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Abstract—In this paper, we introduce a new paradigm for the diversity gains become possible (e.g., [1], [23], [32], [33]);
design of transmitter space-time coding that we refer to as linear the second one addresses specifically the optimization of the
precoding. It leads to simple closed-form solutions for trans- jntormation rate in the case of flat fading [8], [11], [22] and
mission over frequency-selective multiple-input multiple-output f _selecti h s 1241 25 ina that CSI i
(MIMO) channels, which are scalable with respect to the number requency selective channe S. [24], [25], as.summ.g a - IS
of antennas, size of the Coding b|ock, and transmit a\/erage/peak a.Va.||ab|e at bOth the transmitter and receiver SldeS. Optlmal
power. The scheme operates as a block transmission system indesigns developed in the past, which were based on multi-input
which vectors of symbols are encoded and modulated through a multi-output (MIMO) models such as [4], [17], [18], and
%‘]ear mapgin%operaﬂqg jo"gﬂy in the sf.’ace e}nflhtime dirt:welnsion. [26], gained importance because of the new interest in joint

e specific designs target minimization of the symbol mean - . . . P
squareperror and tge appr%ximate maximization of th)(/a minimum transmlt-recelve dlvgrsny sc?hemes. The optimization Of, pre and
distance between Symb0| hypothesesl under average and pealpost'ﬂlters was COﬂSIdered N [21] for aMIMO SyStem d|St0rted
power constraints. The solutions are shown to convert the MIMO by additive noise only. The design paradigm we adopt in this
channel with memory into a set of parallel flat fading subchannels, paper is based on an optimal pair of linear transformati&ns
regardless of the design criterion, while appropriate power/bits (precoder) and? (decoder) of blocks of the transmit symbols

loading on the subchannels is the specific signature of the different d : | tively t te iointl d
designs. The proposed designs are compared in terms of various@Nd receive samples, respectively, tugterate jointly an

performance measures such as information rate, BER, and symbol linearly on the time and space dimensions. The designs target
mean square error. different criteria of optimality and constraints, assuming the
channel is known at the receiver as well as at the transmitter
|. INTRODUCTION end. CSI can be acquired at the transmitter either if a feedback
channel is present or when the transmitter and receiver operate
fh time division duplex (TDD) so that the time-invariant MIMO
hannel transfer function is the same in both ways. Our linear

) . o gptimal solutions can appropriately take advantage of the CSI
space-time coding has followed the recognition of the possi d utilize resources at best while maintaining a reasonable

benefits of transmit diversity [1], [32]. At the same time, th%omplexity. They also bring additional flexibility into the

deman_d for high-speed wireless links and the_progressi Ssign that the alternative approaches in [1], [23], [32], and
saturation of the radio frequency (RF) bands contributed to t ] do not have for the latter impose restrictions on the number

idea of using multiple transmit and receive antennas to incre & ntennas for which the algorithms can be implemented
Ch"’g‘”e' c?pacgy [8t]r’1 [13.]’ [22.1' Hoyvev;r, 210 3%"%6 t.he infor- In all our designs, the paradigm of linear precoding/decoding
mation rate andjor In€ diversity gain atiorded by the IncreasSQploits the channel eigendecomposition in constructing the op-

hardV\_/are complexity, appropriate _precodmg and mOdUIat'?l%al F,G. The distinct solutions are characterized by how the
techniques are necessary. Two main approaches emerged HWer is loaded on each channel eigenfunction. However, un-
the effort of defining such effective transmission strategies; ’

0 it ) f the inf i bol ke [14] and [16], instead of assuming vector coding, we will
Ne USes appropriale mappings ot the information SymbolSdf,,, pow optimal linear transceivers naturally result in having
space and time so that, without channel state information (C

t the t it d with | lexity at th , ¢ ir specific structure from the criterion. Some designs consid-
at the transmitter and with low complexily at the receiver, U e in this paper extend the results of [29] and [30] to the case

where space diversity is present and, as in [29] and [30], we
make no assumptions regarding the noise color or the channel
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rate because the former provides satisfactory bit error rates aine vector of received samplgg:| := y(kT) is

does not require bit loading. o

. _The pape.rfirst introd_uces the system modgl in Section_ll. The y[k] = Z HIk, k — n)z[n]. (5)
joint transmit and receive optimal linear designs are derived in
Section Ill, and their performances are evaluated in closed form . . i o
in Section IV, after showing that all optimal designs convert tHé the channel discrete-time time-varying impulse response
channel into a set of independent flat fading subchannels. EI[F: 7] is causal and has finite memoty, we can write the
nally, in Section V, numerical examples are provided that high© relationship (5) in block FIR form. Specifically, stacking

