at�gx= sin2 � [9, eq. (24)], and the
constellation-specificg is given respectively, by:

gPSK = sin2(�=M); and gQAM = 3=[2(M � 1)]: (9)

Becausej~h0�j is Rayleigh,I�(x; g; �) has the form: [9]:

I�(x; g; �) = (1 + gx= sin2 �)�1: (10)

A. Chernoff Bound Criterion

Our ultimate goal is to minimize the SER in (7), or (8), with
respect toC. However, direct optimization based on the ex-
act SER turns out to be difficult because of the integration in-
volved. Instead, we will design the optimal precoderC based
on a tight Chernoff bound on SER.

Using the definite integral form for the Gaussian Q-function,
the well-known Chernoff bound can be easily expressed as:

Q(x) =
1

�

Z �
2

0

exp

�
� x2

2 sin2 �

�
d� � 1

2
exp(�x2=2); (11)

for anyx � 0, by observing that the maximum of the integrand
occurs at� = �=2 [9]. Likewise, I�(x; g; �) in (10) peaks at
� = �=2, and thus the Chernoff bound for the SER in (7) and
(8) can be obtained in a unifying form:

Ps;bound=�

NtY
�=1

I�

�
Æ�Es
N0

; g;
�

2

�
=�

����INt
+Ag

Es

N0

����
�1

; (12)

where� := (M � 1)=M, andg takes on constellation-specific
values as in (9). The upper bound in (12) can also serve (within
a scale) as a lower bound of the SER, e.g.,0:48Ps;bound �
Ps;PSK � Ps;bound for QPSK andNt = 2 [12].

The optimal precoderC will be chosen to maximize:

E(C) =

����INt
+A

gEs

N0

���� =
����INt

+D
1
2

hUhC
HCUhD

1
2

h

gEs

N0

���� ;

554



under the constraint trfCHCg = 1, i.e., the average transmit-
ted power per symbol isEs.

The cost functionE(C) is maximized when the matrix
UH

h C
HCUh is diagonal [12]. We subsequently express:

UHCHCUh = D2
f ; whereDf := diag(f1; : : : ; fNt

); (13)

with f� � 0; 8� 2 [1; Nt]. Sincelog2(�) is a monotoni-
cally increasing function, we can equivalently optimize the cost
functionE 0(C) = log2 E(C) = log2 jINt

+D2
fDhgEs=N0j,

that will turn out to be more convenient. The equivalent con-
strained optimization problem is simplified to

max
Df

E 0(C) subject to C :=
PNt

�=1 f
2
� � 1 = 0: (14)

Differentiating the LagrangianE 0(C) + �C with respect tof2�,
where� denotes the Lagrange multiplier, and equating it to
zero, we obtain:

f2� = [�1=(� ln 2)�N0=(g��Es)]+ ; (15)

with the special notation[x]+ := max(x; 0). Suppose that the
given power budgetEs supports�Nt non-zerof2� ’s. Solving for
� using the power constraint, we arrive at the optimal loading:

f2� =

2
4 1

Nt

+
N0

gEs

0
@ 1

�Nt

�NtX
l=1

1

�l
� 1

��

1
A
3
5
+

: (16)

The non-increasing order of theRhh eigenvalues implies
that: f21 � f22 � � � � f2Nt

, as confirmed by (16). We first set
�Nt = Nt, and test iff2Nt

� 0. The entryf2Nt
� 0 in (16) with

�Nt = Nt imposes the following lower bound on the required
SNR: Es=N0 > (1=g)(Nt=�Nt

� PNt

�=1 1=��) := �
th;Nt
.

If Es is not large enough to afford optimal power allocation
across allNt beams, causingf2Nt

< 0, eq. (16) suggests that
we should turn off theNtth beam by settingf2Nt

= 0, and set
�Nt = �Nt � 1; and so on until we will find the desired�Nt.

