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ABSTRACT

This paper takes on a cyclostationary approach to recover
timing of ultra-wideband (UWB) transmissions over rich
multipath environments. It is demonstrated that timing de-
pendent cyclic statistics exist without resorting to oversam-
pling, due to the symbol repetition pattern inherent to UWB
modulation. Based on the received signal’s second-order
cyclic statistics, non-data-aided time offset estimation al-
gorithms are developed. Timing acquisition relies only on
frame rate samples, while low-complexity tracking utilizes
pulse rate samples. Both acquisition and tracking schemes
are tolerant to UWB channel fading, and additive stationary
(possibly colored) noise.

1. Introduction

Ultra wideband (UWB) technology has received increasing
attention for its broad applicability to short-range wireless
communications and radar applications as well. The ba-
sic concept is to transmit, and receive a baseband impulse-
like stream of very low power density and ultra-short dura-
tion pulses – typically a few tens of pico-seconds to a few
nanoseconds. Such transmissions give rise to rich multipath
diversity, low probability of detection, enhanced penetra-
tion capability, high user-capacity with time hopping (TH)
codes, and potential spectrum compatibility with existing
narrowband systems [1, 8].

These unique advantages of UWB transmissions are some-
what encumbered by stringent timing requirements. Timing
offset estimation (TOE) is more challenging for UWB sig-
nals due to the strict power limitation, and the extremely
short pulse duration. Conventional synchronization tech-
niques based on pulse-rate sliding correlation are not only
sub-optimum in the presence of dense multipath, but also
very slow to converge, due to the prohibitively large number
of fine bins (chips) to be searched over. There are limited
works on rapid acquisition [2], [4], and tracking [6] tech-
niques for UWB.

In this paper, we apply the cyclostationarity-based tim-
ing estimation principle to UWB transmissions in the pres-
ence of rich multipath. Cyclostationarity (CS) typically arises
in narrowband systems when sampling at a fraction of the

Nyquist rate [3]. Such a sampling rate however, is infea-
sible for UWB. We recognize that CS is naturally present
in UWB signals due to the inherent pulse repetition across
multiple frames comprising each symbol [6]. For acquisi-
tion, we derive a sliding cyclic correlation method that re-
lies on frame-rate samples, while for tracking we develop a
low-complexity CS-based algorithm that utilizes pulse-rate
samples. Both schemes are non-data aided (a.k.a. blind).

The ensuing Section 2 outlines our system model and
operating transceiver conditions. Section 3 derives an ac-
quisition method based on the cyclic statistics induced di-
rectly from the pulse repetition pattern. Section 4 develops
our tracking algorithms. Due to lack of space, the reader is
referred to the journal version [7] for detailed proofs.

The following notations are used throughout:bxc de-
notes integer-floor,[x]y := x− bx/yc denotes both integer
and real-valued modulo operations with basey.

2. Modeling Preliminaries

In impulse radio multiple access, every information symbol
is transmitted by repeating overNf frames (each of dura-
tion Tf ) an ultra short pulsep(t) that has durationTp �
Tf . The pulse (a.k.a. monocycle) can have rectangular, tri-
angular, or, typically Gaussian shape [8]. WithTp at the
sub-nanosecond scale,p(t) is UWB with bandwidthBs ≈
1/Tp. The user of interest suppresses multiple access in-
terference (MAI) with a pseudo-random TH code sequence
c(k) ∈ [0, Nc−1] that time-shifts the pulse positions at mul-
tiples of the chip duration (Tc) [8]. We will deal with UWB
binary pulse amplitude modulation (PAM) [5], while gener-
alizations to pulse position modulation are possible [7].

