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ABSTRACT

Linear channel equalization in block transmission sys-
tems amounts to inverting Toeplitz systems of linear
equations. Motivated by limitations of a recent blind
block equalizer, we derive properties and investigate the
class of tall Toeplitz matriz inverses which themselves
ezhibit (even approzimate) Toeplitz structure. The class
is characterized by the size of leading and trailing all-
zero block submatrices, and interesting links as well as
optimal choices of the size parameter are established
with the number of mazimum-phase zeros of the under-
lying channel transfer function. Ezxploiting the proper-
ties of such equalizers we derive a direct blind adaptive
equalizer and illustrate superiority over competing ap-
proaches. It is also shown that the optimum delay for
blind block equalization corresponds to the number of
mazimum-phase channel zeros.

1. INTRODUCTION

In a single input single output (SISO) system, perfect
linear equalization of non-minimum phase FIR chan-
nels can be achieved with stable IIR (non-) causal fil-
ters, provided that the channel transfer function does
not have zeros on the unit circle. Even if channel zeros
are in the vicinity of the unit circle, the performance of
linear equalizers degrades. On the other hand, channel
equalization in block transmission systems, amounts to
inverting Toeplitz systems of linear equations. Such a
block transmission scheme was dealt with in [4], where
it was shown that by adding redundancy to each block
in the form of guard bits (as many as the channel order)
guarantees existence of block equalizers irrespective of
the channel zero locations. Guard intervals eliminate
interblock interference (IBI), so the equalizer needs to
cancel the intersymbol interference (ISI) only within a
single block.
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Consider a block synchronous transmission system,
and denote with s(n) := [s(nM) ... s(nM + M - 1)]T
the M x1 channel input block; with H the (M +L)xM
the Toeplitz channel matrix, having [A(0) ... A(L)0...0]
as its first column, and [#(0)0...0] as its first row; and
with z(n) := [z(nP)...2(nP + P — 1)]T the P x 1
channel output block, where L is the channel order and
P := M+ L. If we choose M > L, then we can express
the corresponding noise free output data block as:

z{n) = Hs(n) . 1)
From (1), the block equalizer is well defined because
the system of linear equations is always invertible and
the solution that minimizes the error norm is given
by G = H T, where t denotes matrix pseudoinverse.
Intuitively, even deep fades can be equalized because
the presence of guard bits allows one to equalize the
channel by solving an overdetermined system of linear
equations. In fact, each block of M input symbols is
mapped to a block of P = M+ L data. However, equal-
ization requires knowledge of the channel which may
not be available (or bandwidth-consuming to acquire)
in wireless communications systems. For such systems,
a deterministic (semi-)blind scheme was developed re-
cently in [4], that obviates channel estimation and di-
rectly obtains the block equalizer by exploiting guard
intervals in the form of distributed training. However,
it was observed in [4] that the resulting direct equal-
izer tends to emphasize noise effects when the channel
is non-minimum phase. Motivated by the limitations
of the blind block equalizer in [4] this paper explores
reasons behind and remedies for this undesired behav-
ior. A blind adaptive equalizer is also developed which,
contrary to the one in [4], it has performance close to
the minimum mean square error (MMSE) ZF solution
with known channel.

2. OVERDETERMINED TOEPLITZ

Because the blind equalizer G in [4] has a lower tri-
angular Toeplitz form, we first derive properties of H
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inverses that exhibit Toeplitz or approximate Toeplitz
structure. Specifically, we establish that:

e if the channel is non-minimum phase, among all
the possible square matrices inverting equation
(1), the direct blind equalization method in [4]
leads to a solution G that is a truncated unstable
zero-forcing (ZF) equalizer;

e the equalizer Gy is one of the L + 1 possible
equalizers {Gq}L_,, that are Toeplitz, or have
approximate Toeplitz structures, and can be ob-
tained by inverting the matrix composed of the
d** row of H up to the (M + d)**. If we let
H(z) = Z{h(n)} denote the channel transfer
function, the “best” (with respect to numerical
robustness) set of equations corresponding to the
minimum matrix norm? ||Gy||, is obtained by se-
lecting d = dopt, where dyp; is the number of zeros
p of H(z) outside the unit circle;

e for M > L, the rows of G4 are approximately
truncated versions of stable ZF equalizers if and
only if d = dops.