Thepractical power loading algorithm is summarized as:
S1)Forr = 1; : : : ; Nt, calculate�
th;r based only on the firstr
channel eigenvalues as

�
th;r := (1=g)(r=�rr �
Pr

�=1 1=��): (17)

S2)With the given power budgetEs ensuring thatEs=N0 falls
in the interval[�
th;r; �
th;r+1], setfr+1; : : : ; fNt

= 0, and ob-
tainf1; : : : ; fr according to (16) based only on�1; : : : ; �r.

Having specified the optimalf2�, we have found the optimal
D2
f in (13). The optimalC can be factored from (13) as:

C = �DfU
H

h ; (18)

where the columns of� are orthonormal, and the diagonal en-
tries ofDf are given by (16). We summarize our result as:
Theorem 1: Suppose a0)-a3) hold true. The optimum receive-
filter gopt is given by(3), and the optimum precoding matrix
Copt = �DfU

H
h hasUh andDf formed as in(5), (16) and

(13) with � an arbitrary orthonormalP � Nt matrix. Op-
timality in gopt refers to maximum-SNR, while optimality in
Copt pertains to minimizing the Chernoff bound on the aver-
age symbol error rate.

B. Optimally Loaded Eigen-beamforming Interpretation

TheP�Nt optimal precoderC in (18) can be interpreted as
a generalized beamformer. Different from conventional beam-
forming that transmits all available power along the channel’s
strongest direction (implemented via the first row ofUH

h ), here
Nt beams are formed pointing toNt orthogonal directions
along the eigenvectors of the channel covariance matrixRhh;
thus, the name eigen-beamforming. The matrixDf takes care
of power loading across all beams. Notice that more power
is distributed to stronger channels sincef21 � f22 � � � � f2Nt

.
Furthermore,f2� + (1=��)(N0=gEs) is constant8�; thus, the
power allocation obeys the water-filling principle.

When the system operates at a prescribed power:Es=N0 2
[�
th;r; �
th;r+1], it is clear that onlyr = rank(Df ) eigen-beams
are used, and a diversity order ofr is achieved. Full diversity
schemes correspond tor = Nt. Based on (17), one can easily
determine what diversity level to be used for the best perfor-
mance with a given power budgetEs. We thus have:
Corollary 1: The optimal diversity order isr, whenEs=N0

falls in the interval:[�
th;r; �
th;r+1], with �
th;r defined in(17).
Corollary 2: Full diversity schemes are not SER-bound opti-
mal across the entire SNR range; their optimality is ensured
only when the SNR is sufficiently high:Es=N0 > �
th;Nt

.
Notice that apart from requiring it to be orthonormal, so far

we left theP �Nt matrix� unspecified. To fully exploit the
diversity offered byNt antennas,P � Nt is required. On the
other hand, the choiceP > Nt does not improve performance;
it is thus desirable to chooseP as small as possible to increase
the transmission rate. When the desired diversity order isr, as
in Corollary 1, we can reduce theP�Nt matrix� to anr�Nt

fat matrix [ ~�;0r�(Nt�r)], where~� is anyr � r orthonormal
matrix, without loss of optimality. This way, we can achieve
rate1=r for a diversity transmission of orderr.

On the other hand, one cana priori force the matrixC (and
thus�) to be fat with dimensionalityd � Nt, which corre-
sponds to settingfd+1; : : : ; fNt

= 0, deterministically. Op-
timal power loading can then be applied to the remainingd
beams. We will term this scheme (withC chosen beforehand
to bed�Nt) and-directional eigen-beamformer. As a conse-
quence of Theorem 1, we then have:
Corollary 3: With d < Nt, the d-directional eigen-
beamformer achieves the same average SER performance as
anNt-directional eigen-beamformer, whenEs=N0 < 
th;d+1.

Two interesting special cases of Corollary 3 arise. The
first is conventional one-directional (1D) eigen-beamforming
with d = 1, [5, 7, 11]. As asserted in Corollary 3, the 1D
eigen-beamformer will be optimal whenEs=N0 < �
th;2 =
(1=�2 � 1=�1)=g; i.e., when the first and second eigenvalues
are disparate enough, or, whenEs=N0 is sufficiently low.

