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Abstract

In this paper, we analyze the performance of multiple-
transmit/receive antenna systems with linear precoders.
From the performance of these systems, we deduce de-
sign rules for linear precoders. Following the design rules,
we prove the existence and derive linear unitary precoders
achieving maximum diversity gain. Compared with exist-
ing real precoders, the novel unitary precoders offer the po-
tential of larger coding gains. Simulations illustrate that
the unitary precoders can achieve more than 1 dB coding
gain over real precoders while they perform comparably
to repeated transmissions, that consume larger amounts of
bandwidth when two or three transmit antennas are utilized.

1 Introduction

Well-documented as an effective technique in combating
fading effects, transmit-diversity has been widely adopted
in practice (see [1] and references therein). As the single
most important parameter in the system’s performance, di-
versity gain is the quantity to be maximized. Coding gain
is another parameter influencing system performance that
needs to be maximized as well.

In [1], a simple two-branch transmit diversity scheme
was constructed which can achieve a diversity of order
2N with two transmit antennas and N receive antennas.
The design has been extended to multiple transmit anten-
nas M > 2, but 25% or more bandwidth over-expansion is
needed. General performance issues and space-time design
examples are provided in [10]. Different from the space-
time schemes in {1, 10], there have been efforts to achieve
diversity and coding gains using linear precoders [2, 6],
where the symbols transmitted by each antenna are linear
combinations of a block of information symbols. Interest-
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ingly, linear precoders can provide diversity without band-
width expansion for any number of transmit- and receive-
antennas, and thus they offer flexibility than {1] with mul-
tiple transmit antennas. A diversity transform followed by
an inter-leaver was introduced in [6] to achieve diversity at
the expense of increased decoding delays. Real precoders
were utilized in [2] with multiple transmit antennas. Pre-
coding with multiple transmit antennas and/or inter-leaving
create independent channels that are instrumental for induc-
ing diversity. Existing works however, are restricted to real
precoders, which may not provide maximum coding gains.

In this paper, we develop a linear complex precoding
scheme with multiple transmit- and multiple receive- an-
tennas. We prove the existence of linear unitary precoders
achieving maximum diversity gain for any finite constella-
tion. Compared with existing real designs, the novel pre-
coders achieve larger coding gain. The paper is organized
as follows. In Section II, we describe the system model, de-
rive the expression for pairwise error probability with mul-
tiple transmit- and receive- antennas, and deduce the design
rules for linear precoders. The systematic design for the
linear unitary precoders achieving maximum diversity and
large coding gain is described in Section III. Finally, Sec-
tion IV presents simulation results comparing linear com-
plex precoders with real precoders and other existing diver-
sity schemes.

Notation: Bold lower (upper) case letters are used to de-
note vectors (matrices). T' and H represent transpose and
conjugate transpose of a matrix, respectively.

2 System Modeling and Performance

We consider a wireless system with M transmit anten-
nas at the base station and N receive antennas at the mo-
bile unit communicating over Rayleigh flat fading channels
as shown in Fig. 1. The data stream {s;}2__ from the
constellation set C is first parsed into M-dimensional sig-
nal vectors s, and then linearly precoded by an M x M
matrix ©. The precoded block ®s is serial-to-parallel con-
verted. With 0,7,1 denoting the mth row of ©, the mth com-
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Figure 1. Discrete-Time Baseband Equivalent Model

ponent 87 s of @s is transmitted through the mth antenna.
- 'We suppose that different transmit antennas employ orthog-

onal pulse-shapers to transmit the precoded symbols Gﬁs,
-m = 0,1,...,M ~ 1. Hence, there is no interference be-
tween the precoded symbols at the receiver. Perfect channel
state information is assumed to be available at the receiver;
hence, coherent detection can be applied. The signal z,,,
received by antenna n from the transmit antenna m after
receive-filtering (matched to the pulse of the mth transmit
antenna), sampling, and channel phase elimination, is given
by

Tnm = hnm\/-é: st + Wnm, ¢y

where hpm, (n = 1,...,N,m = 1,...,M) are the chan-
nel amplitudes between the mth transmit antenna and nth
receive antenna, which are assumed to be i.i.d. Rayleigh
distributed with zero mean and unit variance. Moreover,
the wn., are independent samples of a zero mean com-
plex Gaussian random variable with variance o2 /2 per di-
mension, and v/, denotes symbol energy. Define X to
be the N x M received signal matrix with (n,m)th en-
Yy [X]nm = Tnm; H as the N x M channel matrix with
[H]nm = hpm; U as the M x M transmitted signal ma-
trix with U := /Z,diag{07s,...,0%s}, and W as the
N x M noise matrix with [W],,, :== wp,,. With these no-
tational conventions, (1) can be written in matrix form as
follows:

X =HU+W. ' @)

If we choose sT := /1/M(1,...,1)s and ©@ :=
Iyxar, then U = /EIpxar s in (2), which amount
to transmitting the symbol s repeatedly using the M
transmit antennas. Although this repetition scheme can
achieve superior performance when maximum ratio com-
bining (MRC) is applied at the receiver, it also entails an
M-fold bandwidth over-expansion. We will use it here as a
performance benchmark and we will henceforth refer to it
as repeated transmission.