Solving square systems of equations corresponding

to different delays d, provides an insight to selecting

delays in linear equalizers [3]. For a given FIR channel
with no zeros on the unit circle, it is well known that
there exists a delay-d SISO equalizer G4(z) such that:

Y g <oo. (2)

n=-—oo

H(2)G4(z) = 2~¢  with

Because d is not unique, the delay should be selected
optimally to minimize, for example, the noise power at
the equalizer’s output. Let us introduce the following
notation:

0 1 0
Oax M R
I;:= Iyxm J=1 . ) 1,3
Or_axm P |
0 ... ... 0

where I; has dimensionality (M + L) x M and J is a
square shift matrix. Since J in not invertible, we will
use the notation J ™! to denote:

Jlt=gt=J" (4)

where 7 denotes transpose. The counterpart of (2) for
block transmissions, and the problem we address boils
down to:

mc}n G4l subject to GI H =1Ipyn. (5)

! Any matrix norm ||.|| satisfying the submultiplicative prop-
erty ||AB]|| < ||A||{|B}| can be considered.

Since I ?;H is a square matrix, the ZF constraint im-
poses that Gy = (IT7H)™*, and so
min [|Gal| = min (I3 H)™. (6)

The optimal d can be obtamed by first decomposmg
matrix H as:

H =n(0) o+ h(1)I1+...+ A(L)IL. (7
It is straightforward to verify that I ]TI ; = J97% hence,
we can write the following factorization of I7 H

Igy:s R(0)J* + h(1)J*t + ...+ (L)T T

L
0)J* [J(T - ™). 8
=1
Similar to 2¢H(z) = h(0)2¢ [[, (1 — pz~1), consid-
ering that approximately, for M > 1, I ~ JJ ! (be-
cause diag(JJ ') =[1...1,0]), we can write:

M-1
d L
IZH = h(0) [[(-p)T =o' 0) [T T =pd ™).
=1 l=d+1

9
The approximation in (9) is valid in the sense that t(lu)a
ratio of the error norm over the matrix norm ||IZH||
tends to zero as M increases. From (9), we infer that

Gy = (I TH ) can be factorized as:
L
- 1 1
G~ ST La- Lo 1] a- a1 (0
.= [[pl( 2 I a=ps™ a0
(~1)d [ M2 g L M-1
m y—m
h(O) [H Z-:OPZ"“Jm] [lIdI 2, ]
=1 m= =d+1 m=0

which implies that (IZH)™! tends to a Toeplitz ma-
trix. On the other hand, any Toeplitz matrix is liable
of this decomposition, which is not possible if we inter-
change the equations selected in any of these L sets cor-
responding to the matrix of coefficients I7 H. There-
fore, we are dealing with the class of solutions G4 of
(1) that are (perhaps approximate) Toeplitz matrices.
Based on (10) we establish the following:
Lemma 1: The optimal solution of (5) is given by

T Gg = (ITH) ™ where d = dopt, with dops := number

of zeros p; of H(z) with |p;| > 1. In particular, we
prove that:
. 1 T -1 o0 d7édopt
— = 0o (11
Jim gz ={ o 2% o

Interestingly, this Lemma provides as a by-product a
blind deterministic method for identifying the number
of channel zeros outside the unit circle — a task impos-
sible in the standard SISO setup with output second-
order statistics. Specifically, if we collect a data matrix
Xy =HSy with N > M + L, then:

dopt = argmindH(IgXN)—lll. (12)
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3. BLIND ADAPTIVE EQUALIZER

The system model adopted in [4] is more general than
(1), because it includes a filterbank precoder. The pre-
coder performs a linear mapping F of 8(n) and yields
the following I/O relationship:

z(n) = HFs(n). (13)

We assume for simplicity that F' = I that allow us
to use (1) directly . However, the results in this sec-
tion apply to arbitrary F by multiplying the equalizer
herein by F~' from the left. i

The ideal direct blind equalizer G derived in [4] cor-
responds to the member Gy of the class in (5). Notice
that for d = 0 and d = L both (9) and (10) are ezact.
Hence, Gy (G) is Toeplitz and lower (upper) triangu-
lar. The idea underlying the method in [4] is to exploit
the specific structure of G to estimate its last row v
Because Gy is Toeplitz and lower triangular, the last
row specifies every other row of Gy. Indeed, denoting
by v the ith row of Gy, we have that

Yy =~4E, 0 i=1,...,M. (14)

More specifically, let us define the P x N data matrix
Xy = (2(n) ... z(n(N — 1)), with N > P. It was
shown in [4] tha,t the P x 1 vector «, satisfying v, =
IT L7, can be identified as the unique solution (within a
scale) of:

Y XNI ' Xy ... TFXN]=0.  (15)

Hence, G can be also identified up to a scalar factor,
using (14). First, we note that with a slight modifica-
tion the method in (4] yields also G. In particular it
can be proved, following the same lines as in [4], that
G'L can be identified up to a scalar factor by solving:

BYXnNIXy ... JF X y] =0, (16)

where 3 is a P X 1 vector, such that the first row 8 of
G L isB; =IY o B and every other row can be obtained as
ﬁ,_,_l BfJ. Lemma 1 implies that G, enhances the
noise whenever there are channel zeros inside the unit
circle. Hence, even if both Gy and G, estimates are
consistent, the average (over several channels) perfor-
mance in terms of bit error rate of both equalizers will
be far from the performance of the MMSE ZF equalizer
given by Grmmee—z5 = H.