The more interesting case is 2D eigen-beamforming which
corresponds tod = 2. The 2D eigen-beamformer is optimal
whenEs=N0 < �
th;3 = (2=�3� 1=�1� 1=�2)=g. Notice that
the optimality condition for 2D beamforming is less restrictive
than that for the 1D beamforming, since�
th;3 � �
th;2, and
�
th;3 does not depend on�1 and�2. As we shall see in Sec-
tion IV, the 2D eigen-beamforming also achieves the same rate
as 1D beamforming, and subsumes the latter as a special case.
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IV. EIGEN-BEAMFORMING AND STBC

In the system model (2), we transmit only one symbol over
P time slots (chip-periods), which essentially amounts to rep-
etition coding (or a spread-spectrum) scheme. To overcome
the associated rate loss, it is possible to sendK symbols
s1; : : : ; sK simultaneously. Certainly, this would require sym-
bol separation at the receiver. But let us suppose temporarily
that the separation is indeed achievable, and each symbol is es-
sentially going through a separate channel identical to the one
we dealt with in Section III. The optimal precoderCk for sk
will then be

Ck = �kDfU
H

h ; k = 1; 2; : : : ;K: (19)

Because the factorDfU
H

h in (19) is common8k, designing
separable precoders is equivalent to choosing separable�k ’s.
Fortunately, this degree of freedom can be afforded by our de-
sign in Section III because so far the�k ’s are only required to
have orthonormal columns.

The desired means of data multiplexing that enables sym-
bol separability at the receiver is possible through orthogonal
space-time block coding (STBC) [1, 3, 10]. Our combining
of optimal eigen-beamforming with STBC is treated next for
complex symbols (see [12] for real symbols).

Let sRk andsIk denote the real and imaginary part ofsk, re-
spectively. The following orthogonal STBC designs are avail-
able for complex symbols [3,10]:

Definition: For complex symbols
�
sk = sRk + jsIk

	K
k=1

, and

P�Nt matricesf�k;	kgKk=1 each having entries drawn from
f1; 0;�1g, the space time coded matrix

ONt
=
PK

k=1�ks
R
k + j

PK
k=1	ks

I
k (20)

is termed a generalized complex orthogonal design (GCOD) in
variablesfskgKk=1 of sizeP �Nt and rateK=P , if either one
of two equivalent conditions holds true:
i) OH

Nt
ONt

= (
PK

k=1 jskj2)INt
[10], or,

ii) The matricesf�k;	kgKk=1 satisfy the conditions [3]:

�Hk �k = INt
;	H

k 	k = INt
; 8k

�Hk �l = ��Hl �k;	
H

k 	l = �	H

l 	k; k 6= l (21)

�Hk 	l = 	H

l �k; 8k; l 2

For each complex symbolsk = sRk + jsIk, we define two pre-
coders corresponding tof�k;	kg as: Ck;1 = �kDfU

H

h ,
andCk;1 = 	kDfU

H

h . The transmitted STBC is now

ZNt
=
PK

k=1Ck;1s
R
k+j

PK
k=1Ck;2s

I
k = ONt

DfU
H

h : (22)

At thekth detector output, the decision variable is formed by

yk = RefhHCHk;1xg+ jRef�jhHCHk;2xg
= hHUhD

2
fU

H

h hsk + wk; 8k 2 [1;K];
(23)

wherewk has varianceN0h
HUhD

2
fU

H

h h; and the second
equality in (23) can be easily verified by using (21) [3]. Notice

time
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Fig. 2. The two-directional (2D) eigen-beamformer,up;q := [Uh]p;q

that (23) is nothing but the MRC output for the single symbol
transmission studied in Section III; thus, the optimal loading
in (16) enables space-time block coded transmissions to min-
imize the Chernoff bound on SER, but with rateK=P . The
combination of orthogonal STBC with beamforming has also
been studied in [6]. However, the focus in [6] is on channel
mean feedback [11] for slowly fading channels, while our ap-
proach here is tailored for fast fading random channels.

