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Abstract

While rapid variations of the fading channel cause in-
tercarrier interference (ICI) in OFDM, thereby degrading
its performance considerably, they also introduce tempo-
ral diversity, which can be exploited to improve the per-
formance. In this paper, we first derive a matched fil-
ter bound (MFB) for OFDM transmissions over doubly-
selective Rayleigh fading channels, which benchmarks
the best possible performance if ICI is completely can-
celled without noise enhancement. We then develop low-
complexity MMSE and DFE receivers for ICI suppres-
sion. Simulations show that the DFE receiver can collect
significant gains of ICI-impaired OFDM with affordable
complexity.

1 Introduction

In a wireless environment, the multipath channel of
a user is time-varying because of the user’s mobility.
Channel variations may also arise due to the presence
of an unknown carrier frequency offset (CFO). While
subcarriers in OFDM are orthogonal in the presence of
the time-invariant multipath channel, the rapid channel
variations in a symbol period destroy the orthogonality
among subcarriers, which results in intercarrier interfer-
ence (ICI) [7, 10]. In [1, 12], by mapping symbols to a
group of subcarriers, self-cancellation schemes render the
OFDM signal less sensitive to the CFO-induced ICI, at
the price of sacrificing some bandwidth. Since CFO can
be estimated accurately, the CFO-induced ICI can also
be canceled efficiently by compensating for CFO at the
receiver.

While suppression of the CFO-induced ICI is relatively
easy to implement, it is more challenging to cancel the
ICI resulted from Doppler spread of the time-varying fad-
ing channel. A linear MMSE equalizer and a successive
interference cancellation (SIC) scheme with the optimal
ordering were advocated in [4]. Since the number of sub-
carriers N is usually very large, e.g., N = 1512 or 6048
in digital video broadcasting (DVB) [11], even the lin-
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ear MMSE equalizer proposed in [4] demands very high
computation, and it may not be practically feasible.

In this paper, we first derive a matched filter bound
(MFB) for OFDM over doubly-selective channels. We
then show that the most of the symbol energy is dis-
tributed on a few subcarriers, and the ICI power on a
subcarrier mainly comes from several neighboring sub-
carriers. Based on this observation, we develop a low-
complexity MMSE equalizer for ICI suppression. While
the MMSE equalizer still exhibits an error floor on BER,
and loses the temporal diversity, a low-complexity deci-
sion feedback (DFE) equalizer will be derived to collect
the diversity, and bring the overall system performance
closer to the MFB.

Notation: Superscripts T , ∗ and H stand for transpose,
conjugate, Hermitian, respectively; and z = ymodx
yields the smallest z ≥ 0 so that y = nx + z for a non-
negative integer n. Column vectors (matrices) are de-
noted by boldface lower (upper) case letters. We will use
D(x) to denote a diagonal matrix with x on its diago-
nal, A(m,n) to denote the (m,n)th entry of the matrix
A, x(m) to denote the mth entry of the vector x. The
matrix FN (m,n) := N−1/2 exp(−j2π(m − 1)(n − 1)/N)
stands for the N × N discrete Fourier transform (DFT)
matrix, and fm stands for themth column of FN . We will
use Matlab notation A(m : n, :) (A(:,m : n)) to extract
row (column) m to row (column) n, A(r, c) to extract a
submatrix within A defined by the index vector of de-
sired rows in r and the index vector of desired columns
in c, x(m : n) to extract entry m to entry n, and x(r) to
extract entries by the index vector r.

2 Signal Model and MFB

2.1 Signal Model

Suppose the symbol duration after serial-to-parallel
(S/P) conversion is Ts. The entire signal bandwidth is
covered by N subcarriers, and the space between two
neighboring subcarries is 1/Ts. Denote the chip duration
by Tc := Ts/N , and assume that the length of cyclic pre-
fix is NpTc with a integer Np. The duration of an OFDM
block is Tb := (N + Np)Tc. The discrete transmitted



signal in a block with cyclic prefix is given by

u(n) := u(nTc) =
1√
N

N−1
∑

k=0

ske
j2πkn/N , (1)

where n ∈ [−Np, N − 1], and sk is the information bear-
ing symbol on the kth subcarrier. We assume that all
symbols have the same energy Es = E[ |sk|2 ].