During the acquisition phase, we consider slow hopping
by fixing the TH code for all frames within a symbol, but
allowing it to change from symbol to symbol. Slow TH en-
sures multiple access without inducing excessive spikes in
the power spectrum density of the transmitted signal. Dur-
ing the tracking phase however, we allow for fast hopping
where the TH changes on a frame-by-frame basis but re-
mains the same from symbol-to-symbol of the same user.
Fast TH leads to smoother spectrum and can accommodate
more users than slow TH. With information bearing PAM



symbolss(k) being i.i.d. with zero mean and varianceσ2
s ,

the transmitted pulse stream is:

u(t) =
∞∑

k=0

skp(t− kTf − ckTc), (1)

wheresk := s(bk/Nfc), andck := c(bk/Nfc).
After multipath propagation, the received waveform is

given byr(t) =
∑L

l=0 αlu(t − τl) + w(t), where(L + 1)
is the total number of propagation paths, each with tapαl,
and delayτl satisfyingτl < τl+1, ∀l. The channel is ran-
dom and quasi-static, with{αl}L

l=0 and{τl}L
l=0 remaining

invariant within one symbol period, but possibly changing
independently from symbol to symbol. Taps{αl}L

l=0 are as-
sumed zero-mean and uncorrelated for|l1 − l2| � 0. Rich
multipath is assumed, i.e.,τl+1 − τl < 2Tp,∀l, which is
well justified for indoor propagation channels. The additive
noisew(t) is assumed wide-sense stationary complex pro-
cess, but not necessarily white and/or Gaussian, as it con-
sists of both ambient noise and MAI. Also,w(t) is assumed
independent ofs(k), {αl}L

l=0 and{τl}L
l=0.

In TOE, the receiver cannot distinguish two time delays
that are separated by multiple symbol durations, e.g.,τ0 and
τ0 + kNfTf . Thus, we confine our timing offset estimation
(TOE) problem to be resolvable only within a symbol du-
ration, and express the first arrival time asτ0 = NεTf + ε,
whereNε ∈ [0, Nf−1], andε ∈ [0, Tf ). Accordingly, other
path delays can be described byτl,0 := τl − τ0. With these
definitions, the received signal can be expressed as

r(t) =
L∑

l=0

αlu(t− (NεTf + ε)− τl,0) + w(t). (2)

Estimation ofNε accomplishesframe-level TOEor acquisi-
tion, while that ofε enablespulse-level TOEor tracking.

A correlator-based receiver uses a frame-by-frame slid-
ing correlation templatep(t) to yield the discrete-time sam-

plesx(n) =
∫ (n+1)Tf

nTf
p(t− nTf )r(t)dt. Let the pulse cor-

relation beRp(τ) :=
∫ Tp

0
p(t)p(t− τ)dt. From (1) and (2),

we obtain (neglecting the noise for brevity)

x(n) =
L∑

l=0

∞∑
k=0

αlskRp((k+Nε−n)Tf +ckTc + ε+τl,0).

(3)
We will simplify (3) based on the fact thatRp(τ) is nonzero
only for τ ∈ (−Tp, Tp), and by selectingTf − Tp > τL,0.
If k + Nε − n ≥ 1, then the argument ofRp in (3) exceeds
Tp, sinceckTc + ε + τl,0 is always positive, andTf > Tp.
Likewise, if k + Nε − n ≤ −3, then the argument ofRp

in (3) goes below−Tp, becausemax(ckTc + ε + τl,0) =
2Tf + τL,0 < 3Tf − Tp. Hence, the values ofk and l
contributing nonzero summands inx(n) must satisfy:

k : k + Nε − n = −q, q = 0, 1, 2; (4)

l : −qTf + (ckTc + ε) + τl,0 ∈ (−Tp, Tp). (5)

Using (4) and (5), we can re-write (3) as

x(n) =
2∑

q=0

gq(n−Nε − q)sn−Nε−q + w(n), (6)

wheregq(k) :=
∑L

l=0 αlRp(−qTf + ckTc + ε + τl,0) for
q = 0, 1, 2 denote the frame-rate equivalent channel taps,
andw(n) :=

∫ Tp

0
p(t)w(t + nTf )dt is the sampled noise.

Depending onck and ε, we notice from (5) that for each
q, only certain path(s)l contribute nonzero summands to
gq(k). Forq 6= q′, these paths, picked according to (5), are
far apart; i.e.,|l− l′| � 0. This implies thatE{αlαl′} = 0,
which in turn proves that the correlation ofgq(k) satisfies:
E{gq(k)gq′(k + ν)} = Rg,q(ν)δ(q − q′).