For complex symbols, a rate 1 GCOD only exists forNt =
2. It corresponds to the well-known Alamouti code [1]:

O2 =

�
s1 s2
�s�2 s�1

� ! space
# time : (24)

For Nt = 3; 4, rate3=4 orthogonal STBCs exist, while for
Nt > 4, only rate1=2 codes have been constructed [10], [3].

Therefore, for complex symbols, theNt-directional eigen-
beamformer of (22) achieves optimal performance with no
rate loss only whenNt = 2, and pays a rate penalty when
Nt > 2. To tradeoff the optimal performance for a constant
rate 1 transmission, it is possible to construct a 2D eigen-
beamformer with the Alamouti code applied on the strongest
two-directional eigen-beams. Specifically, we can construct
a 2 � Nt matrix Z2-d := [O2;02�(Nt�2)]DfU

H

h , which
achieves the optimal performance as theNt-directional eigen-
beamformer whenEs=N0 < �
th;3, as specified in Corollary 3.
The implementation of the 2D eigen-beamformer is depicted
in Fig. 2.

Notice that the optimal scenario for 1D beamforming was
specified in [5] from a capacity perspective. The interest in 1D
beamforming stems primarily from the fact that it allows scalar
coding with linear pre-processing at the transmit-antenna array,
and thus relieves the receiver from the complexity required for
decoding the capacity-achieving vector coded transmissions
[5, 7, 11]. Because each symbol with 2D eigen-beamforming
goes through a separate but better conditioned channel, the
same capacity-achieving scalar code applied to an 1D beam-
former can be applied to a 2D eigen-beamformer as well.
Therefore, 2D eigen-beamforming outperforms 1D beamform-
ing even from a capacity perspective, since it can achieve the
same coded BER with less power. Notice that ifDf has only
one nonzero entryf1, the 2D eigen-beamformer reduces to the
1D beamformer, withs1 and�s�2 transmitted during consecu-
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tive time-slots, as confirmed by (24). This leads to the follow-
ing conclusion:
Corollary 4 : The 2D eigen-beamformer includes 1D beam-
former as a special case and outperforms it uniformly, without
rate reduction and without complexity increase.

Corollary 4 suggests that 2D eigen-beamformer is more at-
tractive than 1D beamformer, and deserves more attention.

V. NUMERICAL RESULTS

We consider a uniform linear array withNt = 4 antennas
at the transmitter, and a single antenna at the receiver. We as-
sume that the side information including the distance between
the transmitter and the receiver, the angle of arrival, and the
angle spread are all available at the transmitter. Let� be the
wavelength of a narrowband signal,dt the antenna spacing,
and� the angle spread. We assume that the angle of arrival is
perpendicular to the transmitter antenna array (“broadside” as
in [8]), anddt = 0:5�, and� = 5Æ (see [12] for additional
setups). The correlation coefficients among the antennas are
then calculated by [8, eq. (6)].

Fig. 3 shows the optimal power allocation among differ-
ent beams, for both QPSK and QAM constellations. No-
tice that the choice of how many beams are retained depends
on the constellation-specific SNR thresholds. For QPSK, we
can verify that�
th;2 = 10:2dB, and�
th;3 = 37:5dB. Since
gQPSK=g16QAM = 5, the threshold�
th;r for 16-QAM is
10 log10(5) = 7:0dB higher for QPSK; we observe that7:0dB
higher power is required for 16-QAM before switching to the
same number of beams as for QPSK.

Figs. 4 and 5 depict the exact SER, and the Chernoff bound
for: optimal loading, equal power loading, and 1D beamform-
ing. Since the considered channel is highly correlated, only
r = 2 beams are used in the considered SNR range for opti-
mal loading. Therefore, the 2D eigen-beamformer is overall
optimal for this channel in the considered SNR range, and its
performance curves coincide with those of the optimal loading.
Figs. 4 and 5 confirm that the optimal allocation outperforms
both the equal power allocation, and the 1D beamforming. The
small gap between the Chernoff bound and the exact SER in
Figs. 4 and 5 justifies our approach that pushes down the Cher-
noff bound to minimize the exact SER.
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Fig. 4. SER vsEs=N0: QPSK
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Fig. 5. SER vsEs=N0: 16-QAM
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