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ABSTRACT

High data rates give rise to frequency-selective propagation, while
carrier frequency-offsets and mobility-induced Doppler shifts in-
troduce time-selectivity in wireless links. To mitigate the result-
ing time- and frequency-selective (or doubly-selective) channels,
an optimal training strategy is designed in this paper for block
transmissions over doubly-selective channels, relying on a basis
expansion channel model. The optimality in designing our PSAM
parameters consists of maximizing a tight lower bound on the av-
erage channel capacity, that is also shown to be equivalent to the
minimization of the minimum mean-square channel estimation er-
ror. Numerical results corroborate our theoretical designs.

1. INTRODUCTION

High data rate wireless and mobile links suffer from time- and
frequency-selective propagation effects. Mitigating these effects
enables efficient transmission over such doubly-selective channels,
and has justifiably received increasing attention over the last decade
[3]. These fading channels are challenging to mitigate, but once
acquired they offer joint multipath-Doppler diversity gains [6].
The quality of channel acquisition has a major impact on the sys-
tem performance, especially when the fading is fast. Reliable esti-
mation of doubly-selective channels is thus well motivated.

Two classes of methods are available for the receiver to acquire
channel state information (CSI): one is based on training symbols
that are a priori known to the receiver; while the other relies only
on the received symbols to acquire CSI blindly. Albeit subopti-
mal and bandwidth consuming, training methods remain attractive
in practice because they decouple symbol detection from chan-
nel estimation, which reduces complexity and relaxes the required
identifiability conditions [7].

For time-invariant channels, a training sequence is usually sent
at the beginning of each transmission burst. But when the chan-
nel is time-selective, this preamble-based training method may not
work well. This motivates periodic insertion of training symbols
during the transmission, which is known as pilot symbol aided
modulation (PSAM). PSAM is not only useful for time-selective
channels, but also for frequency-selective, and even doubly selec-
tive channels [3, 8, 10]. The number and placement of pilots af-
fects not only the quality of CSI acquisition, but also the transmis-
sion rate, Within the general class of doubly-selective channels,
PSAM has been optimized based on several criteria, but only for
special channel models.
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Optimization of PSAM for frequency-selective channels has
relied on either average channel capacity bounds [1, 8, 11], or, the
Cramér-Rao bound (CRB) of the adopted channel estimator [8].
PSAM for time-selective fading channels has been designed by
minimizing the channel mean-square estimation error, and recently
by optimizing an average capacity bound [9]. PSAM for time-
and frequency-selective channels has been also considered (but not
optimized) in (3, 5, 10, 12]. This paper’s objective is to optimally
design PSAM for doubly-selective channels by capitalizing on a
parsimonious basis expansion channel model (BEM).

2. BEM FOR DOUBLY-SELECTIVE CHANNELS
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Fig. 1. Discrete-time baseband equivalent system model

Figure 1 depicts a general discrete-time baseband equivalent
transmission format when communicating through the doubly se-
lective channel with time-varying impulse response h(i;1). Two
types of sub-blocks can be identified in each transmitted block:
one type contains the information symbols, while the other in-
cludes the training (or pilot) symbols. We use two arguments (n
and k) to describe the serial index i = kN +n forn € [0, N - 1],
and denote the (n + 1)st entry of the kth block as [u(k)]. =
u(kN + n). Each block u(k) includes N, information symbols
and N;, training symbols, which are known to both transmitter and
receiver. After parallel to serial (P/S) multiplexing, the blocks
u(k) are transmitted through a time- and frequency-selective chan-
nel. The ith received sample can be written as:

y(@) = D _ h(i; Duli — 1) +w(@), 0

=0

where w(%) is additive white Gaussian noise (AWGN) with mean
zero, and variance o2, and the discrete-time baseband equivalent
channel model is given by (see [7] for detailed derivations):