3. Frame-Level TOE for Acquisition

Let Rx(n; ν) := E{x(n)x(n + ν)} denote the correlation
of x(n), andRw(ν) := E{w(n)w(n + ν)} the correlation
of the stationary noisew(n) in (6). It then follows by direct
substitution from (6) that:

Rx(n; ν) =
2∑

q=0

Rg,q(ν)Rs(n−Nε − q; ν) + Rw(ν), (7)

whereRs(n; ν) := E{snsn+ν} = σ2
s , whenν ∈ [0, Nf −

1] − [n]Nf
, and 0 otherwise. Because[n + kNf ]Nf

=
[n]Nf

for any integerk, we deduce thatRs(n; ν) (and thus
Rx(n; ν)) is periodic inn with periodNf . This establishes
thatsk andx(n) are cyclostationary processes.

Being periodic inn, Rx(n; ν) accepts a Fourier Series
expansion, which gives rise to (the so-termedcyclic corre-
lation) coefficients that are given by [c.f. (7)]:

Rx(l; ν):=
1

Nf

Nf−1∑
n=0

Rx(n; ν)e
−j 2π

Nf
ln

. (8)

Henceforth, we will rely onRx(l; ν) for l 6= 0 in order
to suppress the stationary noise whose cyclic correlation is
Rw(l; ν) = Rw(ν)δ(l). Substituting (7) into (8), and using
the periodicity ofRx(n; ν) to shift the summation limits in
(8), we find that forl 6= 0,

Rx(l; ν)

=
2∑

q=0

Rg,q(ν)

 1
Nf

Nε+q+Nf−1∑
n=Nε+q

Rs(n−Nε−q; ν)e
−j 2π

Nf
ln


= e

−j 2π
Nf

lNε

(
2∑

q=0

Rg,q(ν)e
−j 2π

Nf
lq

)
Rs(l; ν) , (9)

whereRs(l; ν) is the cyclic correlation ofsk, defined simi-
lar to (8). We can express the latter in closed-form as [7]

Rs(l; ν) = − σ2
s

Nf

sin(πl|ν|/Nf )
sin(πl/Nf )

e
j π

Nf
l(ν+1)

. (10)



Based on ourframe-rate samplesx(n), we can also estimate
Rx(l; ν) consistently via sample averaging:

R̂x(l; ν) =
1
N

N−ν−1∑
n=0

x(n)x(n+ν)e
−j 2π

Nf
ln

. (11)

Relying on (11) and (10), we will pursue our estimation
of Nε using the normalized cyclic correlation̄Rx(l; ν) :=
R̂x(l; ν)/Rs(l; ν), which for l 6= 0 is given by [c.f. (9)]:

R̄x(l; ν) = e
−j 2π

Nf
lNεRg(l; ν) , (12)

whereRg(l; ν) :=
∑2

q=0 Rg,q(ν) exp(−j2πlq/Nf ) con-
tains the unknown equivalent channel taps{Rg,q(ν)}2

q=0.
Let |R̄x(l; ν)| (θ̄x(l; ν)) and|Rg(l; ν)| (θg(l; ν)) denote the
amplitude (phase) of̄Rx(l; ν) andRg(l; ν), respectively.
For eachν, three amplitude values,{|R̄x(l; ν)|}3

l=1, suffice
to determine one (out of four possible) spectrally equiva-
lent triplet of channel taps{R̄g,q(ν)}2

q=0, using a spectral
factorization algorithm. For improved resilience to noise,
a spectrally equivalent triplet can be found also via nonlin-
ear minimization of a cost function that performs quadratic
amplitude matching as follows:

{R̄g,q(ν)}2
q=0 = arg min

{Rg,q(ν)}2q=0

3∑
l=1

[
|R̄x(l; ν)| − |Rg(l; ν)|

]2
(13)

To specify the correct triplet{Rg,q(ν)}2
q=0, and also find

Nε, we resort to the phase of̄Rx(l; ν), which from (12) is
given by:

θ̄x(l; ν) = −(2π/Nf )lNε + θg(l; ν) . (14)

Trying all four spectrally equivalent triplets of channel taps,
{R̄(i)

g,q(ν)}4
i=1, we can estimateNε as:

N̂ε = arg min
Nε,{R(i)

g,q(ν)}4i=1

4∑
l=1

[
θ̄x(l; ν) +

2π

Nf
lNε − θ(i)

g (l; ν)
]2

(15)
We have proved in [7] that four values of̄Rx(l; ν) indeed
suffice to identifyNε and{Rg,q(ν)}2

q=0 uniquely for each
ν. This establishes:
Proposition 1 (Acquisition by cyclic correlation)Timing
can be acquired consistently using four nonzero lags of the
cyclic correlation of the frame-rate sampled received se-
quence. An estimate can be obtained from (15) for each
ν ∈ [−(Nf − 1), Nf − 1], possibly followed by averaging
overν to further enhance estimation accuracy.

