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Abstract

A deterministic approach for blind equalization of single-
input multiple-output (SIMO) Volterra FIR channels is ad-
dressed. It is shown that SIMO Volterra channels can be
blindly equalized using only linear FIR filters, provided that
a generalized Sylvester resultant constructed from Volterra
kernels has maximum column rank and that a minimal
persistence-of-excitation order is satisfied by the input. Nec-
essary and sufficient conditions for the existence of linear
equalizers are established. Simulations comparing the blind
with non-blind equalization are provided.

1. Introduction to Blind Equalization

Satellite communication channels exhibit nonlinear char-
acteristics due to the high power amplifiers which operate
close to the saturation region in order to maximize output
power. Blind equalization of such nonlinear channels is
potentially useful especially when mobile users are present.
Identification of nonlinear dynamics is also a subject of in-
terest in biomedical and magnetic recording research.

In the first part of this paper, we describe a general ap-
proach for blind deconvolution (equalization) and identifica-
tion of nonlinear SIMO FIR Volterra systems. Althoughim-
possible with a single output, multiple outputs make it pos-
sible to deconvolve blindly multiple FIR Volterra channels.
The approach requires only that a generalized Sylvester re-
sultant, constructed from the channel coefficients, has max-
imum column rank and that the input signal possesses a
certain persistence-of-excitation order - a requirement also
encountered with I/O based methods. The input is allowed
to be deterministic or random with unknown color or dis-
tribution. The estimation approach is not based on higher
order statistics of the input/output signals, and the channel
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Figure 1. SIMO nonlinear Volterra channel

can be any FIR Volterra channel, which satisfies the above-
mentioned rank condition.

Consider the M-channel output x/(n) := [z(D(n) ...
gM)(n)], forn =0,...,N — 1, given by
x(n) = v(n)

P L,
+3°03 By, L)s(n—h).s(n~1), ()

p=11,...,1,=0

where: (i) lower (upper) bold is used for vectors (matrices);
(ii) M x 1 vector h,, corresponding to the pth-order kernel
is defined similar to x

By (o) =0, ) L APO(,) |

with A™(ly, . .., 1,) denoting the pth-order kernel of the
mth channel; (iii) the inaccessible scalar input s(n) is al-
lowed to be either deterministic or random; (iv) the range
of (I, ...,1,) is chosen such that ™ (1, ..., 1) is de-
fined over its non-redundant region: 0 <y < ... <[, <
L,. (v) v(n) is additive white Gaussian noise (AWGN)
v/(n) := [vD(n)...o(M)(n)]. The structure of a SIMO
nonlinear channel is depicted in Fig. 1. We view the p-
dimensional kernel hy,(ly, ..., ;) as a collection of linear
(one-dimensional) kernels defined as:
h;),ilzi,,_l(l) =



L4 ip_t)... B, .

[h§,1>(1,1 g, L+ i,,_‘l)] @)
where: 0 <9 < ... <ip_1 L Lp,and=0,1,..., Ly —
ip—1. In order to compactify notation we, henceforth, use
i1 @ ip—1 to denote the set (i1,...,i,—1) (for p = 2, we
consider ¢; : ¢ = ¢1). Similarly, we define the signals

spivip_i (D) 1= s(D)s(l —i1)...s(l —dp_1),
with 0 = iy <1y < ... < ip 1 £ Ly, and denote h;

hy i, and 51 1= sq44,. Using the change of variables
I =1+ip_y,forp=1,..., P, ip =0, we rewrite (1) as

®

K=+

Z Z Z p,211p1 Dsp iy (n=1). (4)

b= 10<Z1< <7'p 1<L =0

Equation (4) allows us to view a nonlinear SIMO channel as
a linear MIMO channel whose inputs are related (cf. (3).
Given the M -channel system output {x(n)}2' 2 satisfying
(4), we want to blindly deconvolve the system; i.e., we wish
to recover both the input sequence s(n) as well as the chan-
nel kernels A (Iy, ..., L,),p=1,...,P,m=1,..., M,
from knowledge of the received data x(n) only. Specifi-
cally, we seek the linear FIR equalizers {gz(?‘?l:ip_ (k) K
of order K and delay d, which deconvolves the pth-order
kernel hy i, (1) via

Zx'(n By,
= s(n — d)s(n —

()

d—i1)...s(n—d—1ip_1),(5)
,ip—1) and delay d satisfy

<ip 1< Lpand0<d < Ly + K —4p1.

where the (p — 1)-tuple (41, ...
0<i1 <...