Q
h(i;1) = 3 ho(Li/NEDE ¢ ™M 1efo,1), ()
q=0

where wg = 2m(q — Q/2)/N, L := |Tmax/Ts), and Q :=
2[ fmaxNTs]; Tmax and fmax denote the channel’s delay and Doppler
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spread, respectively. Because both Tmax, and fmax can be mea-
sured experimentally in practice, we assume that:

A1) Parameters Tmax, fmax (and thus L, Q) are bounded, known,
and satisfy the underspread channel condition: 2 frmaxTmax < 1.
When transmissions experience rich scattering, and no line-of-
sight is present, one can appeal to the central limit theorem to val-
idate that when h(3; 1) is treated as random:

A2) The BEM coefficients hq(|i/N];1) are zero-mean, complex
Gaussian random variables.

We will find it convenient to work with a block-form of the BEM
which we construct, after serial to parallel (S/P) conversion, by
collecting the samples y(i) into N x 1 blocks: y(k) = [y(kN),
y(kN +1),...,y(kN + N — 1)]T. Selecting also N > L, we
can write the matrix-vector counterpart of (1) as:

y(k) = H(k)u(k) + H* (k)u(k — 1) + w(k), 3)

where [w(k)}» := w(kN +n), while H(k) and H®* (k) are N x
N upper and lower triangular matrices with entries [H(k)]n,m =
h(kN +n;n—m), and [H*®*(k)]n,m = h(EN +7n; N +n—m)
forn,m = 1,..., N. The second term in the r.h.s. of (3) captures
the interblock interference (IBI) that emerges due to the channel
delay-spread. Recalling that ¢ = kN + n in (2), we can rewrite
these channel matrices as:

Q Q
H(k) = > D(wg)Hq(k), H* (k) =) D(w)H (k) (4)

q=0 q=0

where D (w,) := diag|1, ..., exp(jwe (N —1))], Hy(k) is a lower
triangular, and H: (k) is an upper triangular Toeplitz matrix with
entries [Hy (k)]n,m = he(n — m), and [H (k)}n,m = he(N +
n — m), respectively.

In this paper, we wish to design the optimal training input for
channel estimation, based on conditional mutual information and
channel estimation error criteria. Our joint consideration of these
criteria is intuitively appealing because of the apparent tradeoff:
using more training symbols of higher power improves channel
estimation, but also leads to reduced channel capacity.

3. LINKING CHANNEL ESTIMATION WITH CAPACITY

Channel Estimation: Since the channel coefficients hq(l) in (2)
are time-invariant over N7 seconds, channel estimation has to
be performed every N symbols. To enable low-complexity block-
by-block processing at the receiver, we need to remove the IBI.
Hence, we construct u(k) to satisfy the condition:

C1) Each block u(k) has the form [G” (k) Oix1]T, where the
(N — L) x 1 vector u(k) contains N, information symbols, and
Ny — L > 0 training symbols.

Since H*!(k)u(k — 1) = 0, C1) guarantees the elimination of
IBI. Without loss of generality, the placement of these symbols in
u(k) can be expressed as

u(k) = [s{ (k), bT (k), ..., sp(k), bR(K)]", VE (5

where we group consecutive information symbols and training sym-
bols in sub-blocks: s,(k) and b, (k) of lengths N, , and N p,
respectively. The structure of u(k) enables separation of each re-
ceived block y(k) into two types of received sub-blocks: one, de-
fined as y; (k), that depends only on H (k) and {b,(k)}>_;;anda
second, defined as y, (k), that depends on H(k), {s,(k)}5—,, and
{bp(k)}}F=1. Because the following analysis is based on a single
block, we omit the block index k.