It is also possible to bypass estimation of{Rg,q(ν)}2
q=0,

and form coarseNε estimates without the one-dimensional
nonlinear search required by (15). As the resulting algo-
rithms rely on the peaks ofRx(n; ν) or the phaseθx(l; ν),
they are simpler; but they specifŷNε with an ambiguity that
can be as high as2Tf [9]. On the other hand, the acqui-
sition schemes in [9] collect energy overNf frames, and

thus improve estimation accuracy. Our̂Nε estimator can
enjoy similar benefits, if instead ofx(n), we apply the re-
sults of this section to the cyclostationary processy(n) :=
(1/Nf )

∑Nf−1
k=0 x(n + k). Additional SNR enhancement

is possible, if instead of the monocycle templatep(t), our
frame-rate sliding correlator employs a composite template
p̄(t) := (1/Np)

∑Np−1
np=0 p(t−npTp), that consists ofNp :=

bTf/Tpc shifted monocycles per frame.

4. Pulse-Level TOE for Tracking

During the tracking phase, we consider fast hopping by al-
lowing the TH codes to change across frames, but repeating
the hopping pattern from symbol to symbol; i.e., by setting
ck = c([k]Nf

) in (1). Fast TH may induce inter-frame inter-
ference within a symbol, but not necessarily inter-symbol
interference, provided that we set the TH code of the last
monocycle in each transmitted symbol to be zero, so that it
does not hop into the next symbol.

Compensatingr(t) by NεTf that we acquired in Section
3, we obtain from (2)

r1(t) = r(t + NεTf ) =
L∑

l=0

αlu(t− ε− τl,0) + w(t)

=
L∑

l=0

αl

∞∑
k=0

skp(t−kTf−ckTc−ε−τl,0)+w(t). (16)

With the acquisition ofNε, the TH codeck (that is always
the same for thek-th frame of each symbol) is known to the
receiver. This enables usage of time-hopping templates in
the correlator.

Depending on the availableNε and the unknownε ∈
[0, Tf ), r1(t) may entail one or two successive symbols.
Specifically, ifNε = 0 andε is within the first frame (t ∈
nNfTf + [0, Tf ]) of the nth symbol, then two symbols,
s(n− 1) ands(n), contribute tor1(t). For all other frames
of thenth symbol, onlys(n) contributes tor1(t). Applying
pulse-by-pulse sliding correlation tor1(t) in one out of ev-
ery Nf frames, we obtain the pulse-rate discrete-time sam-

plesx1(nNf ;m) :=
∫ nNf Tf +(m+1)Tp

nNf Tf +mTp
p(t−nTf − c0Tc −

mTp)r(t)dt, for m ∈ [0, Np], whereNp := bTf/Tpc. The
correlation template in this interval is affected byc(0)Tc,
since cnNf

= c(0),∀n. Skipping the noise in (16) for
brevity, and using the pulse correlationRp, we obtain

x1(nNf ;m) =
L∑

l=0

∞∑
k=0

αlsk

·Rp((k−nNf )Tf +(ck−c0)Tc−mTp +ε+τl,0). (17)

Because(ck − c0)Tc ∈ [−Tf + Tc, Tf − Tc],∀k, when
(k−nNf )Tf /∈ (−3Tf , 2Tf ), all the correlations in (17) are
zero for any possiblem, ε andτl,0, due to the finite non-zero



support ofp(t). Hence, the values fork andl that contribute
non-zero summands inx1(nNf ;m) must satisfy:

k : k − nNf = −q, q = −1, 0, 1, 2; (18)

l : (ck−c0)Tc+ε−mTp−qTf +τl,0 ∈ (−Tp, Tp). (19)

