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Abstract—We propose novel space-time multipath (STM) coded multi-
antenna transmissions over frequency-selective Rayleigh fading channels,

We develop STM coded systems that guarantee the maximum possible 4

space-multipath diversity without rate loss for any number of transmit-
antennae, and with large coding gains within the class of linearly coded
systems, By incorporating subchannel grouping, we also enable desirable
tradeoffs between performance and complexity. The merits of our de-
sign are confirmed by corroborating simulations, and comparisons with
existing approaches.

I. INTRODUCTION

Broadband wireless communications call for high data-rate
and high performance. When the symbol duration is smaller
than the channe! delay spread, frequency-selective propaga-
tion effects arise. Therefore, it is important for broadband
wireless applications to design single- or multi-antenna sys-
tems that account for frequency-selective multipath channels.

Space-time (ST) coded multi-antenna transmissions over
flat fading channels have been well documented; see e.g.,
[10]. ST coding for frequency-selective channels has also been
pursued recently using single-carrier [1,13], or, multi-carrier
transmissions [2,5,6]. The code designs in {2,6] do not guar-
antee full space-multipath diversity. Those in [5,13] guarantee
full diversity, but as they rely on ST block codes [10], they in-
cur rate loss up to 50%, when the number of transmit antennas
is greater than two.

Delay diversity schemes transmit one symbol over two an-
tennas in two different time slots {3,8,9]. Related to de-
lay diversity is a so-termed phase sweeping transmission that
creates time-variations to an originally slow-fading channel
(4]. Unfortunately, both analog phase-sweeping and delay-
diversity approaches [3,4,8,9] consume extra bandwidth, and
they do not enjoy joint space-multipath diversity.

In this paper, we design a multi-carrier space-time multipath
{STM) coded system, which guarantees full space-multipath
diversity and large coding gains with high bandwidth effi-
ciency.

Notation: Upper (lower) bold face letters will be used for
matrices (column vectors). Superscript 7 will denote Hermi-
tian, * conjugate, 7 transpose, and ' pseudo-inverse. We will
reserve @ for the Kronecker product, and E[-} for expectation.
We will use [A]g,m to denote the (k + 1,m + 1)st entry of a
matrix A, tr(A) for its trace, and [x],, to denote the {m + 1)st
entry of the column vector x; Iy will denote the N x N iden-
tity matrix, and F v the N x N normalized (unitary) FFT ma-
trix; diag[x] will stand for a diagonal matrix with x on its main
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Fig. 1. A discrete-time model of linearly coded systems
diagonal.

1I. SYSTEM MODEL

Figure 1 depicts a multi-antenna wireless system with N,
transmit- and N, receive-antennas, The information bearing
symbols {s(n)} are drawn from a finite alphabet A,, and
parsed into blocks of'size N x 1: s(k) := [s(kN),...,s{(k+
1)V — 1)]7. If the mapping from s(k) to v, (k) satisfies

N-1
va(k) =3 a®s(k)], + bPs(k)h, Yue (1, M), 1)
n=>0

where a%) and b%) are P x 1 vectors, then we call this ST
transmitter a /inearly coded one. Notice that not only sym-
bols but also their complex conjugates are linearly combined
to form the codeword v, (k) transmitted from the gth antenna
during the kth block interval.

The fading channel between the pth ransmit- and the vth
receive-antenna is assumed to be frequency-selective but time-
flat. It is described by the discrete-time baseband equivalent
impulse response vector:

R = (a0 (0), L RN, with L= r;“} , )

where 7., 15 the maximum delay among all paths (delay
spread), T, is the symbol sampling period, and L denotes the
maximum order of all (v, u) channels.