2. Direct Blind Equalizers

Inthis section we present briefly the main results concern-
ing the blind estimation of the linear equalizers (for further
details see [2]). We start by introducing some definitions and
assumptions. Define the (L, + K +1—i,_1) x M(K +1)
block Toephtz matrix

Pi1dp—1 *

hy i, (0) 0’
h;) i1y 1(Lp_ip'—1) h; R 1(LP_iP—1_K)
o e W (L —ip)

Define also (L1 + K +1) x land (L, + K +1—14,_1) x1
vectors s1(n) and s, ;,:;,_, (n) through the relations

s1(n) [ s(n) s(n—L -K) |,

S;J,h:ip_) (n) [Spyiliip—l (n) .

-Sp,iytip_y (n
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where 0 < 4y < ... < ip_y < Ly, and s55,5,_,(n) as in
(3). The noise-free input-output relation (4) can be rewritten
in the matrix form

in the m or X=SH, ©)

where the (N — K) x M (K + 1) block Hankel matrix X

and D(L1, ..., Lp, K) x M(K +41) block Toeplitz channel
matrix H are given respectively by
- H,
'(N~-1) ... x'(N-1-K
x'( ) X <) Hs 00
X = : : , =|.
(K (0
x'(K) x'(0) Hpo,in
where D(L1,...,Lp, K) = L1+ K +1
2 .
+ZZ< itpo ) (Ly + K +1-7).
p=21:=0

We adopt the following assumptions:

(@0.1) v(n) = 0, i.e., we consider noise-free data.

(20.2) N > max{K + d + 2M (K + 1), K 4+ PP}. This
requirement is introduced to assure more equations (data)
than unknowns in subsequent equations.

(al.1) rank(H) = D(L4, ..., Lp, K), condition equivalent
to the full column rank of a generalized Sylvester, obtained
from H' by suitably permuting its rows and columns [2].
This implies that H is a wide matrix i.e.,

M(K +1)>D(Ly,...,Lp,K) . 7

(al.2) H is square; i.e., (7) is satisfied with equality.
(a2.1) with L := max{L;, ..., Lp}, input s(n) is such that
the matrix S(O-L+K) defined through1 SOL+E) .=

SL+K+1:N-K,:) S(1: N-2K - L,9], (8)
has maximum column rank; i.e.,
rank(SOLH)) = 2D(Ly, ..., Lp, K) —C |

where C' equals the number of pairs of identical columns of
S(O,L+K ) .

(a2.2) matrix S in (9) is full column rank

s(N-1) s*(N—1) sPH(N = 1)
s(N—2) s*N -2 sPP(N -2

_ :( ) ) ( ) ‘ ( ) ©)
s(K) s2(K) P'(K)

We review first the case of Volterra systems for which
there is only one kernel with maximum memory L
max{Ly,...,Lp}, and then we focus on models having
more than one kernel with maximum memory.

In writing (8), we adopted Matlab’s notation X (i1 : 43,71 : j2) to
denote the submatrix of X formed by the 4; through ¢ rows and the 7;

—-L,—K+ ip_l)] through 5, columns of X.



2.1 One Kernel with Maximum Memory

Upon defining g§% := [g$?(0) ... g{?(K), and
XOD = X(d+1:N-K,:) —X(1:N-K —d,:)]
ford=0,...,L1+ K, p=1,..., P, we have [2]

x04) gld) =, (10)

where g;oﬂ) = [gl(,o)l g,(,d)l]’ . We have the result [2]
Theorem 1. Suppose that (a0.1) — (a2.1) are satisfied. If

L = max{Li,...,Lp} is attained by a single L,, where
p € {1,..., P}, then gz()(’)()):0 and g;{’OBK) can be uniquely

identified (within a scale) from (10) as the null eigenvector
of XOL+K). g

2.2 Many Kernels with Maximum Memory

Now we consider the case when dim[ A/ (X (%L +E))] > 1,
Henceforth, w.l.o.g. we suppose that: L; = L, = ...
Lp = L. Using (a2.1) and following the same steps
used to derive (10), we find that the pairs of equaliz-
ers g](j’:“K), p = 1,..., P, also, satisfy (10). Thus,
dim[A/ (X (®L+K))] = P. Suppose that the null space
N(X(OL+K)Y is spanned by the columns of the 2M (K +
1) x P matrix U, which can be easily obtained by performing
an SVD on X(O.L+K)_ Consider that the pairs of equalizers
ggo'“'K), p=1,..., P, are given by the columns of the
matrix

G = [g(lo,L+K)ggo,L+K) mgg),L+K)

Based on (a2.1), it follows from (10) that R(G) = R(U) =
N (X OL+K)) where R denotes the range space of a matrix.
Since G and U are full column rank and both span the same
space, there exists a nonsingular P x P matrix A such that

G=UA. an
Consideringonly the first M ( K + 1) rows of (11), we obtain
GO =U(1:ME+1),)A, 12)

where
(0) (0

GO = 81 8300 - @ ] .