With the goal of designing the optimal ©, we will rely on
maximum likelihood (ML) detection at the receiver. Similar
to [10], we consider the pairwise transmitted signal matrix

Detection

Figure 2. Euler’s Coordinates

error event {U — U} as the event that the receiver decodes
U := /&,diag{67s, ..., 0%,5} erroneously when U is ac-
tually sent. The corresponding pairwise error probability
P{U — U} is given by

n=1m=1

P (] Es x \ilf‘ 2 T =\12
(U - U|H) =Q 51-\70. Z - hnm‘am(s - S)i )

where Np := 02, and Q(-) denotes the Q-function. An
alternative representation of the @ function is [8, Eq(4.2)]:

1 /2 —-112
Q(:L‘) = ;/{; exp (2—51;12—15) dd. (3)

Let us define the instantaneous SNR per symbol per
channel as v, = h2, E,/No and the average SNR per
symbol as: § := E(h'%m)&,/No = &,/No, where E de-
notes expectation. In a Rayleigh fading channel, ~,,, is
exponentially distributed (see e.g., [8, Eq(2.7)]):

1 0
Pryam (Ynm) = 5 exp (~ —1:72) . @

Using (3), (4), and the moment generating function
(MGF) approach of [8], we average P(U — UJH) w.r.t.
all the entries of H to obtain

P(U - 1)

1 1r/2 N M 1
== dy
4 /o ,gl ,L[l 1+07(s - §)7/4sin* 9~ (5)
_ ﬁ 1 /"/2( sin® 9 )Ndﬁ
Cammdo \sin 94167 (s~ 8)Y/4
For a linear precoder @, we define the set Mgz := {m :
|67 (s—5)|? # 0} and denote its cardinality as | Ms 5. Ap-

plying the inequality 0 < sin? ¢ < 1 to the denominator of
the integrand in (5), we obtain the following approximation
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of P(U — U) for sufficiently large values of :

5\ —IMelN
2a0))

(Mmens,, 1656 —3))

where Cg = %),'-' (1/2)M'|M"‘|, with !! standing for
odd (or even) order factorial.

Using a different derivation, an approximation similar
to (6) was derived in [7] for layered space-time coding with-
out incorporating the precoder ®. As in [10], we also infer
from (6) that if for any s and §, [Ms3| > [, the BER vs.
SNR curve in log-log scale will have a slope of (—~IN) for
large SNR values, and therefore a diversity gain G 4, (®) of
order IN is achieved. Similar to {10], we define the coding
gain as

PU-U)~ (6)

~

Geoa(®) =min |Co™ [] 1656-31| . O
= mEMg;z

When G4, (®) = [N, the coding gain G,q(©) measures
the savings in SNR of the linear precoded system as com-
pared to an ideal benchmark system with BER=(y/ 4)_”\’.
Certainly, both diversity and coding gains depend on the
choice of the precoder ®. In general, the diversity gain
should be maximized first because it determines the slope of
the BER-SNR curve. Within the class of ©’s that achieve
equal diversity, the coding gain G,42(®) should be maxi-
mized afterwards.

3 Design of linear precoders

Throughout this paper, we deal with the linear precoders

which can preserve not only the energy but also the Eu-
clidean distance of constellation points in each transmis-
sion. We call this class of precoders linear unitary pre-
coders since they amount to choosing © as a unitary matrix.
As a linear unitary precoder preserves the Euclidean dis-
tance among constellation points, block-transmissions pre-
coded with a unitary matrix © achieve performance equiv-
alent to precoder-free transmissions over AWGN channels.
Since diversity is a critical performance parameter, we first
design our © such that the diversity gain is maximized. The
following proposition asserts that a linear unitary precoder
achieving maximum diversity gain always exists (see the
Appendix for a proof):
Propeosition 1. (Existence of ® for maximum diversity
gain): As long as the constellation size is finite, there al-
ways exists at least one linear unitary precoder achieving
the maximum diversity gain M N.

As a consequence of Proposition 1, our design rules for
optimizing linear unitary precoders will amount to choosing
© that maximizes the coding gain among the class of uni-
tary precoders that achieve maximum diversity gain M N.

The resulting optimization problem can be formulated as
follows [c.f. (7)}):

M
O,pt = argmax min H lﬂ;l,l(s -8)2.] (8)
eeh= 8 =1
Gaiv(@)=MN

The optimum unitary precoder @, in (8) maximizes the
minimum product distance defined as ngl 167 (s — 8)|
for all distinct pairs s and §.