Each receive-antenna output comprises a noisy superpo-
sition of the multi-antenna transmissions through the fading
channels. We assume ideal carrier synchronization, titing and
symbol-rate sampling. At the vth receive-antenna, the symbol
rate sampled sequence z,{n} at the receive-filter output is

N, L
zu(n) =D 3 h v (n — 1) + u(n), (3)
p=l1=0
where v,(n) = [v,(k)}s, and {,(n) is complex additive

white Gaussian noise (AWGN) with mean zero and variance
2 =N,
a ¢ = No.
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The symbols ,,(r) are serial-to-parallei (S/P) converted to
form P x 1 blocks x,, (k) = [z, (kP), ..., 3, (kP+P—-1)]T.
The matrix-vector counter part of (3) is

N
x, (k)= S (B0, (k) + HEvi(k=1)) +C,(6), @)
p=1

where H"#) is a lower triangular Toeplitz matrix with
first column [AW#(0), ..., A®#HL), 0,...,0/T, HY
is an upper triangular Toeplitz matrix with first row
[0,...,0,A®#(L), ... R¥¥ (1)}, and , (k) is the AWGN
vector.

In this paper, we develop a linearly coded system which
collects the maximum joint space-multipath diversity as well
as large coding gains. Since in the following we will work on
a block-by-block basis, we will drop the block index k.

III. DESIGN CRITERIA AND PROBLEM STATEMENT

Here we introduce ctiteria for designing our STM codes.
Our derivations are based on the following assumptions:

A1) Channel taps {R #(1)} are zero-mean, complex Gaus-
sian random variables;

A2) Channel state information (CSI) is available at the re-
ceiver, but unknown at the transmitter;

A3) High SNR is considered for deriving the STM diversity
and coding gains.

When transmissions experience rich scattering, and no line-of-
sight is present, the central limit theorem validates Al). No-
tice that we allow not only for independent random channel
coefficients, but also for correlated ones. A3} is needed for the
criteria, but is not required for the system operation.

The optimal performance of multi-antenna systems in
frequency-selective channels has been considered in e.g.,
[5,13,6]. Since our design will atlow for correlated channels,
we will denote the N, N,.(L + 1) x NyN,{L + 1) channel cor-
relation matrix and its rank, respectively, by:

Ry, = E[hh™], and rj, := rank(Ra) € NN (L + 1),

where the N, N, (L 4+ 1) x 1 channel vector is h := [R1(0),
CREOE) RN, L R NO(L)]F, Without a
proof, we summarize our performance results for the linearly
coded systems as follows (see also Fig. 1, and [T} for the

proof):

Proposition 1 The maximum achievable space-multipath di-
versity order for linearly coded systems is

G = 1y < NyNo(L + 1), 5)

When the channel correlation mairix Ry, has full rank, the
maximum coding gain for these linearly coded systems is

2
dmin

@™ = (det(Rn)) 7 e
4

(6)
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Fig. 2. A discrete-time model of transmitter and receiver for STM designs

where duin is the minimum Euclidean distance of the constel-
lation points in the finite alphabet A,.

In the ensuing section, we will propose an STM design
which guarantees GT** in (5) and achieves the maximum cod-
ing G™** in (6) asymptotically as N — oo. Compared with
{5,13], the merit of our STM design is that unlike [5,13] no
rate loss is incurred YNy > 2.

IV. STM CoODEC

The design of our STM codec consists of three stages as
shown in Fig. 2. The outer codec includes a linear constel-
lation precoding matrix ©, and the corresponding deprecoder
G(-). The middle codec is our digital phase sweeping (DPS),
scheme that includes a power splitter along with a set of ma-
trices {® p}ﬁil at the transmitter, and a maximum ratio com-
biner (MRC) at the receiver. The inner codec performs orthog-
onal frequency division multiplexing (OFDM). In the follow-
ing, we will detail these three stages.