We observe that the contributingl’s are determined byck, ε,
q, and the correlating pulse positionm. Letting∆q(m) :=
(ck − c0)Tc + ε − mTp − qTf + τl,0, and recalling that
ck is a fast TH code, we deduce from (18) that theck as-
sociated with∆q(m) is given byck = cnNf−q = c−q, of
which c−1 = 0. Close examination of (19) reveals that,
for a givenm ∈ [0, Np], there only exist two possibleq’s
that do not violate the constraint (19). In the following two
cases,∆q(m) /∈ (−Tp, Tp) occurs for the listedq values:

Case I.ε ≥ (m + 1)Tp

q (c−q−c0)Tc (ε−mTp) −qTf τl,0 ∆q(m)
−1 ≥ −Tf +Tc ≥ Tp +Tf ≥ 0 ≥Tc+Tp

0 0 ≥ Tp 0 ≥ 0 ≥ Tp

Case II.ε ≤ mTp

q (c−q−c0)Tc (ε−mTp) −qTf τl,0 ∆q(m)
1 ≤ 0 ≤ 0 −Tf Tf−Tp ≤ −Tp

2 ≤ Tf−Tc ≤ 0 −2Tf ≤Tf−Tp ≤−Tp−Tc

Note that∆q(m) does not depend on the corresponding
symbolnNf . Defining g1,q(m) :=

∑L
l=0 αlRp(∆q(m))

for q ∈ [−1, 2], we can simplify (17) to:

If mTp < ε, then

x1(nNf ;m) = s(n−1)
2∑

q=1

g1,q(m) = s(n−1)ḡ−1(m);

If mTp ≥ ε, then
x1(nNf ;m) = s(n)

∑0
q=−1 g1,q(m) = s(n)ḡ0(m),

(20)
where ḡi(m) :=

∑−2i
q=−2i−1 g1,q(m) for i = −1, 0. We

observe that{g1,q(m)}2
q=−1, and hence{ḡi(m)}0

i=−1, are
fully specified bym andq, for a given TH pattern, and a
fixed delayε. Note from (20) that there is a symbol tran-
sition in the interval((m0 − 1)Tp,m0Tp], wherem0 :=
bε/Tpc. Moreover, sinceNpTp > Tf−Tp ≥ ε, the last sam-
ple x1(nNf ;Np) in each symbol period always includes
s(n). Subsequently, we develop several estimators forε,
based on this symbol transition property. These estimators
are coarse in the sense that they rely on an estimate ofm0,
which is quantized with pulse period levels. As a result,
these coarse estimates ofε entail an ambiguity up toTp,
even when free of noise.

4.1. Tracking by Cross Correlation

Let R2x(m) := E{x1(nNf ;m)x1(nNf ;Np)}, for l ∈
[0, Np − 1]. From (20), we have:

Whenm ∈ [0,m0 − 1],
R2x(m) = E{s(n−1)s(n)}E{ḡ−1(m)ḡ0(Np)} = 0;

Whenm ∈ [m0, Np − 1],
R2x(m) = E{s(n)s(n)}E{ḡ0(m)ḡ0(Np)} > 0.

(21)

In practice,R2x(m) can be estimated using noisy pulse-rate
samples averaged overN symbols as follows:

R̂2x(m) =
1
N

N−1∑
n=0

x1(nNf ;m)x1(nNf ;Np). (22)

To exploit the symbol transition property, we construct these
decision statistics:λ(m) :=

∑m
i=0R2x(i), m = 0, 1, . . . Np−

1. It follows from (21) that

λ(m) =
{

0, m ≤ m0 − 1∑m
i=m0

E{ḡ0(m)ḡ0(Np)} > 0, m ≥ m0

(23)
As a result, we can find the critical pointm0 by energy de-
tection onλ(m), or, by counting the number of positive val-
ues in{λ(m)}Np=1

m=0 :

m0 = arg min
m

{m : λ(m) > 0} (24)

= Np −
Np−1∑
m=0

(λ(m) > 0). (25)

Proposition 2(Coarse tracking by cross correlation)Timing
can be coarsely tracked by detecting the critical point of
symbol transition from the cross-correlation ofx1(nNf ;m)
in the starting frames of a symbol period. An estimate can
be obtained byε = m0Tp, wherem0 can be estimated from
either (24), or, (25). Such an estimator entails ambiguity up
to Tp due to the quantization with pulse period levels.