As formulated in (8), finding @,p; involves solving for
its M? complex unknown entries. To facilitate the optimiza-
tion, we take advantage of the fact that ©@* = I and pa-
rameterize © parsimoniously using < M? real unknowns
whose values are from 0 to 27. We start with the impor-
tant case M = 2, where an analytical solution for @, is
possible.

3.1 Two Transmit Antennas

A linear real orthonormal precoder was expressed in [2,
6] as a rotation matrix:

_ [ cos¢p sing
0y = (—— sing cos¢]’ ©)
The precoder in (9) rotates the constellation points so that
each rotated point is different from other rotated points in
both components to achieve maximum diversity. The crite-
rion in (8) needs to be maximized only over a single param-
eter ¢ in this case. The optimum ¢ for BPSK signals has
been found in [2] to be (1/2) arctan 2, with which the real
precoder can achieve maximum diversity gain 2 and coding
gain about 2.53.

Now, let us consider the unitary precoder ©, with deter-
minant equal to +1. Every two-dimensional unitary matrix
with determinant —1 can be transformed to a unitary ma-
trix with determinant 1 by multiplying the second row by
—1. Without loss of generality, we will thus consider uni-
tary matrices with determinant 1. Every 2 x 2 unitary matrix
with determinant 1 can be expressed in terms of Euler’s co-
ordinates (e, 3, ) [9} shown in Fig. 2 as follows

@a,B”y — (]e"]/z('y'*‘a) CcOoS g_

jed/Hv—a)gin £
ie=3/20-2) 5in B - (10

ej/z('Y‘f'ﬂ) cos g

As ©4 in (9) is just a special case of (10) with
(o, B,7) = (%/2,2¢,—7/2), our 2 x 2 unitary precoders
are also capable of achieving large coding gains. Indeed
for BPSK signals, the optimum parameters for the unitary
precoder are (a, 8,7v)=(0,7/2,0), and provide maximum
diversity 2 and coding gain 2.83. Compared to the real pre-
coder case, the complex precoder will turn out to be about
0.5 dB better in coding gain.
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3.2 Multiple transmit antennas: M > 2

Real precoders in [2, 6] are constructed by using Givens
matrices. Any real orthonormal matrix Q can be factored
as a product of M (M — 1) /2 Givens matrices of dimension
M x M and an M x N pseudo-identity I matrix, that is
defined as a diagonal matrix with diagonal elements +1 {2].

" The M x M Givens matrix G(3, j, ¢s;) is given by (entries
not shown are zero):

i j
1
i cO0s ¢i; sin @;;
G(i,j,¢:) = )
3 — sin ¢;; COS ¢y

1

For any real orthogonal matrix Q, the following factoriza-
tion holds true [2, Eq.(23)],

Q= II

1<iSM—1,i+1<M

G(l,], ¢1j) i

In [4, p.487), it is proved that every unitary matrix can
be factored as ® = Q;DQ2, where Q; and Q2 are real
orthogonal matrices and D is a diagonal unitary matrix.
Hence, we can write a unitary matrix as ©@=Q; DQ,, where

Qr = (HISiSM—-l,i+lSjSM G(i,J, ¢ij,k)) Ifork =
1,2, and every diagonal unitary matrix ID can be written
as diag{e’??,...,e?°M}, where o, (m = 1,..., M) are
real. In order to find a unitary matrix achieving maximum
diversity and coding gains, we need to find as per (8) the
optimum parameters ¢;jx (1 <i< M-1,i+1<j<M
and k = 1,2) and ,, (m = 1...M). Analytical solu-
tion to this optimization problem appears to be intractable.
For reasonable number of antennas M, extensive computer
search must be conducted to find the optimum parameter set
¢ij,k» as we will show in Example 2.

4 Simulation Results

We have derived design rules for the optimum precoder
and formulated the class of linear unitary precoders in a par-
simonious and systematic way. In the following examples,
we resort to simulations with two or three transmit antennas
and one receive antenna. For simplicity, we only consider
BPSK signaling. BER curves are obtained through Monte-
Carlo simulations for real and unitary precoders, while BER
for repeated transmissions [see description following (2)]
are obtained analytically.

Example 1: (M = 2, N = 1). To compare the optimum
real precoder (9) with ¢ = 0.5 arctan 2 with the optimum

Linear Real and Unitary Pracoders with M=2, N=1
T

—~%- Real Precoders
=0 Unitary Pracoders
= A

Average SNR per bit [dB)

Figure3. M =2, N =1

unitary precoder (10) with (a, 8,7)=(0,7/2,0), we per-
form ML detection through Monte-Carlo simulations. We
notice from Fig. 3 that relative to real precoders, the per-
formance has been improved by 1.2 dB when BER=10"2.
Moreover, compared to repeated transmissions that waste
half of the bandwidth, the optimum unitary precoder per-
forms quite comparably.