A. Inner codec: OFDM

It is well-known that an OFDM module performs an inverse
fast Fourier transform (IFFT) operation (via F¥), follewed by
cyclic-prefix (CP) insertion that can be described as a matrix
T.p at the transmitter. At the receiver, two mirror operations
take place: the CP is removed (via a matrix Rep), and the FFT
is taken. The CP-insertion and removal matrices are given,
respectively as:

I
Tep = [Ic::] > ch = [ONXch IN] E )]

where L,y is the CP length, and I, denotes the last Lp rows
of Iy. Based on these definitions, the input-output relation-
ship from ¢, to y, (see Fig. 2) can be expressed as:

Nt . .
v, = ZENchH["’“)Tch?’cF +£&,, Ywel,N] ()
p=1
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where the £,’s are independent identically distributed (i.i.d.)
AWGN vectors, and c,, is the output of the middle encoder
$,. It is well-known that by (inserting) removing the CP
and ()FFT processing, a frequency-selective channel becomes
equivalent to a set of flat-fading channels. Mathematically,
one can express this property via:

FNRpHOWTL Y = DY, v, g, )
where DU = diagl H®#)(0), ..., H#(N — 1)}, with
HER) () = S kR (1)e=3270N - Using (9), we can
simplify (8) as:

N
y» = 3. DiPe, +€,, Wwell,N] (10)

u=1

Notice that the inner codec (OFDM) removes the inter-block
interference (IBI), and also diagonalizes the channel matrices.

B. Middle codec: DPS

The analog phase sweeping {a.k.a, intentional frequency
offset) idea was introduced in [4]. The two transmit-antenna
analog implementation, modulates the signal of one antenna
with a sweeping frequency f, in addition to the carrier fre-
quency f., that is present in both antennas {4]. This causes
bandwidth expansion. In the following, we will propose a dig-
ital phase sweeping (DPS) encoder. Combined with OFDM,
DPS will convert V, frequency-selective channels, each hav-
ing (L +1) taps to a single longer frequency-selective channel
with Ni(L + 1) taps.

We can rewrite the diagonal channel matrix in (9) as:

L
D= Y~ pm D, Yy € [1, N, (n

=0

where D; := diag[l,exp{—j2xl/N},... exp{—j2nl(N —
1)/N}}. Eq. (11) discloses that different channels may have
different channel taps ~{#){1), but they share common delay
lags (I) that manifest themselves as common shifts in the FFT
domain. Suppose that we shift the L + 1 taps of each chan-
nel corresponding to one of the NV; transmit antennas so that
all channel taps become consecutive in their delay lags. Then,
we can view the N, channels to each receive-antenna as one
longer frequency-selective channel with Ny(L + 1) taps. Te
* realize this intuition, we select the matrices {‘iu}ﬁll as

&, = diaglt,e’,. ..,/ NV vue (LN, (12)

where ¢, = —2n{p — 1)(L + 1)/N. Based on (11) and (12),
we have that

DEQp = Dl+(#*1)(5+1)7 vie [U: L]r/—" € [ert}' (13)

Define the equivalent long channel vector corresponding to the
vth receive-antenna as:

h(U)= [(h(u'l))T, L. ,(h(y'Nc))TlT (14)

with the Ith entry of h) given by: R()(1) = RO/ (Z+1]+D)
{t mod (L + 1)). According to (13), we define

Ny Ny(L+1)-1
Dy =S ph¥e, = S 0D (1)
u=1 =0

Since h®) has length N.(L + 1), we can view it as com-
ing from a single frequency-selective channel. In essence,
the DPS matrix @,shifts the delay lags of the uth chan-
nel (cf. (13)) from [0, L) to [(p — 1){L + 1), p(L + 1} —
1). For example, when u 1, ; = Iy and then
D&V, = diag({vNFght*Y), where Fy.;, denotes the
first L + 1 columns of Fry. When g = 2, D&, =
diag(VNF (L41):20+1yh®), where F(141).2041y denotes
the (L + 1)st up to (2L + 1)st columns of Fy. Proceeding
likewise with all N, DPS matrices, we can also obtain (15}.
We summarize this observation in the following:

Property 1: DPS converts the N, fransmit-antenna system,
where each frequency-selective channel has L + 1 taps, to a
single transmit-antenna system, where the equivalent channel
has Ni(L + 1) taps.

Eq. {15) reveals a similarity between our DPS codec and the
delay diversity schemes of [3,8). However, our DPS scheme
does not incur extra bandwidth expansion because it operates
in the digital domain instead of the analog domain.

