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Abstract — We quantify the average performance of digital
transmissions over fading channels at high signal-to-noise ratio
(SNR). The performance criteria considered here are probability
of error and outage probability. We show that as functicns of the
average SNR, they can both be characterized by two parameters:
the diversity and coding gains. They have the same diversity order,
but their coding gains in dB differ by a constant. The diversity and
coding gains are found to be related to the behavior of the prob-
ability density function (PDF) only at the origin, or equivalently,
to the decaying order of the characteristic functien. Diversity and
coding gains for diversity combining systems are found in terms
of branch average SNR’s for arbitrarily distributed independent
(in some cases, correlated) branches, which can allow one to ana-
lyze, e.g., coded transmissiens through independent or correlated
fading channels.

I. INTRODUCTION

In wireless communications, the channel varies due to mul-
tipath propagation and relative motion between the transmitter
and the receiver. This time-variation of the channel is known
as (time-selective) fading. When the data rate is high, the chan-
nel also exhibits variation in the frequency domain known as
frequency-selectivity.

Performance analysis of coded or uncoded transmissions
over fading (either frequency- or time-selective) channels is of-
ten carried in two steps: First, the exact or approximate (e.g.,
upper bounded) performance for a fixed channel realization is
found; it is usually expressed as a Q(-) function that depends
on the instantaneous signal to noise ratic (SNR) v = 3, where
4 is a deterministic variable controlling the average SNR, The
random variable 3 depends on the channel realization and has a
probability density function (PDF) p(£). In the second step, the
instantaneous performance is averaged with respect to p(3) to
obtain the average performance. For a general introduction and
a unifying treatment based on moment generating functions,
see [7, ch. 12].

Not in all cases can the average performance be given in
closed form, although it can usually be written as an integral.
The integral then needs to be evaluated numerically either in the
PDF domain, or, in the transformed domain via, e.g., Fourier
or Laplace transforms [2,7]. Although this approach enables
numerical evaluation of system performance and may not be
computation intensive, in general it does not offer insights as to
what determines system performance in the presence of fading
channels.

In this paper, we quantify large SNR fading channel (un-
coded or coded) communication system performance, namely
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average probability of error and outage probability, in terms of
the diversity gain Gy, and the coding gain G,. We will establish
that:

i) Gy and G, depend only on the behavior of p(#) around the
origin 8 = (;

i) Gq and G; are also related to the asymptotic behavior of
the characteristic function of p(3);

iti) The outage probability as a function of the average SNR ¥
follows similar “diversity-coding gains” pattern similar to that
of the average error rate;

iv) The slope (diversity order) of the outage probability curve
is the same as that of the average error rate curve;

v) The diversity and coding gains of a general diversity com-
bining system are expressed in terms of the individual branch
diversity and coding gains. Special cases include equal gain
combining (EGC), maximum ratio combining (MRC), and se-
lection combining (SC) [7]. We show that they all achieve the
same sum diversity.

We also remark on how coded system performance at large
SNR can be quantified with the proposed unifying method.

II. PERFORMANCE IN FADING CHANNEL
A. Average Error Probability

Athigh SNR, the overall average error probability Pg is usu-
ally in the following form [9}:

Pg ~ (Ge-7)™%, M
where G, is termed the coding gain, and Gy is referred to as
the diversity gain, diversity order, or, simply diversity. The di-
versity order Gy determines the slope of Pg as a function of
the average SNR at high SNR, whereas G, determines the shift
of the curve in SNR relative to a benchmark error rate curve
of ()%, Although the diversity and coding gains are perfor-
mance indicators of the system, it is convenient to think that the
(random) SNR 3% offers certain diversity and coding gains.