The performance of this estimator is not only heavily
dependent on the SNR, but also sensitive to the noise corre-
lation between pulses that are(Np −m0)Tf apart. In (21),
R̂2x(m) is no longer zero when the noise components in
x(nNf ;Np) and{x(nNf ;m)}m0−1

m=0 are correlated, being
in close vicinity. In the ensuing subsection, we will develop
a CS-based tracker that is robust to colored noise.

4.2. Tracking by Cyclic Correlation

Here we exploit the CS that is present in our pulse rate sam-
ples across different symbols:{· · ·x1(nNf ; 0) · · ·x1(nNf ;
Np−1);x1((n+1)Nf ; 0) · · ·x1((n+1)Nf ;Np−1) · · · }.
Let y(k) := x1(bk/NpcNf ; [k]Np) denote this sequence.
From (17), we can expressy(k) as

y(k) =
{

ḡ−1([k]Np
)s(bk/Npc−1), [k]Np

∈ [0,m0−1];
ḡ0([k]Np)s(bk/Npc), [k]Np ∈ [m0, Np−1].

(26)



The time-varying correlationRy(k; ν) := E{y(k)y(k+ν)}
is given by (assumeν ≥ 0 w.l.o.g)

Ry(k; ν) =



Rg,11(ν) := σ2
sE{ḡ−1([k]Np

)ḡ−1([k+ν]Np
),

for k, k + ν ∈ [nNp, nNp + m0 − 1];
Rg,00(ν) := σ2

sE{ḡ0([k]Np)ḡ0([k+ν]Np),
for k, k+ν ∈ [nNp+m0, (n + 1)Np−1];

Rg,01(ν) := σ2
sE{ḡ0([k]Np

)ḡ−1([k + ν]Np
),

for k ∈ [nNp + m0, (n + 1)Np − 1],
andk+ν∈ [(n+1)Np,(n+1)Np+m0−1];

0, otherwise,
(27)

wheren is any integer. AddinglNp to k in (27) does not al-
ter Ry(k; ν), simply because[k + lNp]Np

= [k]Np
. There-

fore,Ry(k; ν) is indeed periodic ink with periodNp.
The cyclic correlation ofy(k) is given by

Ry(l; ν) =
1

Np

Np−1∑
k=0

Ry(k; ν)e−j 2π
Np

kl (28)

=
1

Np
[
m0−1∑
k=0

Ry(k; ν)e−j 2π
Np

kl +
Np−1∑
k=m0

Ry(k; ν)e−j 2π
Np

kl].

When ν = Np − 1, the only value ofk that contributes
non-zero summands in (29) isk = m0, resulting in

Ry(l;Np−1) =

 1
Np

Rg,00e
−j 2π

Np
lm0 , m0 = 0;

1
Np

Rg,01e
−j 2π

Np
lm0 , m0 ∈ [1, Np−1].

(29)
Any m0 ∈ [0, Np − 1] can be retrieved from the phase
6 Ry(l; ν), for ν = Np − 1. Hence, we can recoverε as

ε ≈ m0Tp =
Np

2πl
6 Ry(l;Np − 1). (30)

Proposition 3 (Coarse tracking by cyclic correlation)Tim-
ing can be coarsely tracked by the phase of the cyclic corre-
lation of the pulse-rate samples collected at the first frame
out of everyNf frames. An estimate can be obtained using
(30), forν = Np− 1. To avoid phase wrapping,l should be
set to±1.

In practice,Ry(l; ν) can be estimated from noisy pulse-
rate samples similar to (11). Whenν = Np − 1, we have

R̂y(l; ν) =
1

NNp

N−1∑
n=0

x1(nNf ; 0)x1(nNf ;Np − 1) +
1

NNp

·
N−1∑
n=0

Np−1∑
m=1

x1(nNf ;m)x1((n+1)Nf ;m−1)e−j 2π
Np

l(nNf +m)

Our CS-based coarse tracker (30) uses pulse-rate samples.
However, its complexity is relatively low compared to a
conventional correlator, since it only samples at a fractional
time (1/Nf ) of the whole tracking phase. After coarse track-
ing, estimatingε at a fine scale with sub-pulse resolution

could be possible via tracking methods that only require
frame-rate sampling; see also [7] for a CS-based fine track-
ing algorithm.
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