- BpP o0

Since U is available from the data matrix X' (%-£+X)_our goal
is to identify A. Identification of the pth column A(:, p)
yields the pth column of G(%; i.e., the pth order equalizer
g;(;(,)()):o- In order to find A, we take into account the depen-
dence between the outputs of the equalizers corresponding
to the first and pth-order kernels. Equality [s(n)]P = s (n),
forn =N —1,..., K, can be written in matrix-form as:

A, API(: 1) =B A(;,p), (13)
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where A, and B are given, respectively, by [2]

xPl(1, )
17 .
A, x ,(2") U(1: M(K +1),:)P1 (14)

_x[fvl(zv'~ K,:)
X(1,:)
X(2,:)

U(l: M(K+1),:), @15

X(N - K,

and AP} denotes the pth-fold Kronecker product of A.
Considering§,, := [s?(N —1) ... s"(K)],p , P,
the following result holds [2]
Proposition 1. Under (a0.1)-(a2.2), we have

dim [R(A,) NR(B)]
R(Ap) NR(B)

P_p+1y
span[§,, . . .

,§P] . B8

Making p = P in Proposition 1, we can determine §p, and
then the equalizer g%o- Note that ggo) can be determined
provided that there is no ambiguity in taking the Pth-root
of 8p; i.e., no ambiguity exists in recovering uniquely s(n)
from s¥(n). Such unambiguous recovery is guaranteed,
e.g., in the case of a PSK input signal with ) constellation
points such that (Q,P) are coprime; s(n) can be uniquely
recovered from s¥’(n) since a rotation of s(n) by a factor P,
brings the constellation points of s* (n) at distinct locations.
Assuming that we can find uniquely s(n) from s¥(n), the
determination of all other equalizers is possible since the
problem reduces to an I/O identification problem. However,
there are cases when s(n) cannot be recovered uniquely from
sP(n); e.g., a PSK input signal with (@, P) not coprime.

In this case, we proceed to recover uniquely (up to a
constant) the equalizer gg)_)_l 00- Knowledge of equaliz-
ers corresponding to the (P Z 1)st and Pth-order kernels
implies access to their outputs s”~1(n), and respectively,
sP(n). Seclecting samples s(n) # 0 and taking the ra-
tio of these two outputs, we obtain the input sequence
s(n) = sP(n)/sP~1(n). Hence, the problem is solved
if we can find ggzl,():o. Towards this goal, we apply again
Proposition 1 for p = P — 1, to infer that:

R(AP_1) ﬂR(B) = span [gp__l, gp] .
Consider [r(All)a_hB, rf});_l,B] to be a basis for R(Ap-1) N
R(B). It follows that there exists a 2 x 2 nonsingular matrix
F = [fi;] such that:

(2

1) - -
kY 5 rD_ pl=[p-1, 5] F.  (16)
Define the vectors ggfllm and ég)_ly():o through
(0 1
X gEJZI,O:O = 1'&12,_1,3 ; 17)



~(0)

2
XgP—l,O:o = P

YAp_1,B *

(18)

Using the relation [s¥~1(n)]¥ = [sP(n)]"~! between the

outputs of equalizers gg))

1,00 and gg),%):w it is shown in [2]
that the equalizer gj(gzl,o:o can be found as a linear combi-

nation of gﬁi’ll)oﬂ and éﬁf)_lm. Thus, we have
Theorem 2. If (a0.1)-(a2.2) hold true, then the equalizers
corresponding to all kernels and all possible delays can be

uniquely identified (within a scale factor). a

3. Perfect Linear Equalization

In this section we consider the problem of finding the lin-
ear equalizers of a SIMO Volterra channel in the non-blind
case, i.e., given knowledge of all Volterra channels. This
problem can be stated equivalently as: given a Volterra
analysis filter bank, find the linear synthesis filter bank
which satisfies the perfect reconstruction condition. We
may refer to this as a Bezout identity for FIR Volterra filter
banks. Specifically, we consider a number of M known FIR
Volterra channels, excited by the same common input s(n),
and we want to find under what conditions there exist linear
FIR equalizers GU™(2),m = 1,...,M,d =0, ..., L+ K,
with perfect reconstruction property. Fig. 2 presents a de-
tailed view of the analysis and synthesis sections. We have
seen that each Volterra channel can be represented as a sum
of linear FIR filters whose inputs are correlated (4). In Fig.
2, we considered that each Volterra channel is made up of R
such linear subchannels Hﬁm)(z), r=1,..., R, each one

being of order L, and that all the linear equalizers Gflm)(z)
have order K.