In certain simple cases, instead of the high SNR approxi-
mation, the average error probability can be evaluated analyt-
ically, For example, binary phase shift keying (BPSK) over
a Rayleigh channel exhibits an average performance given by
Pe = 0.5(1 — /5/(1 + 7)), which for large SNR can be ap-
proximated as Py = 1/4% [6, page 818]. Additional error prob-
ability expressions for Ricean and Nakagami channels can be
found in, e.g., [3, 5] :
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Channel Type P(ﬁ) t a
Rayleigh ] 1
Nakagami-g p(Biq) = L exp( ““’2)2 1, (25522) 0 14
Nakagami-n  p(F;n) = (1 + n”)e"" exp(—(1 + n )ﬁ)Io(2n\/(1 +n?)8) 0 (1 +ne™
Nakagami-m p(B;m) = _r'(%)_ exp(—mf) m~1  m™/T{(m)}

Table 1: Parameters ¢ and ¢ in as2) for certain fading distributions

In this paper, we are interested mostly in large SNR perfor-

mance quantified by the diversity and coding gains. This shift--

" ing of focus from the exact performance to large SNR analysis
allows us to quantify the performance using only two impor-
tant parameters Gy and G, and hence gain insights into the de-
termining factors of fading channel communication systems’
petformance. With this tool, one is able to unify the analy-
sis for many communication systems (e.g., coded or uncoded,
coherent or non-coherent) over a large spectrum of fading chan-
nel characteristics (e.g., Rayleigh, Nakagami-m, Nakagami-n,
Nakagami-q) with simple calculations.

Our assumptions are:

asl) The (-dependent instantaneous error probability is given

by Pe(8) = Q(/kB¥), where k is a modulation-
dependent constant (e.g., for BPSK, k = 2).

as2) p(3) can be approximated’ by a “polynomial” for  — 0
(8 tends to 0 from above) as p(d) = af* + o(3}. We call
t the order of smoothness of p(3).

If p(3) is “well-behaved” around B = 0 so that it accepts a
Taylor series expansion at 7 = 0 (the Maclaurin series), then
t in as2) is just the first non-zero derivative order of p(5) at
B =0, and a = p®(0)/t!. But in general, t need not be an
integer (e.g., in the Nakagami-m case).

The average error probability is given by

Ppi= fo ~ Pe(B)p(s) 4B @

We remark that we intenticnally do not require E(3) = 1.
Therefore, the actual average SNR is E{)7¥ rather than 7. The
slight miss use of the notation allows us to unify and present
the results for various types of systems in a uniform way. The
only caution that needs to be exercised is when one interprets
the results: The coding gain is measured by the shift of the
P curve relative to a curve of 304, rather than relative to an
average-SNR-based reference curve [E(8)7]~%.

We present our first result in the following proposition,
whose proof is given in Appendix A. We use the Gamma func-
tion that is defined by ['(z}:= [J* z*~Te™= dx.

Proposition 1 [Diversity and Coding Gains] The average er-
ror probability of a system satisfying asl) and as2) at high SNR
depends only on the behavior of p{3) at 3 — 0%, Specifically,
at high SNR, the average error probability as ¥ — oo Is given

'We write a function a(x) of z as o(z) if limz-.0 a{z)/z = 0.

by

23+1/2 a F(t + 3/2)
Pr = k)= D 4 o5 (1)
£ V2r(t+1) (k)" o,

which implies that Gg =t + 1 and

G — (2t+]/2 H,F(t + 3/2))_1/(“'1)
¢ V2r(t+1)

The intwition behind Proposition 1 is that when the aver-

_age SNR is high, the system performance will be dominated

by the Iow-probability event that the instantaneous SNR be-
comes small; see Fig. 1. Therefore, only the behavior of p(5)
at 8 — 0% determines high SNR performance. In fact, as
& — 00, Q(VESY) behaves more and more like a delta func-
tion at the origin with decreasing amplitude (equal to the in-
tegral of Q(/k37%) from 3 = 0 to oo). Proposition 1 nicely
links the order-of-smoothness of p(3) at the origin to the di-
versity gain and also quantifies the coding gain using the two
parameters, namely g and ¢, of p(#3). It is not difficult to extend
the result to functions other than the Q(-) function. Observing
Fig. 1, one should be convinced that if we replace Q(:) by any
function of ~ that behaves like a delta function with decreas-
ing amplitude as ¥ — co, we should obtaint a result similar to
Proposition 1, only with a different coding gain. Specifically,
functions like ¥7Q9(-), v* exp{—gy), where p and ¢ are pos-
itive numbers, or linear combinations of such functions, can
simply replace () in the proof of Proposition 1.