Let the impulse response of the time-varying mul-
tipath channel be h(t; τ) =

∑L−1
d=0 h(t; lTc)δ(τ − lTc).

The autocorrelation function of the channel is given by
E[h(t; τ1)h

∗(t+4t; τ2)] = φh(4t; τ1)δ(τ1− τ2) [9, p.762].
In a rich-scattering environment, the autocorrelation
function is separable in time and delay [6]: φh(4t; τ) =
φt(4t)φτ (τ), where φt(4t) is the time-correlation func-
tion, and φτ (τ) is the delay power spectrum [9, p.762]. In
the Rayleigh fading channel, h(t, lTc) is complex Gaus-
sian with zero-mean and variance σ2

l := φτ (lTc), and
{h(t, lTc)}}L−1

l=0 are independent. The channel is assumed

to be normalized, i.e.,
∑L−1

l=0 σ2
l = 1.

We assume that Np ≥ L, and hence interblock inter-
ference (IBI) is completely eliminated. The discrete re-
ceived signal without IBI is given by r(n) = x(n)+w(n),
n ∈ [0, N − 1], where

x(n) =

L
∑

l=0

hd(n, l)u(n− l), n ∈ [0, N − 1], (2)

hd(n, l) := h(nTc, lTc), and w(n) is a complex Gaus-
sian random variable with zero-mean and variance N0/2
per dimension. Let the channel frequency response
on the kth subcarrier, at time nTc, be H(n, k) :=
∑L

l=0 hd(n, l) exp(−j2πkl/N) = f̃Tk h(n), where f̃k =√
N fk(1 : L + 1). Let x = [x(0), . . . , x(N − 1)]T ,

h̃k = [H(0, k), . . . , H(N − 1, k)]T . Substituting (1) into

(2), we obtain x =
∑N−1

k=0 D(f∗k )h̃ksk, and the received
signal vector r = [r(0), . . . , r(N − 1)]T can be written as
r = x+w, wherew = [w(0), . . . , w(N−1)]T . To demodu-
late the symbols on different subcarriers, we perform FFT
on r, and obtain y = FNr = x̃ + w̃, where x̃ = FNx,
and w̃ is still white Gaussian noise since FN is unitary.
Letting s := [s0, . . . , sN−1]

T , A(m, k) := fTmD(f∗k )h̃k, we
have x̃ = As; and y becomes

y = As+ w̃. (3)

Since fTmD(f∗k )1 = δ(m − k), the matrix A is diagonal

if all entries of h̃k are equal, where 1 denotes the vector
with all 1 entries. Hence, if the channel is fixed in a block,
there is no ICI.

2.2 Matched Filter Bound

To derive an MFB, we suppose that there is only
one subcarrier, say subcarrier k, transmitting a sym-
bol sk. The received block y in (3) becomes y =
FND(f∗k )h̃ksk + w̃. The matched filter output is written

as z = h̃Hk D(fk)F
H
Ny = N−1h̃Hk h̃ksk+ν, where ν is Gaus-

sian noise with zero-mean and variance N−1h̃Hk h̃kN0.

Defining the time-correlation matrixΦt(m,n) := φt(|m−
n|Tc), we can write the covariance matrix of h̃k as Rh̃k

=

E[h̃kh̃
H
k ] = Φt. Suppose that the rank of Φt is r, and

the r non-zero eigenvalues are λi, i ∈ [1, r]. Then, z

can be expressed as z =
∑r

i=1 γi|h̆i|2sk + ν, where h̆i,
i ∈ [1, r] are zero-mean complex Gaussian random vari-
ables with unit variance, and γi = λi/N . If all eigenvalues
λi, i ∈ [1, r] are distinct, the BER for BPSK and QPSK
can be found as [8]

Pe =
1

2

r
∑

i=1

µi

[

1−
√

Ebγi/(Ebγi +N0)
]

, (4)

where µi =
∏r

j=1, j 6=i γi/(γi − γj), Eb = Es for BPSK,
and Eb = Es/2 for QPSK. When some eigenvalues are
identical, the BER can also be found as in [8].
Remark 1 If the channel is fixed in a symbol period,
entries of Φt are all 1’s, thus r = 1; but when the channel
is rapidly varying, the rank of the Hermitian matrix Φt

will be greater than 1, i.e., r > 1. Hence, the variations
of the channel introduce temporal diversity.