Example 2: (M = 3, N = 1). For real precoders, the opti-
mum parameters found through the computer search in {2]
are (P12, P13, P23)=(0.419 0.632 1.152), and they provide
maximum diversity gain 3 and coding gain about 1.37. For
the unitary precoder @, the best unitary precoder we found
is given by

~027-052j 05240245  0.55 —0.155
—0.29 — 0.50; —0.44+0.35] —0.45—0.385 ).
~0.57 +0.02j —0.56—0.18]  0.45 +0.365

It also provides maximum diversity 3 but the coding gain is
improved to 1.68. From Fig. 4, the performance of the uni-
tary precoder is about 1.5 dB better than that of the real pre-
coder when BER=10"2, and the improvement is about the
same for M=2. Also, the performance of the unitary pre-
coder is very close to that of repeated transmissions, which
require twice as much bandwidth.

5 Conclusions and Discussion

In this paper, we have considered linearly unitary pre-
coding for space-time transmissions. We derived the pair-
wise probability of error and based on it, we deduced design

rules for the precoder in terms of achieving maximum diver-

sity and coding gains. We proved that there always exist lin-
ear unitary precoders achieving full diversity gain. Among
those precoders, coding gain should be maximized. We pro-
vided a parsimonious parameterization of our precoders and
gave examples of precoder designs for two and three trans-
mit antennas. Performance, complexity, and bandwidth effi-

1556



Linear Real and Unitary Precoders with M=3, N=1
T T

BER

—— M=l
-8 Real Precoders ~ f...........
~9— Unilary Procoders

bt Tranemissions

Average SNR per bit [dB]

Figure4. M =3, N =1

ciency of the precoded system were demonstrated and com-
pared with existing schemes through simulations.

This paper’s linear unitary precoders outperform the real
precoders of [2]. To achieve the maximum diversity gain,
our decoding scheme relies on ML detection which en-
tails exponential complexity in the constellation size and
the number of transmit antennas. The space-time block
codes in [1] provide remarkably simple decoding schemes,
which are linear in the constellation size and the number
of transmit antennas. So, in terms of decoding complex-
ity, our system falls short of [1], in general. From a band-
width viewpoint however, space-time block codes suffer
50% bandwidth efficiency loss for complex constellations
when M > 3 in general'. In contrast, our linear unitary
precoders are 100% bandwidth efficient for any number of
transmit- and receive- antennas. As far as performance is
concerned, when the orthogonal designs of [1] exist, they
perform as well as the repeated transmission scheme for
M = 2. In our simulated cases (with M = 2and N = 1),
they are slightly better than our linear unitary precoded
transmissions by a few tenths of a dB.

Proof of Proposition I: Let S denote the set of all M x 1
signal vectors over an M -dimensional complex space cM,
Every component of a vector s € S is a symbol from a fi-

“nite constellation C, so S is a finite set. To.prove Propo-
sition 1, it is equivalent to proving that there is a unitary
M x M matrix such that ®(s — §) has nonzero coordi-
nates for all distinct pairs s,§ € S from (5). Let D denote
all possible differences between distinct vectors of S, i.e.,
D := {s—8§ # 0ls,5 € S}. Itis clear that D is finite.
Let the cardinality of D be p, and D := {d;,dy,...,d;}.
In an M-dimensional space, there exists an M x 1 vec-
tor denoted as @; which is neither perpendicular nor par-
allel to any of the vectors in D. Choose @, as a unitary
matrix such that the first row vector is taken as 87. Con-

YFor M = 3, 4, sporadic codes with 75% efficiency exist.

sider Dy := {©;d;,...,0:1d,} as a new set in which
the first coordinate of any vectors is non-zero. We can
treat the last M — 1 coordinates of these vectors as a new
set of (M — 1) x 1 vectors. Since @, is not parallel to
Vd; ¢ = 1,...,p), all vectors in this new set are also
nonzero vectors. By the same argument, we can find an
(M — 1) x 1 vector 8, which is neither perpendicular nor
parallel to these (M — 1) x 1 vectors in the new set. Choose
an (M —1) x (M —1) unitary matrix © such that its first row
vector is @3 . Then, we can construct a new unitary matrix
©; as follows:

111
0, =
2 <O(M—1)x1

Let us define Dy := {©30,d;,...,0:0:1d,}. It is easy
to see that the first two coordinates of vectors in D; are
nonzero while last M — 2 coordinates of these vectors
are nonzero (M — 2) x 1 vectors. Performing thé same
construction in M — 2 steps, we obtain an unitary matrix
@ = @) ---®; such that @d; (¢ = 1- - p) has non zero
coordinates. This completes the proof of the proposition.

_ Ouxm-1) ) an
O (M-1)x(M-1)
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