In Table 1, we list results on some commonly used fading
distributions. Using the table, one can easily compute the high
SNR performance of typical coherent and non-coherent mod-
ulation schemes (c.f, e.g., [6, ch. 14]). We remind the reader
that the Rayleigh distribution is a special case of Nakagami-
q (g = 1), Nakagami-n (n = 0) and Nakagami-m (m = 1).
The Nakagami-n type channel is also known as the Ricean
distributed channel with the Ricean K factor K = n2?. The
Nakagami-m SNR PDF is also known as the chi-square distri-
bution x%,, with 2m degrees of freedom.

The result of Proposition 1 is an asymptotic one, as it asserts
only large SNR performance. However, the following obser-
vations are important: i) In many cases, the error probability
curve usually becomes a straight line at moderate SNR (e.g., a
few dB’s); ii} The error probability curves are often concave, so
the high SNR performance can be linearly extended to the low
SNR region. Thus, it can be used as an upper bound to the low
SNR performance.
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Figure 1: Q(+/7) as functions of 3 for ¥ = 0dB, 5dB,
and 10dB; and an example p(/3). The larger 7 gets, the
more (2) depends on p(3)’s behavior around 3 = 0.

Example 1_As an example, consider BPSK transmissions over
a Nakagami-m channel. The exact bit error rate (BER) can be
expressed in closed-form [1, eq. (42)]:

1 n/2 ’7 —-m
Py =— 14+ ——— .
E 11“_/0 ( +m3in2¢) dqbl

Using the result of Table 1 and Proposition 1, the BER at high
SNR can be written as

(3)

m™ I (m+3) .

2/m T(m)

The exact (3) and approximate (4) are compared in Fig. 2, for
m = 0.5,1,2,4. We can see that the approximate result of
Proposition 1 correctly predicts the diversity and coding gain,
although for large m, the asymptotic behavior of the BER-SNR
curve shows up at relatively high SNR (e.g., for m = 4, we
need 7 > 15dB). |

Although the diversity and coding gains in Proposition 1 are
accurate at high SNR, in some cases we can obtain more ac-
curate or even exact results for low to medium SNR’s. This is
useful, e.g., for Nakagami-n (Ricean) channels with large n (or,
large K factor), in which case, a becomes so that the diversity
order only shows up at very high SNR. For these channels, the
following result is particularly nseful.

P]:_ =3 (4)

Proposition 2 [Exact Average Error Probability] Suppose
that p((3} can be expanded in a series form:

I-1

p(B) = ail't +o(F) )
i=0

where t is a positive number and o(3*+7) is the remainder term
(the Lagrange remainder in Maclaurin series}). Then the aver-

=
&My

Figure 2;: BER of BPSK transmission over Nakagami-m
channels withm = 0.5,1,2,4

age error probability is given by

I grvitay2 o T(t +i+3/2)
V2t +i+1)

Py = (ky)~t++D
i=0
+ O(.‘Y“(fr+f+1) )’

which becomes exact if I = co.

Proof: Direct evaluation of (2). O

At large SNR, the first term will dominate and can be used
to define the diversity and coding gains. A few more terms can
also be used if the first term is not the dominant one at low
to medium SNR’s (e.g., in the Nakagami-n case with large n).
The convergence of the series expression of Pg in Proposition 2
needs to be checked before using it: it may not converge for
very low SNR’s. But we underscore that even if the series ex-
pansion of p(() in Proposition 2 does not exist, Proposition 1
can still be used as long as asl) and as2) hold.