Remark 1 To avoid overlapping the shifted bases, we should
make sure that N > N;(L + 1). From the definition of
L == [Tiax/Ts], we have that for fixed 7. and N, we can
adjust the sampling period T to satisfy this condition. As for
each receive-antenna we have Ny(L + 1) unknown channel
taps corresponding to N, channels every V symbols, this con-
dition guarantees that the number of unknowns is less than the
number equations. Therefore, even from a channel estimation
point of view, this condition is justifiable.

After the DPS encoder, since ¢, = ®,u/V/N,, the input-
output relationship can be rewritien as [c.f. (15)]:

1
V' Ny

To collect the full diversity and large coding gains, we not
only need to design the transmitter properly, but we must also
select a proper decoder at the receiver. Since the received
blocks y, from all N, receive-antennas contain the informa-
tion block s, we need to combine the information from afl
received blocks to decode s. To retain decoding optimality,
we perform the maximum ratio combining (MRC). The MRC
amounts to combining {y,} in (16) to form z = Gy, where
the matrix G is given by

DY+, wwell, N

Yo = (16)

R

G= (i DY (ng))‘) [(D;})y (Dgfm)».} an
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andy = [y],...,y% ]7. Existence of the inverse in (17),
requires (only for the DPS design) the channels Dg’) to satisfy
the coprimeness condition:
Ag) det (3202, DY (D)) # 0.
Assumption A4) is more technical rather than restrictive, since
it requires that the equivalent channels do not have common
channel nulls. For random channels, A4) excludes an event
with probability measure zero.

With the MRC of (17), the vector z is given by:

N AN
z:\/LN_t(;DE;) (Dg))) u+mn,

whete n == G[¢T,....¢% |7, Under A4), it can be veri-
fied that G satisfies GG = L Since the ¢,’s are uncor-
related AWGN blocks, the noise vector 7 retains their white-
ness. Note that the middle codec has converted a multi-input
multi-cutput system into a single-input single-output system.

To achieve full diversity, we still need to design the outer
codec propesly. If there is no precoding; i.e., u = s, we obtain
that at each receiver, the diversity order is one even if maxi-
mum likelihood decoding is used. This happens when we lose
the N;(L + 1) transmit-diversity. To enable the latter, we need
to design the precoder @ judiciously.

(18)

C. Outer codec: Linear Constellation Precoding

Grouped Linear Constellation Precoded (GLCP) OFDM
was introduced in (5]. It provides one with a means of re-
ducing decoding complexity without sacrificing diversity or
coding gains. Towards this objective, we select the transmit-
ted block size N = Ny N,,;, and demultiplex the information
vector s into N, groups: {s, }g;’u_ ' Each group has length
Ngub, and the gth group contains the symbols collected in a
vector s, as follows:

T
s [81Msuato+)-1 | (19)

Correspondingly, we define the linearly precoded block of the
gth group as:

g = O,8,, Vg e [0, N, — 1],

S = [[8]Mouser -

(20

where @g,,; is an N, X Ny matrix. To enable the maximum
diversity, we select ©,,,, from the algebraic designs of {12].
The overall transmitted block u consists of multiplexed sub-

blocks {ug}s‘;v;(,_ ! as follows:

u= [[“0]0 s [uNgq]u; ey [UO]NS..;,-I s {UN_,,—l]N,ub—1]T-

It is not difficult to verify that u can be obtained from
{ ug};\;"o_ 1’ via a block interleaver with depth N,,s. Equiva-
lently, it turns out that u can be related to s as

Iv, ® o7

u=0s, with ®:= : 21
Iy, @ 6%

sub

where 61; is the mth row of ;.. Equations (19)-(20), or
equivalently (21), summarize our LCP encoder.
To decode LCP, we split z in (18) into /N, groups:
1

A A

T
where  z, [[z]g: [Z]Naub+gi EEERY [z]N.;ub(Ng—l)-i-g] s
Dy, is the comesponding diagonal sub-matrix from

DH,_q@subsg + ng: Vg S [O:Ng - 1], (22)

w1
(Zf;l D(,;') (Dg,’)) ) * for the gth group; and similarly de-
fined, 7, is the corresponding AWGN.