light some salient aspects of our space-time linear precodifg= M + L transmit snapshots in BK x 1 vectorz; :=
alternatives. veq[z[iP),. .. ,z[iP + P — 1]]) andM received snapshots in
Notation: All boldface letters indicate vectors (lower caseft M & x 1 vectory, := veq([y[iP + L], ..., y[iP + P —1])),
or matrices (upper case). ThéA), | A, \(A) are the trace, de- where we eliminated the firdt vectors to cancel the interblock
terminant, and eigenvalues of matk o = vedA) is the Interference (IBI), we have
column vector formed stacking the columnsAfand the in- y, = Hz; ©6)
verse operation is denoted By= vec™(a, V), whereN is the ¢ ‘
number of columns ofd. Continuous-time multidimensional whereH is anRM x K P block-banded matrix. Alternatively,

n=—oo

signals are written as(t), discrete time multidimensional se-defining z; := ved[z[iP],...,z[iP + M — 1]]) andy; :=
quences aa[n], and sequences of vectors obtained by stackingq[y[iP],. .., y[iP + P — 1]]) and padding wittL zero sam-
consecutive blocks are characterized by a suffix, for ex- ples the tail of every block;, we could have written an equation
ample,a; = veq[a[iM],...,a[iM + M — 1]]). analogous to (6) but witlif of dimensionRP x K M. For sim-
plicity, we will assume that IBI is removed at the receiver, and
Il. SYSTEM MODEL thus, H is RM x K P, but most of the derivations in the fol-

The system considered hds transmit andR receive an- lowing are valid in both cases if one repladdsby P, and vice

tennas. The baseband equivalent transmitted signal is the ve¥fdra-

a(t) = (x1(t), ..., x5 (t))T of complex envelopes emitted by e Will precodelV x 1 vectors of symbols; as

the transmit antennas. We assume a digital link with linear mod- . — F's. @

ulation so that the vecta(t) is related to the (coded) symbol ‘ ‘

vectorz[n] by where N < min(K P, RM). Since N symbols will be em-

+oo bedded ing; through the precoddr, it will take P = (M + L)
o(t) = Z #[n]gr(t — nT) 1) snapshots to transmi¥ information symbols. Iff" is the time
= necessary to transmit one snapshot, the throughput is
where g7 () is the transmit pulse, antl/7 is the rate with ¥ min(K (M + L), RM) ML min(X, R). 8)
which the datac[n] are transmitted. Correspondingl(t) =  £7 ~ (M +L)T T

y(t)+n(?) is the received? x 1 vector that contains the channelrherefore, by increasiny, the upper bound on the information

outputy(t) and additive noise(t). For alinear (generally ime- (4te is not limited by the overhead &fsnapshots added tg

varying) channel, the input-output (1/O) relationship can be cagf 5y0id 1BI.

in the form If the channel is also time invariant (LTI), i.&1[n, ] = H[I],
where{H[l]}, x is thelth sample of the impulse response char-

y(t) = // gr(t — OH(O, 7)x (6 — 7) dr df @ acterizing the channel between ti@ transmit element and the

) ) _rthreceive element, thel in (6) becomes a block Toeplitz ma-
where gr(t) is the impulse response of the lowpass receiygy.

filter (usually a square-root raised cosine filter) matched to theAIthough our designs are valid for arff, in the case of

transmit filtergy (¢), and the(k, Z)th entry of matrixH(6,7) is  time-varying channels, the assumption of knowledge of the CSI
the impulse response of the channel betweeftthteansmitand ¢ the transmitter is not realistic, unless the channel can be con-

the kth receive antennas. The received noise-free signal veciered time invariant for a sufficiently long interval or it can be

is thus modeled resorting to a few approximately invariant parameters
+00 that can be estimated and used to predict the channel evolution
y(t)= U/ H(9,7) with sufficient accuracy [2].