The order of smoothness t of p(3) is related to the decaying
order with which the characteristic function ¢g(w) := E{e/*)
decays as a function of 3. Corresponding to Proposition 1, we
have the following result based on the characteristic function
{or, on the moment generating function after slight medifica-
tions) of the PDF p(f3), which is sometimes easier to obtain
than p(3) itself.

Proposition 3 [Characteristic Function] Suppose asl), as2)
and the following additional assumptions hold:

i p(B) is infinitely smooth (all derivatives exist} for all 3
except when 3 = 0;

ii) Forw — oo, |ga(w)] = bw™ + olw™).
The diversity and coding gains are given by

T2 T (r + 1/2))
V2rD(r + 1)

-1/r

Gy=r, and Gc=k(
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Proof: Since p(3) is everywhere infinitely smooth ex-
cept at § = 0, the decaying order of ¢s{w} only depends on
the behavior of p(3) at 3 = 0. The result can then be proved
based on Proposition 1 by noticing that the single-sided Laplace
transform of 4% is I'(¢ + 1)/st*+1. |

To demonstrate the usefulness of Proposition 3, we consider

multi-link channel reception with L-branch MRC from corre-
lated Nakagami-m fading channels having an arbitrary power
correlation pye, [,V = 1,2,..., L, across the paths. The com-
bined SNR vy = Z::L=1 4 cannot be found in a simple form. But
the moment generating function M(s) = E[e"*] of the com-
‘bined SNR - can be written as (6) [4]. We let s — oo, and
notice that M(s) = (—s)~™L det ™™ (/p;) I, (m/a)™,
where det(, /p:;) is the determinant of the I x L matrix whose
(i,7)th entry is \/p;;. Setting s by jw and applying Proposi-
tion 3, we obtain a diversity order of m.L. The high SNR efror
probability is given:

. 2mL=1/2 det =™ (,/pi7)m™ET(mL + 1/2)
i kL /3w TmL + 1) [Ty 37

The next result computes the diversity and coding gains for
some combination of random SNR variables, which is useful
for evaluating the diversity combining system performance as
well as the performance of coded systems.

Proposition 4 [Diversity Combining] Suppose v = 517 of-
fers diversity gain Gy and coding gain G, for! = 1,2,... L,
and suppose that 3;’s are mutually independent. Let p and c,,
1 =1,2,...,L be positive real numbers. Then, the aggregate
diversity gain Gu5 and coding gain G.x, for v = 3% are given
by (7), where §:=(5>5_, c18F)\/*, and all the summations and
products are froml =1 to L.

Proof: Due to lack of space, we only give the sketch of
the proof. Thanks to Proposition 1, we only need to find out the
parameters a and £ (c.f., asl)} of the PDF of the combined 3.
Since §;'s are independent, the PDF of 3 is the convolution of
the PDF’s of 3,’s. Via single-sided Laplace transform and its
inverse transform, we can relate the parameters @ and ¢ of 3 to
those of 3;’s. Using Proposition 1, Gyy, and G5, can be related
to Gg;’s and Gg;’s. O

Note that when all ¢’s are equal, p = 1/2,1, and oo cor-
respond to the three popular diversity combining techniques,

namely EGC, MRC, and SC, respectively.
Corollary EGC, MRC and SC all achieve sum diversity.