To overcome this undesired effect and offer reliable
equalizers irrespective of the channel zero locations, we
propose a novel adaptive blind algorithm that estimates
Gq,,, from the noisy data Y i := X y+Vn, where Vy
is AGN. The price paid is an increase of computational
complexity with respect to the algorithm that estimates
Go or G, alone. The method is based on the following
equation, which allows us to construct any Gy from
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Figure 1: (1/M)||Gql|2 versus d.

the noise-free data block X  and the estimates of Gy
or Gr: ]
GuliXy=GoI{ XNy =G It XN, (17)
hence:
G, GoIlg Xn(I], X N)!

GLITXN(I7  XN)! (18)

In the context of direct blind fractionally spaced equal-
izers, related optimum delay selection ideas were dis-
cussed in [1].

Denoting the noisy data by y(n) = x(n)+wv(n), the
algorithm consists of the following steps:

1. Collect N > P data blocks in a matrix Ygs) =
(y(0) ... y(N — 1)), estimate dop; as in (12) and
seti=0,YY = (@) ... yG+N-1) =YY
and éflo) , =0.

2. Estimate Gé) and GE—J) using (15) and (16).

3. Estimate G’d ,. as follows [cf. (18)]:

&Y = apel 4 [(1-""“)6:3”15 Xn

opt dopt L

(%)

dopt GL

+ ITXN] (I3, X8t (9)
where A(%) is a suitable forgetting factor depend-
ing on the iteration index.

4. Update matrix Yg\’,ﬂ) with the new observation
y(i + N).

5. Set i =i+ 1 and go back to step 2.

4. NUMERICAL RESULTS

We present next simulations to validate our theory.
Example 1: Fig. 1 shows the values of (1/M)||G4l2
= (1/M) ||(I7H)"||5 versus d for block lengths M =
10,50, 100 and a channel of order L = 4 with roots: a)
(left) (1.3, j0.5,0.5—71.5, 0.5); b) (right) (1, 0.5, 0.5—
j1.5,-0.5). It is interesting that in case (a) the value
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Figure 2: Third row of G5 for the channel of Fig. 1(a)
(dopt =2, M = 10), and its convolution with the chan-
nel.
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Figure 4: Scatter diagram: a) Gmmse—zs With known

channel, b) G(()soo)’ ) G (500) d) éfii(:?)‘

of (1/M)||G4ll2 vs. d has an evident minimum at
d = dopt, in contrast to case (b) where a unit circle zero
results in one or two minima of the curve (1/M)||G4l|2
depending on how one considers the boundary.
Example 2: Fig. 2 shows the convolution of the 3rd
row of G2 with the same channel of Example 1 (left
graph of Fig. 1 a), which tends to a delta function.
This validates our interpretation of the block inverse
G4 as an approximation of the Toeplitz matrix corre-
sponding to the truncated version of the IIR channel
inverse impulse response z~%/H(z).

Example 3: Fig. 3 depicts the mean square error
(MSE) ||Gq,,, — Ga,,|| of the equalizer estimate vs.
the number of iterations. The step size used at the
ith iteration is A(¢) = 0.6/i, M = 16, and the en-
ergy per symbol E; over the noise spectral density Ny
is E;/Ng = 26 dB. The channel has L = 4 zeros at
[71.2, —j1.2, —0.6(1 + j), 0.6(1 + 5)] which, according
to Lemma 1, implies d,p; = 2, as was correctly found
form (12) with Yy = Y. Note that E, /N is quite
low relative to blind CMA equalizer requires. This is
due to the fact that both the estimates Go and GL
are consistent (see [4]), i.e. for N — oo the estimates
converge to the true equalizers, which guarantees also
consistency of Cl'dwt .

The four scatter diagrams in Fig. 4 are obtained
from the same simulation as in Fig. 3, using: i) the
MMSE-ZF equalizer derived from the true channel (top
left); ii) the equalizer G (top right); m) the equal-
izer G, (bottom left); iv) the equalizer G , (bottom
right), where equalizer estimates correspond to i = 500
and the last iteration of our adaptive algorithm. In
agreement with theory, the equalizer approaches the
MMSE-ZF equalizer performance.
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