ML decoding of z can then be implemented by applying
the Sphere Deceding (SD) algorithm [11] on sub-blocks z, of
small size N.;. Compared to the exponentially complex ML
decoder, the SD offers near-ML performance at complexity of
order O(Ng,,), with @ € [3,6]. The SD complexity depends
on the block size V.3, but unlike ML, it is independent of the
constellation size [11].

The performance of our DPS depends on the selection of the
sub-block size N,,,. When Ny, > N;(L +1), the maximum
diversity order in (5) is achieved. When N, < N(L + 1)
and Ry, has full rank, the achieved diversity order is N,,;.

We summarize our diversity and coding gain results for our
STM in the following proposition:

Proposition 2 The maximum achievable space-multipath di-
versity order G'Y™ = r}, is guaranteed by our STM design
provided that we select Ng,p > Ny(L +1). When the channel
correlation matrix Ry, has full rank r, = N .Ni(L + 1), our
STM design achieves (as N >») the maximum possible coding
gain among all linearly coded transmissions that is given in
closed form by: G = (det(Ra)) ™ d2, N/ (NN + Lep)).
Tke transmission rate of our design is N/(N + L) sym-
bols/sec/Hz, YN, N,.

In fact, the group size N,,;, controls the tradeoff between
performance and decoding complexity. When Ny, < Ny(L+
1), as N,,, decreases, the decoding complexity decreases,
while at the same time, the diversity order decreases. By ad-
Justing N, we can balance the affordable complexity with
the required performance.

V. SIMULATED PERFORMANCE

Here we present simulations to confirm the performance of
our STM design.

Test case 1: (Effects of multipath diversity) In order to appre-
ciate the importance of multipath diversity, we simulated the
performance of our STM design with N; = 2 transmit and
Nr = 1 receive antennae in the presence of multi-ray chan-
nels with different channel orders L = 0,1,2. The channel
taps are i.i.d. Gaussian random variables with zero mean and
variance 1/(L + 1). The CP length is L., = L. QPSK mod-
ulation is selected. The sub-block size is Neyp = N(L+1)
and the number of sub-blocks is ¥, = 6. The information
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Fig. 4. Variab-lc group size Nyyp ({Ne, Nr, L) = (2,1,2))

block length is N = NupNg. Fig. 3 depicts the average bit-
error rate versus SNR, We observe that as the channel order L
increases, our STM design achieves higher diversity ordet.

Test case 2: (Tradeoff between diversity and complexity) To
tradeoff diversity with complexity, we adjust the group size
Ngup. The parameters and the channel model are the same
as in Test case 1, except that we fix L = 2. In this case,
Gg™ = 6. Fig. 4 confirms that as Ny, decreases, the
achieved diversity decreases. Since the channel correlation
matrix Ry, has full rank, the achieved diversity order is Nyys.
Comparing the slopes of BER curves in Fig. 3 and Fig. 4 con-
firms cur result. Note that decoding complexity also decreases
as N,,p decreases. This shows that when the product N, L is
large, we can select V,,,, small to reduce complexity.

Test case 3: (Comparisons with [5]) In this example, we have
L =2 N,=1and N; = 2,4 The channel taps are inde-
pendent and satisfy an exponentially decaying power profile.
When IV, = 2, we select QPSK for both STM and STF [5].
From Fig. 5, we infer that STF outperforms STM about 1 dB,
while having lower computational complexity. When Ny = 4,

| -e- DPS {N;=2, QPSK)}
-> DPS [N=4,BPSK)

£l —— STF[5] (N=2, QPSK) |

4| e STF (5] (N=4, QPSK)

8 10 12 14 16
E/MNidB)

Fig. 5. Comparisons with [5] for variable V;

to maintain the same transmission rate, we select BPSK for
outr STM and QPSK for STF, because STF uses the block code
of [10] which has rate 1/2 symbols/sec/Hz. From Fig. 5, we
observe that our STM outperforms the STF of [5] by about 3
dB. )
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