Corresponding to the separation of y to ys and ys, the channel
matrix H can be split into three matrices, namely H,, H; and H,,
(see [7] for details). Each of them is constructed from sub-blocks
of H. After the separation of y and by taking C1) into account, we
have two input-output relationships:

Vo = H,s + Fyb + w, ©
¥s = Hyb + wy, )]
where s := [s7,...,85]7, b := bT,...,bE]7, b contains the

first L and the last L entries of by, Vp, while w, and w; denote
the corresponding noise vectors. The term Hyb captures the in-
terference of the training sub-blocks to their adjacent information
sub-blocks. After interchanging H; with b, the input-output rela-
tionship in (7) becomes (see [7] for details):

Yo = @sh + wy, @)

where @, depends on b and Dy, and

h := [ho(0) ho(L) hoD]". )

Similar to [8], we will rely on the Wiener solution of (8) that yields
the linear’ MMSE (LMMSE) channel estimator:

| o1 -1

h=— (Rhl + 0—2—<I>?f<§b) &y, (10)
which requires Ry, := E[hh*] to be known at the receiver.

Defining the channel error as h := h ~ h, we have:
-1

R; := E[hh*] = (R;‘ + 0-17<1>§‘<1>,,) , of =tr(Rg). (11)
w

It is clear from (11) that the placement of training symbols affects
®;, and consequently o3 .
Capacity Bounds: Let P, denote the transmit-power allocated to
the information signal part. Suppose first that the channel estimate
H is perfect; i.e., H = H. It can be verified that for fixed P., the
average channel capacity in this case is given by:
o 1 1 #
Ci=maxg B [Iog det (IN..+LP + U%'HsRsHs )} y (12)
where P, (-) denotes the probability density function of s. We un-
derscore that C is an upper bound on the average channel capacity
with estimated channels, because it expresses the ideal channet ca-
pacity without channel estimation error.

Consider now that the estimate of H is imperfect. Define
ﬁs =H,; — I:I,, I:Ib = I:Ib — ﬁb, and v := I:I_gS +I:Ibl_) + ws.
In general, v is non-Gaussian distributed with correlation matrix
R, := E[vv¥] given by:

R, = P.E[HHY| + E[H,bb™H}*| + 02 In,+Lp. (13)

Since v is uncorrelated with s, it follows from [8, Lemma 2] that
the worst case noise is zero mean Gaussian with auto-correlation
R, and with v independent of s. Although s is generally non-
Gaussian, if N, is sufficiently large and s is channel coded (or
linearly precoded), then s can be approximated as Gaussian,; i.c.,
A3) The information bearing symbol block s is zero-mean Gaus-
sian with covariance Ry = P,1n,, and Py := P, [N,.

Taking R; = P,In, into account, we obtain the lower bound on
the realistic average capacity C as (see [7] for a proof):

c> —I%E[log det{In,srp + P.R;'H,H¥}}:=C. (14)

1Under A2), h is Gaussian in the linear model (8); hence, the LMMSE
coincides with MMSE optimal channel estimator.
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The r.h.s. of (14) offers a lower bound on the average capacity of
doubly-selective channels. The link between C and the channel
MMSE o,-zl is established in the following proposition {7]:

Proposition 1 Suppose A1)-A3) hold true. If N, , > 2L, Vp,
then for fixed N, and Ny, p, the minimization of ”}% in (11) is
equivalent to the maximization of C in (14), at high SNR.

4. OPTIMAL TRAINING PARAMETERS

Based on the link between the LMMSE channel estimation with
the lower bound of the average channel capacity, we design our
optimal training parameters as follows:

Proposition 2 Suppose A1)-A3) hold true. The following place-
ment is optimal: all information sub-blocks have identical block
lengths; i.e., Ns, = N,,Vp; the pilot sub-blocks have identical
structure [0 b 071", Vp, and they are equi-powered with b =
Py := Py/P. The optimal number of sub-blocks is P = Q + 1,
and with P, := aP, the optimal power allocation factor is:
1

T+ (T + /N7 (13)
Proposition 2 finalizes the optimal structure of our transmitted

block u as
b=vVP, (16)

u=[sy 07 b0} -

Qopt =

sg O{ b OE]T,

with P, = (1 — )P, and « given in (15).