3 ICI Suppression

3.1 ICI and Symbol Energy Leakage

In [2], a universal upper bound on total ICI power PI

caused by continuous Doppler spectrum is found as

P
(ub1)
I =

Es

∫ 1

0
[1− sinc2(fdTsf)]

2dt
∫ 1

0
[1− sinc2(fdTsf)]dt

, (5)

where fd is the maximum Doppler frequency. If the ICI is
caused by an unknown CFO, fCFO, which can be viewed
as a random variable in [0, fd], the upper bound on PI

can be written as

P
(ub2)
I =

{

Es[1− sinc2(fdTs)], fdTs < 1
Es, fdTs ≥ 1.

(6)

These bounds are much tighter than the bound in [7].
Comparing the universal bounds (5) and (6) reveals that
for a given maximum Doppler frequency fd, the largest
ICI power is caused by a deterministic carrier frequency
offset at fCFO = fd [2].

Let PI,Q be the ICI power on the kth subcarrier from
the subcarriers k− 1 to k−Q and k+ 1 to k+Q, where
Q is a positive integer. A universal lower bound on the
normalized partial ICI PI,Q is given by [2]

PI,Q/PI ≥ ϑ/(1 + ϑ), (7)

where ϑ = 2S(Q)/[π2/3− S(Q− 1)− S(Q+ 1)], and

S(Q) =
∑Q

q=1 1/q
2. From this lower bound, we find that

more than 90% ICI power is from twelve neighboring sub-
carriers.

Denote by ΨQ the energy of sk containing in subcar-
riers k−Q to k+Q. A universal lower bound on ΨQ/Es

is expressed as [2]

ΨQ/Es ≥ min ζQ(f), 0 ≤ f ≤ 1, (8)



where ζQ(f) = π−2 sin2(πfdTsf)
[

(fdTsf)
−2 +

∑Q
q=1(fd

Tsf +q)−2 + (fdTsf − q)−2
]

. From this lower bound,
we can find that when fdTs = 0.1, more than 98% of the
sk’s energy is distributed on the kth subcarrier and two
neighboring subcarriers. If fdTs = 0.9, more than 95% of
the symbol energy is contained in nine subcarriers.

In the next subsections, based on the fact that most
of a symbol’s energy is distributed to a few subcarriers,
and the ICI on a subcarrier mainly comes from several
neighboring subcarriers, we will develop low-complexity
MMSE and DFE receivers.

3.2 Low Complexity MMSE Receiver

Suppose we are interested in detecting symbol sk. Let
K = 2Q + 1, and define a K × 1 vector ρk(i) := (k −
Q − 1 + i) mod N + 1, i = 1, . . . ,K. Let yk = y(ρk),
Ak = A(ρk, :), and w̃k = w̃(ρk). From (3), we have

yk = Aks+ w̃k. (9)

The MMSE receiver based on (9) is mk = R−1
k pk, where

Rk = E[yky
H
k ] = EsAkA

H
k +N0IK , and pk = Ak(:, k).

The parameter K can be chosen to tradeoff performance
for complexity. To detect N symbols, we should find N
MMSE receiversmk, k ∈ [0, N−1]. The major computa-
tion on the MMSE receiver is to calculate the covariance
matrix Rk and its inverse. Since the first K − 1 rows
of Rk+1 are the same as the last K − 1 rows of Rk, we
can recursively calculate the inverse of Rk, which greatly
reduces the computation.