X gr(t— 0)gr(0 — 7 — nT) dr do| n]. (3) I1l. OPTIMAL LINEAR DESIGNS

We assume that th&¥ x 1 vectors of symbols; transmitted

Introducing every PT sec.satisfy the following.
a0) The sizeN of the blocks; of encoded symbols satisfies
Hlk, k — n] N < rank H). Depending on the adoption of the null guard

) at the transmitter or at the receiver, we have, respectively, that
= / / H(0,7)g7(0 — 7 = nT)gr(kT = 0)drdf  (4)  \ank H) < min(RM, K P) or ranKH) < min(RP, K M).
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The received signal; = y,+n, contains noise that we modeland

as additive Gaussian noise (AGN) with covaria#ig, . We will MSE(F) = o2 (I 12 FHHHR_lHF) -1 . (15)
use the notatiolR,, := E{s;s” } and assume the following. > s nn
al) The transmit symbols are white, i.ék,, = 02,1, the In the following, we will determing,,,, based on different

noisen; is Gaussian with covariandg,,,, the noise covariance performance measures that dependWBE(F"). Without any
matrix R,.,, is positive definite, anek; ands; are uncorrelated. constraint, minimization oi\ﬁ(F) in (17) will lead to the

If Ry, # 02,1, a prewhitening operation can be performettivial solution of increasing to infinity the norm dF. A rea-
over the symbol blocks prior to precoding, and the corresonable constraint is obtained by bounding the expected norm
sponding inverse operation can be performed after the decodgthe transmit vectoE{||z;||2} = tr(FF¥)o2,, which limits
G. Assumptiona0) is necessary to guarantee symbol recovethie transmit power, and thus, we will refer to it as the power
because it is otherwise impossible to invert the channel witlonstraint (PC)
a linear equalize@, which operates on a single block of data He 2
only, evenin the absence of noise and with perfect knowledge of tr(FF7)os, = Po. (16)

H. Note that if the channel is LTI, ragll) < min(K P, RM)
occurs whenever the channels betweenkh&ansmitters and transmit vector covariancEFHaSQS, which also limits

th_eR rece_ivers have common zeros [13, p. 142]. Compar%?ji power because(FF?)o?. < Amn(FFY)No2 . This
wiht the single antenna case & = K = 1, we can gain o8 °*

, corresponds to

in terms of rate because th@ rows of H that correspond
to a specific channel are linearly independent (they form a Mmax(FFH) o2, = L. (17)
Toeplitz sub-matrix), and hence, rddk) > M. The challenge

is to define an appropriate encoding strategy that will lead Besides limiting the transmit power, the maximum eigenvalue
satisfactory performance for whatever diversity the channednstraint (17) imposes a limit on the peak power of the output.
is able to provide. As already stated, the scheme we consitieeffect, the peak of the transmit signal corresponds to the max-
here uses as a precoder a linear mappihgas in (7). The imum (in absolute value) entry af; = F's;. The constraint
receiver performs an appropriate inverse mappign the (17) limits the peak power because fiarx; 1 (|{z;}x|?), the
vectorz; = vedz[iP + L],...,z[iP + P — 1]),! estimating following inequalities apply:

the symbols a8; = Gz;. From (6), we have

An alternative is to constrain the maximum eigenvalue of

max(|{Fs7}k|2) < max (SFFHF&)
5. = Gz = GHFs; + Gn,. 9) ok '

< Amax(F7 F) max(||s4])?) (18)

A reasonable criterion to design a linear receéfefor given#' !

andH, is to minimize the mean square error (MSE) matrix thathere||s;||? is bounded sincs; is formed by symbols that are

is given by all bounded in amplitude. The advantage of this constraint is that
it limits the signal peak, independent of the specific constella-

" ~ Hy _
E{(3i —8i)(3: —5:)" } = MSH(F, G) (0)  tion used. The disadvantage is that the bound may not be tight.
where Finally, let us introduce the following EVD:
MSE(F,G) := (GHF — )R, ,(GHF — )" + GR,,,G". H"R;'H =VAV" (19)
(11)

whereV may be tall if H” R} H is rank deficient and\ is
an @ x Q diagonal matrix, wher€) := rank H” R,;! H) =
ank H ). We assume the following (which is not a restriction).
a2) The elements{\,,}Z; in the diagonal of matrixA,

which are the non-null eigenvalues B’ R H, are arranged
in decreasing order. Note that a0) requirés< Q. For conve-
Gopi = Ry, FPHY(HFR,,FPH"” + R,,)"*.  (12) nience, we will denote by the N x N diagonal matrix with

diagonal entrie{ A, }2_, (A is equal to the top leffV x N

block of A) and matrixV denoting the firstV columns of
1 V, which are the eigenvectors corresponding to Ahéargest
eigenvalueg\,,}_, of H' R, H.

The cumulative MSE of the estimate gfis E{||3; — s;||*} =
tr(MSE(F',G)). The G,y that minimizes the whole
MSE(F,G) matrix is the same as the MMSE (Wienerf
receiver [15], which is known to minimize the MSE(F', G))
and is given by

Here, MSEF, G,;¢) is minimum in the sense that

MSE(F) := MSE(F, Gop) (R;,) + FPH" R, HF) ™~
< MSE(F,G) (13)

. o ) A. MMSE Criterion Under Power Constraint
and the last inequality indicates thélF # G, the difference

[MSE(F,G) — MSE(F)] is a positive semidefinite matrix. Be- The MMSE design minimizes the(MSE(G, F')) jointly
cause of al), we can write with respect toG' and I under the transmit-power constraint.