5. SPECIAL CASES AND SAMPLING INTERPRETATION

Frequency-Selective Channels: Frequency-selective channels ex-
hibit no (or negligible) variation during each transmitted block,
and correspond to setting @ = 0 in (2). Hence, the optimum num-
ber of sub-blocks is Q + 1 = 1, and the transmitted block u in
(16) reduces to

u=[s"0]b OI]T, b:=vVPy, Po=Q1-a)P, (17

where we removed the sub-script , for obvious reasons. Notice
that u in (17) has the same structure as the design in [1, Theorem
3], which implies that [1] is subsumed by our design for doubly-
selective channels. On the other hand, [8] formed u as an affine
mapping of s and b. The transmission in (17) can also be written
in such an affine form [7].

Our main difference with [8, 1] is that a cyclic prefix (CP) is
employed in {8, 1] to eliminate IBI, while we use zero-padding
(ZP). It is interesting that the optimal number of redundant sym-
bols is 2L + 1 for both ZP- and CP-based training designs. Fur-
thermore, although the power allocation parameter « in (15) and
in [1] are identical, they mean different things. Due to the CP, o in
[1] corresponds to the effective information power over the “total”
power that excludes the CP. However, in our setup, « corresponds
to the ratio of signal power over the total power per block, since we
use ZP instead of CP to eliminate IBI. So, for a fixed total power
per block, our ZP-scheme results in higher effective Ps and P,
than the CP-scheme. In the simulations section, we will further
re-inforce this point.

Time-Selective Channels: In time-selective channels, the delay
spread can be ignored, and the channel order L = 0 must be set in
(2). In this case, the transmitted block u in (16) becomes

u=[sg bss b s5b)7, b:=vPy, Pp=(1-0a)P. (18)

Eq. (18) coincides with the results in [2, 9].. Comparing (18) with
[1, 8], we can observe the duality between periodic insertion of
pilots tones in OFDM for frequency-selective channels, and the
PSAM for time-selective channels [2]. There is, however, a no-
table difference between our scheme in (18), and the optimal de-
sign in [9]. In [9], the optimal distance between two consecutive
pilots is [1/(2fmaxTs)], where |-| denotes integer floor. In con-
trast, we find the optimal number of pilot symbols per superblock
to be (Q + 1) since we adopt the BEM as our channel model.
In [7], we prove that these two conditions are equivalent. Since
[9] obtained this optimal distance based on a general time-varying
channel model, while we started from the BEM, the equivalence
that we just mentioned, corroborates also the validity of our BEM.
Time-Frequency Sampling Interpretations: For time-selective
channels, it is well known that the optimal PSAM samples uni-
formly the channel in the time-domain via periodic insertion of pi-
lot symbols b [2, 9]. Indeed, starting from the scalar input-output
relationship for the training samples, y5(3) = h(2)b + w; (i), one
can estimate the channel as: ii(i) = ys(3)/b. In a dual fashion,
for frequency-selective channels, optimal PSAM with cyclic prefix
samples uniformly the channel in the frequency-domain via peri-
odic insertion of pilot tones b [8, 1].

For doubly-selective channels, we can view the BEM coeffi-
cient hq(l) in (2) as the two-dimensional (2-D) channel sample at
the (gth frequency bin, Ith lag or time-slot). Intuitively thinking,
the Kronecker deltas in (16) surrounded by zero-guards, imple-
ment time-domain sampling with pilot symbols; furthermore, the
fact that these deltas are periodically inserted, implies that they are
also equivalent to Kronecker deltas in the frequency-domain, and
thus serve as pilot tones as well. To solidify this intuition, we will
rearrange ys in a 2-D fashion. Let us select the () + 1 entries from
¥s in (8) with indices {(g + 1)(1 + 1)}, for a fixed lag I, de-
fined as y®(l), and then concatenate these vectors with I € [0, L],
to form the L + 1 columns of the (Q + 1) x (L + 1) matrix
Y, = [y®(0) (1) - - - y®(L)). Notice that the matrix Y, con-
tains all the training-based received data from y, in (8) arranged in
a2-D format. If Y, := Fo41Ys/(Q + 1) denotes the FFT of this
2-D received data array, where Fg41 denotes the (Q + 1)-point
FFT matrix with entries [exp(—j27(m—1)(n—1)/(Q+1))lm,n,
we can express the training input-output relationship after FFT
processing as [7]:

gg(l) = Eq(l)hq(l) + 1Dq(l), i’q(l) =

Eq. (19) proves that indeed our optimal PSAM samples the BEM
in time-frequency to enable estimation of the doubly-selective chan-
nel via: he(l) = §2(I)/be(1). In fact, our optimal training se-
quence in (16), is precisely what one needs to obtain the channel
model that is assumed a fortiori in [5].

ﬁbejwq(ﬁ.+L+l)_ 19)

6. NUMERICAL EXAMPLES

We now present test cases to validate our analysis and design.

Test Case 1 (Optimal PSAM parameters): The transmitted block
size is N = 63, the number of information symbols N, = 42, and
the modulation is QPSK. The doubly-selective channel model is
generated using the following parameters: carrier frequency fo =
2GHz, sampling period T; = 53.6us, and mobile speed vmax =
160km/hr. With these parameters, we find that Q = 2. Our chan-
nel orderis L = 3. All the channel coefficients h, (1) are generated
as independent, standardized, complex Gaussian random with an
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exponential power profile (see [7] for details). Two parameters
will be tested in this example. The first one is the number of the
non-zero pilot symbols IN; ,. We let N , = Ny, Vp, and adopt all
the other parameters in Proposition 2 while changing Nj. Figure
2 (left) depicts the lower bound on the average capacity (14) vs.
Nj. It can be seen that the capacity bound decreases monotoni-
cally as IV increases for each SNR value considered (0dB, 10dB
and 20dB). Furthermore, we notice that as the SNR increases, the
effect of IV; increases. We depict the lower bound on the average
capacity vs. « in Figure 2 (right). When a is too small (near 0),
the average capacity is small since the information symbols do not
have enough power to combat AWGN. When a is too large (near
1), the average capacity is also small since the training symbols
do not have enough power to provide reliable channel estimation.
The optimum a found from the peak confirms eq. (15).
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Fig. 2. Optimal PSAM parameters

Test Case 2 (Comparison of ZP in (17) with CP in [1, 8]): This
test case is designed to compare our scheme in Section VI-A with
[1, 8). The channel is frequency-selective with i.i.d. taps. The
channe! order L = 7, and each tap is a zero mean Gaussian random
variable with variance 1/(L+-1). The number of information sym-
bols per block is N, = 48, and the block length N = N, +2L+1.
The total power per block is fixed to P. Hence, the power ratio al-
located between information symbols and training symbols for the
CP-based scheme, is P(N, + L+1)/N. Figure 3 (left) depicts the
average capacity bounds for both ZP- and CP-based alternatives.
Here SNR := P/(N, + 1). We notice that the bounds (either
upper or lower) for ZP are consistently greater than those of CP,
which is partially due to the power loss incurred by the CP. We
plot BER vs. SNR in Figure 3 (right). In the same figure, the ideal
cases corresponding to perfect channel estimates are also plotted
as benchmarks (the dashed lines). We computed MMSE chan-
nel estimates based on pilot symbols, and used zero-forcing (ZF)
equalization for symbol detection in both cases. From Figure 3
(right), we observe that: i) ZP outperforms CP at high SNR, while
CP has about 2dB advantage at BER= 0.1; ii) from the slopes
of the curves, we notice that CP offers lower diversity order than
ZP; and iii) for both cases, the penalty for inaccurate channel state
information is about 1.5 dB.

In a nutshell, we showed that the optimal training for doubly-
selective channels consists of equi-spaced and equi-powered pilot
symbols surrounded by a number of zeros dictated by the channel’s
delay-spread, and inserted periodically with a period dictated by
the channel’s Doppler-spread.
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Fig. 3. CP vs. ZP for training frequency-selective channels
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