If we partition Ak into Ak = [ak Ā
H
k ]H, Rk can be

written as

Rk =

[

θk θHk
θk Θk

]

, (10)

where θk = Esa
H
k ak + N0, θk = EsĀkak, and Θk =

EsĀkĀ
H
k +N0IK−1. Let the inverse of Rk be

R−1
k =

[

vk,11 vHk,21
vk,21 Vk,22

]

, (11)

where vk,11 is a scalar, vk,12 is a (K − 1)× 1 vector, and
Vk,22 is a (K− 1)× (K − 1) matrix. In [2], we show that

Θ−1
k = Vk,22 − vk,21vHk,21/vk,11. (12)

If we partition Ak+1 into Ak+1 = [ĀH
k ãk+1]

H, we
have

Rk+1 =

[

Θk θ̃k+1

θ̃
H

k+1 θ̃k+1

]

, (13)

where θ̃k+1 = Esã
H
k+1ãk+1 +N0, θ̃k+1 = EsĀkãk+1. Let

βk+1 = (θ̃k+1 − θ̃
H

k+1Θ
−1
k θ̃k+1)

−1, bk+1 = −Θ−1
k θ̃k+1.

In [2], we prove that

R−1
k+1 =

[

Θ−1
k + bk+1b

H
k+1βk+1 bk+1βk+1

bHk+1βk+1 βk+1

]

. (14)

Hence, R−1
k+1 can be computed from R−1

k through Θ−1
k .

Calculating Θ−1
k , bk+1, and βk+1 requires O(K2),

O(K2), and O(K) operations, respectively; the compu-
tation of θ̃k+1 is O(N), and θ̃k+1 is O(NK). Hence,
the major computation to obtain R−1

k+1 is in calculating

θ̃k+1. To find R−1
0 , we need O(NK2) operations to cal-

culate R0, and O(K3) operations to invert R0. There-
fore, the total computational complexity of detecting an
OFDM block is O(N2K). On the other hand, using an
MMSE receiver based on the whole block in (3) as sug-
gested in [4], requires O(N 3) operations. Since K ¿ N ,
the computational complexity reduces substantially.

In the simulations provided in Section 4, we observe
an error floor on BER for the MMSE receiver with small
K. To improve the BER performance while retaining the
low receiver complexity, we develop a DFE receiver in the
next subsection.

3.3 Decision Feedback ICI Cancellation

We first find the symbol with the largest energy by
ordering the norm of the columns of A. Suppose that
sm has the largest symbol energy. Starting from the
mth subcarrier, we detect symbols consecutively, either
in the forward order or in the backward order. Sup-
pose we detect symbols in the forward order, then the
detection order is sm, . . . , sN−1, s0, . . . , sm−1. We use an
MMSE receiver based on the signal vector ym given in
(9) to detect the symbol sm. For detecting symbol sk,
k 6= m, we reconstruct the signal vectors of the previ-
ously detected symbols, and then subtract them from
the received signal vector yk. Letting ŝm denote the de-
tected symbol of sm, and %(i) := (m + i − 1)mod N ,
i = 1, . . . , N , we have ỹk = yk−

∑nk

i=1 Ak(:,%(i)+1)ŝ%(i),
where k = %(2),%(3), . . . ,%(N), nk = k − m, k > m,
or nk = N − m + k, k < m. Assume that all previ-
ous symbols are detected correctly, i.e., ŝ%(i) = s%(i),

i ∈ [1, nk], ỹk is found from (9) as ỹk = Ãks̃k+w̃k, where
Ãk = Ak(:,%(nk + 1 : N) + 1), and s̃k = s(%(nk + 1 :
N) + 1). If we also rearrange the columns of Am to ob-
tain Ãm = Am(:,% + 1), the first K − 1 rows of Ãk+1

are the same as the last K − 1 rows of Ãk, except that
the first column of Ãk is removed. Based on this fact, we
can modify the recursive method in the last subsection
to find the MMSE DFE receiver for sk.