The necessary and sufficient condition for perfect recon-
struction is

M

YOG HME) =28 -1), (19)

m=1
foranym=1,... . M,r=1,...,Randd =0,..., L+K.
Considering the notations H\™ (z) := S5 ™ (1)1,
GUm(z) = S gi™ (k)z7F, for m = 1,..., M and
r=1,...,R, and the (K + 1) x (L 4+ K + 1) Toeplitz
matrix

h™(0) R™ (1) 0
(m)
0 hy /(L —1 0
H™(K) = (=1
0 h™(0) R™(L)
relation (19) can be rewritten in the time-domain as
gi(K)Y H(K) =€, (20)

where
ga(KY = [87(0). .8 (k) ... o (0).. .o (x)]
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Hg(K) H%Z(K) H%(K)
H,"(K HY' (K HY (K
) = | B HPE) i (K)
B (x) HP(K) H(K)
e;:=[0...010...0].

The 1 x M (K +1) vector ef; has the unity in the dth-position.
We have the following result:

Proposition 2. Given M known FIR Volterra channels
H™(2), m =1,..., M, the necessary and sufficient con-
dition for the existence of the linear equalizers G((im) (2), for
m=1,...,.Mandd = 0,..., L + K, with the perfect
reconstruction property (19) is:

rank(Hg ) — rank(Hg 1)) = L+ K + 1, (21)
where Hg n; = Hg(:, L+ K +2:R(L+ K +1)). O
If K > L —1, then condition (21) comes up to the coprime-
ness condition of the linear parts Hl(m)(z), m=1,...,M,
and to the disjointness of the range spaces of Hg ; := Hg (:
y1: L4 K +1) and Hg ,,;. Further analysis shows that
matrices Hy and Hg ,,; have the structure of a generalized
Sylvester resultant. It can be shown that if relation (21)
holds for K, then it also holds for K + 1. By expressing
the rank of a generalized Sylvester matrix in terms of the
dual dynamic indices, [1], [3], of a polynomial matrix, it
turns out that condition (21) is equivalent to the difference
between two Smith-McMillan degrees of two polynomial
matrices be equal to L 4 1 (the length of the linear part), for
K > vnae (Vmar being the maximum dual dynamic index
of a polynomial matrix H (s) constructed from the kernels
of all Volterra channels).

We have seen, [2], that in the blind case assumption (al.1)
is equivalent to the condition that matrix H g is full column
rank. If this assumption holds, then also condition (21) is
satisfied. It can be shown that the minimal value of K used
to test (al.1) and (21) is the same (K, = Vpmqz). Since
condition (21) requires besides the coprimeness condition
of the linear parts, a certain “coprimeness” between linear
and the nonlinear parts, we conclude that condition (21)
is more restrictive than the condition encountered in the
case of linear FIR filter banks, but it is less restrictive than
assumption (al.1). Finally, we note that the necessary and
sufficient conditions for the existence of linear equalizers
Gfim)(z), m =1,..., M, and for a fixed delay d = dj, are
slightly different than (21). Due to the limited space, we
will provide further details and proofs of these results in a
future communication.



4 Simulations

First we considered the blind equalization of a real chan-
nel with dim[ A/ (X (®L+K))] = 3. We chose M = 5 chan-
nels, with L; = Lz9 = L3po = L = 1, and the mth-
channel described by

2(M(n) = Z K™ (Ds(n — 1) + Z K9 (152 (n = 1)

=0

(m)(O)g(n)s(n -1) +Z hg’g)o ) 3(n _ l) + U(m)(n)

hy(0) =1, .5,2,-0.3,1), hi (1) = [-2.5,3,0,0.9,1.5],
hyo(0) = [.01,.5,.2,1,1.5], hyo(1) = [.2,.3,~7, .02,
2]/, hy1(0) = [1.3,—.65,.89,1.5,.99]', h3 00(0) = [-.6,

2,.9,.76,3], ha 0.0(1) = [-0.9,-0.7,.1,.02, .5]". The in-
put sequence was a pseudorandom sequence with normal
distribution A’(0, 1.4). Only N = 500 samples were used
to estimate a K = 2 order equalizer. A comparison between
the true input s(n) and the equalizer output waveforms for
SNR= 30 dB, and respectively, SNR= 40 dB is shown in
Figure 3. Then, we repeated the simulation in a non-blind
framework, first by preserving the same channels, and then
by considering for channels 2 through 5 the same quadratic
and cubic parts as those of channel 1. We used the same
input as in the blind case. The results are displayed in Fig.
4. In the latter case, note that assumption (al.1) does not
hold, thus we can not blindly equalize the modified channel.
However, condition (21) is satisfied, which allows determi-
nation of the linear equalizers assuming all Volterra channels
are known.
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