B. Outage Probability

In addition to the average error rate, {thermal noise) outage
probability Py, is another often used performance indicator
when communicating over fading channels. It is defined as the
probability that the instantaneous SNR +y falls below a certain
threshold vy, [8]:

i/ F
Pau:=Pl0< 7<) = [0 pB) 8. (®)

Proposition 5 [Outage Probability] Under as2), for large 7,
the outage probability is given by

a t+1
Pou = (3’1) +o(3™), 3 - oo

t+1\ 7

Therefore, at high SNR (7 — ), Py as a function of % fol-
lows the same pattern as the average error probability, and can
be written as Py, == (0.7)~% for large 7, where the outage
diversity Oy and coding gain O, are:

] g \ VD
Oy=t+1, and Oc:;;;(t+l) )]
1t then follows that
0s=Gar 0= [E2L0+ /2] e
ke Var
Proof: Direct evaluation using definition. O

Proposition 5 discloses that at high SNR, the outage proba-
bility curve and the average probability curve as functions of
7 are only different by a constant shift in dB. To every result
pertaining to G4 and G there will be a corresponding result for
04 ané O,.

C. Coded System Performance

To analyze a coded system performance, a pairwise error
probability (PEP) analysis is often pursued, and a union bound
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is computed to quantify the average performance [7, ch. 12].
All the results we developed in Section II-A can be applied to
the PEP analysis step. For example, Proposition 3 allows us to
analyze coded transmissions over correlated fading channels.

1. CONCLUSIONS

We have shown that under very mild assumptions, both the
average error probability and outage probability can be charac-
terized by diversity and coding gains at high SNR. They have
the same diversity gain but differ in the coding gain in dB by a
constant. The diversity and coding gains depend on the instan-
taneous SNR’s probability density function (PDF) only through
its behavior at the origin. This suggests a fading channel sys-
tem design philesophy of guaranteeing symbol detectability in
the absence of noise. When the PDF of the instantaneous SNR
can be expanded in a Maclaurin series, the exact average error
probability can be evaluated. We also related the diversity and
coding gains to the characteristic function of the PDF of the
instantaneous SNR and demonstrated its usage by evaluating
the high SNR error probability for MRC reception through cor-
related Nakagami-m fading channels. A diversity combining
system’s diversity and coding gains are expressed as functions
of the branches’ diversity and coding gains, using which we
showed that EGC, MRC and SC can all achieve sum diversity.
Based on this work, coded performance analysis for indepen-
dent or correlated fading channels can be pursued or simplified.
Application of our unifying approach to performance evalua-
tion of space-time coded systems will be reportcd in the near
future.

APPENDIX
A. Proof of Proposition I

Let B be a fixed small positive number. Then the integral in
(2) can be written as

Py = /0 ” Q/EB)(B) 48
- ]0 QWRBP(B) 46 + fB ~ QWRFTR(B) 4B
B o 1 2
— o =—xtf2 t t
fo ]‘/Hr e aft + o) da g
+ j QUWEBIP(B) 4p
f f e laft (9] dz
\/k_ﬁ_

_ _+ —:c"‘/za t 4 o3t
fB f\m\/ﬁe [af* + o8] dz 48
+ jE Q(VEET)p(B) 4B,

where we have used as2) and the definition of the Q(-) function.
We next evaluate the three terms in (10) one by one starting
from the last.

Since the ¢(-) function is monotonically decreasing, we

have Q(vkB7) < Q(VEB%) for 3 = B. Therefore the

(10

last term can be upper bounded by Q(vkB7) [, ;° p(B) dg <
Q(+/KB7). Using the Chernoff bound Q(z) < e~="/2, we see
that Q(vkB7), and hence the last term in (10), is o7~ *+).
To show that the second term is o(3~®**1) we ignore the
o(A*) term and interchange the integration in order to obtain

oo 22 j (k%) 2
%[ f T‘3‘°°’2ﬁ‘dﬁds:=
a/\/Z_ﬂ'

t+ D{y)

It is easily checked tha( the integral on the right hand side goes
to zero as 7 — oo, which shows that the second term in {10) is
also o(7~ (1)),

By interchanging the integration order, the first integral in
(10) can be computed as

_:1:2/2[172(!.-]-1) _ (kB,?)(t-Fl)] dz.

2042 o Pt + 3/2)
Pr= - (k)" 4 g(y—teH)y
E \/E(t +1) (%7} ¥ )
and the proof is complete. a
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