We partition the matrix Ãk in the same manner as
partitioning Ak. With slightly misusing notation, we
still denote the covariance matrix of ỹk as Rk which is
partitioned in (10). Now, we write Ãk+1 as Ãk+1 =
[BH

k+1 ãk+1]
H, where Bk+1 = Āk(:, 2 : N − nk). Note

that the (K−1)× (N−nk−1) matrix Bk+1 contains the
last N −nk−1 columns of the (K−1)× (N −nk) matrix
Āk. The covariance matrix of ỹk+1, Rk+1, is expressed
as

Rk+1 =

[

Θ̃k+1 θ̃k+1

θ̃
H

k+1 θ̃k+1

]

, (15)
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Figure 1: BER comparison, perfect CSI, fdTs = 0.05

where Θ̃k+1 = EsBk+1B
H
k+1 + N0IK−1, θ̃k+1 =

Esã
H
k+1ãk+1 + N0, θ̃k+1 = EsBk+1ãk+1. Letting αk =

Āk(:, 1), we have Θ̃k+1 = Θk −Esαkα
H
k . The inverse of

Θ̃k+1 can be found using the matrix inversion lemma [5,

p. 19] as Θ̃
−1

k+1 = Θ−1
k + (Θ−1

k αk)(Θ
−1
k αk)

H/(E−1
s −

αH
k Θ

−1
k αk). Let βk+1 = (θ̃k+1 − θ̃

H

k+1Θ̃
−1

k+1θ̃k+1)
−1,

bk+1 = −Θ̃−1

k+1θ̃k+1, then, R
−1
k+1 can be computed from

(14) by replacing Θ−1
k with Θ̃

−1

k+1. The major com-

putation to find R−1
k+1 is on calculating θ̃k+1, which

requires O((K − 1)(N − nk)), where k = %(nk) and

nk = 1, . . . , N − 1. Since
∑N

n=1 n = N(N − 1)/2, the
complexity of the DFE receiver is O(N 2K), which is in
the same order as that of the MMSE receiver.

After the MMSE DFE receiver makes tentative deci-
sions on N symbols, we can use parallel interference can-
cellation (PIC) to improve the BER performance. Specif-

ically, let ŷk = yk−
∑N−1

m6=k

m=0
Ak(:,m+1)ŝm, then the deci-

sion variable for sk is zk = AH
k (:, k+1)ŷk. This PIC pro-

cedure may run more than one iteration to enhance the
BER performance. Each PIC iteration requires O(N 2)
operations, which does not increase the computation sig-
nificantly.

3.4 Channel Estimation

The MMSE and DFE receivers require channel state
information (CSI). If we use pilot tones to estimate the
time varying channel, the channel estimator itself suf-
fers from ICI. Here, we multiplex pilot symbols with the
OFDM blocks in the time domain, as proposed in [4].
If we insert a pilot symbol block of length Tps in every
Nps OFDM block, then we should choose Nps and Tps so
that NpsTb + Tps < 1/(2fd) [3]. On the other hand, once
Nps and Tps have been selected, the normalized Doppler
frequency should be fdTs < Ts/[2(NpsTb + Tps)]. If the
system is required to operate when fdTs ≥ Ts/[2(NpsTb+
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Figure 2: BER comparison, perfect CSI, fdTs = 0.1

Tps)] we need to consider alternative channel estimation
scheme; or, we should jointly design the transmitter and
receiver to collect the temporal diversity without suffer-
ing from the interference.

4 Simulations

In his section, we test the MMSE and DFE ICI sup-
pression schemes via computer simulations. The number
of the subcarriers is chosen to be N = 128, and the length
of the cyclic prefix is Np = N/8. The QPSK constella-
tion is adopted, and the bit energy is Eb = Es/2. We use
a 2-tap fading channel with an exponential delay power
spectrum, i.e., σ2

l = exp(−l/L)/∑L−1
l=0 σ2

l , L = 2, and
l = 0, 1. Each channel tap is a complex Gaussian ran-
dom process independently generated with the classical
Doppler spectrum based on the Jakes’ model [6]. The de-
lay of the first tap is zero, and the delay of the second tap
is generated from the set {Tc, 2Tc, . . . , NpTc} with equal
probability. In the DFE detection, we use two iterations.

Test Case 2 (perfect CSI): Figs. 1, 2, and 3 compare the
BER performance of the MMSE and DFE equalizers for
different Doppler frequencies. The theoretical BER for
the flat Rayleigh fading channel, the theoretical MFB
calculated from (4), and the simulated MFB are also dis-
played in these figures. From the MFB, we see that the
time variations of the channel introduce the temporal di-
versity which increases as the Doppler frequency becomes
large. While the BER performance of the MMSE equal-
izer improves as the number of the equalizer taps K in-
creases, it still exhibits an error floor at high Eb/N0. The
DFE equalizer outperforms the MMSE equalizer with the
same number of taps. However, the 1-tap DFE still has
poor performance even when the Doppler frequency is as
low as fdTs = 0.05. The 5-tap DFE equalizer has sig-
nificant performance improvement over the 1-tap DFE
equalizer, and its BER curve is close to that of the 25-
tap equalizer. The small gap between the MFB and the
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Figure 3: BER comparison, perfect CSI, fdTs = 0.3

BER of 5-tap DFE equalizer shows that we can suppress
ICI effectively and improve the BER performance signif-
icantly with a low-complexity DFE equalizer.

Test Case 2 (estimated CSI): In this test, the channel is
estimated using the pilot symbols, and the BER is shown
in Fig. 4 with fdTs = 0.3. To ensure that the rate of the
pilot blocks is higher than fd/2, every OFDM block is
followed by a pilot block of length 2Tp. A 10-tap MMSE
filter is used to estimate the channel [3]. If we compare
the BER curves displayed in Fig. 4 and Fig. 3, we see
that the channel estimation error results in slight BER
degradation.

5 Conclusions

We derived an MFB for OFDM in doubly-selective fad-
ing channels, and showed that the channel variations in-
troduce temporal diversity, which has the potential to
improve the BER performance if properly exploited. We
also studied the ICI and energy leakage that are caused by
the time varying channel. Our universal bounds showed
that the most of the symbol energy is distributed on a few
subcarriers, and the ICI power over a subcarrier mainly
comes from several neighboring subcarriers. Based on
these facts, we developed low-complexity MMSE and
DFE receivers. While the low-complexity MMSE receiver
exhibits an error floor, the DFE receiver can collect the
temporal diversity, and its BER performance comes close
to the MFB at relatively low fdTs.

References

[1] J. Armstrong, “Analysis of new and existing meth-
ods of reducing intercarrier interference due to car-
rier frequency offset in OFDM,” IEEE Trans. Com-
mun., vol. 47, pp. 365–369, Mar. 1999.

[2] X. Cai and G. B. Giannakis, “Bounding performance
and suppressing inter-carrier interference in wireless

0 5 10 15 20 25

10
−5

10
−4

10
−3

10
−2

10
−1

B
E

R

E
b
/N

o

1 tap
1 tap DFE
5 tap MMSE
5 tap DFE
25 tap MMSE
25 tap DFE
flat Rayleigh fading, theory
MF bound, theory

Figure 4: BER comparison, estimated CSI, fdTs = 0.3

mobile OFDM,” IEEE Trans. Commun., submitted,
July 2002.

[3] J. K. Cavers, “An analysis of pilot symbol assisted
modulation for Rayleigh fading channels,” IEEE
Trans. Veh. Technol., vol. 40, pp. 686–693, Nov.
1991.

[4] Y.-S. Choi, P. J. Voltz, and F. A. Cassara, “On chan-
nel estimation and detection for multicarrier signals
in fast and selective Rayleigh fading channels,” IEEE
Trans. Commun,, vol. 49, pp. 1375–1387, Aug. 2001.

[5] R. A. Horn and C. R. Johnson,Matrix Analysis. New
York: Cambridge University Press, 1985.

[6] W. C. Jakes, Microwave Mobile Communications.
New York: Wiley, 1974.

[7] Y. G. Li and L. J. Cimini, “Bounds on the interchan-
nel interference of OFDM in time-varying impair-
ments,” IEEE Trans. Commun., vol. 49, pp. 401–
404, Mar. 2001.

[8] F. Ling, “Matched filter-bound for time-discrete
multipath Rayleigh fading channels,” IEEE Trans.
Commun., vol. 43, pp. 710–713, Feb./Mar./Apr.
1995.

[9] J. G. Proakis, Digital Communications. McGraw-
Hill, 1995.

[10] M. Russell and G. L. S. Stüber, “Interchannel inter-
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