. Analogous criteria formulated in the frequency domain for
Gope = F'H" (HFF"H" + R,,,07) (14) joint transmit/receive-filter optimization for the scalar case can
IThe definition ofz; would change consistently with the definitionpf, and be foundin 3, p. 333] and for the MIMO case in [18]. The joint

zero guards are used at the transmitter side. The uniformity of notation in M@msmit( and rece_iv_e C_Ie_Sign that minimi_ze(:MSE(G, F)) can
two cases allows solving both problems at the same time. be obtained by minimizing tMSE(F")) with respect taF". The
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solution for ', is given in the following lemma, andr,; Corollary 1: For a Gaussian input, if G has the following
can be obtained by replacidg with F.p, in (12). structure:

Lemma 1: The solution of the optimization problem g
G=TF"H"R,, (24)
Fop = argxrgntr(WE(F)), tr (FopF'2) 02, =Py (20)

opt

wherel is an arbitraryN x N matrix, the mutual information
is given byF . = V®, whered® is anN x N diagonal matrix 1(s,z) per blockdoes not dependn G (see also [29]) and is
with the following (¢, ¢) entry: 1(3,2) = log |a§SHFFHHHR;$ " I| ' (25)

No- +
2 [ Pot+2ia Ain \—1/2 1 The F,p,¢ in (23) andG,,,; in (12) also maximize the mutual
|¢zz| - N 1 )‘zz 2 (21) . pt t . .

2 s~V L /2 Ao information between transmit and receive data.

s =L Proof: See Appendix C. n
where(z)* := max(x,0) andN < N is such that¢,,,|? > 0
for n € [1, N] and|¢,..|*> = 0 for all othern. B. MMSE Criterion Under Maximum Eigenvalue Constraint
Proof: See Appendix A. . u Lemma 3: The solution of the optimization problem
Note thatNV is a function of the eigenvalues as well: For
a givenA and N, N can be found calculating (21) iteratively Fp,. = argmin tr(MSE(F))
starting with V. = N and, while|¢|%, 5 < 0, decreasingV ’;{ y
progressively by one, as explained in Appendix A. Interestingly, Amax (FOPtFopt) 055 = Lo (26)

the minimization of the determinant, in lieu of the trace, of the . s
MSE(F') matrix with respect td” is equivalent to maximizing 'S given b¥F°Pt R ’CO/.USSV'

. . : : ; ; Proof: See Appendix D. ]
the information rate. As mentioned in the introduction, the ca- Lemma 4 The solution of the ontimization problem
pacity of a MIMO channel was first derived in [4] and, for the ’ P P

multiple-antenna and flat fad_ing case, .in [8] and [_22]. In [24] F.p, = argmin [MSE(F)|
and [25], the authors generalized the discrete multitone (DMT) F
scheme for the MIMO frequency-selective case. The optimal Amax (FoptFlL) 02, = Lo (27)

space-time processing for the maximization of the information

rate is also derived in [9]. Compared with these works, our afs-9Ven byFop: = v/ /30/_0.3.@‘/-
proach Proof: See Appendix E. ]

As with Lemma 2, it is worth noting that because of (25), the
5 lution in Lemma 4 also provides the maximum information
r tse under (17).

1) jointly optimizes the precoder and decoder explicitly;
2) does not treat the frequency-selective and flat-fadi
cases separately and includes the time-varying case
well . . C. Maximum\,;;,(SNRF', G)) Under Power or Maximum
3) does not rely on the full rank of any of the matrices 'nEigenvaIue Constraints
volved;

4) links together the MSE metric with the maximum infor- Designs minimizing the probability of error are difficult
mation rate criterion. to deal with because they are rarely solvable in closed form;

they depend on the symbol alphabet and on the detection
rule. Here, we propose design criteria that can come close
Fop = argmin [MSE(F)|, tr (Fopt an) ggs =P, (22) to the desired goal, although their optimizationaiphabet
F independentBased on (9), the optimal decision rule is the
is given byFOpt = V&, where® is anN x N diagonal matrix maximum likelihood (ML) detector, provided that the noise is
with (4,4) entry Gaussian and that the symbols are gi8pecifically, if we let
) s;(Hy) denote the symbol vector corresponding to hypothesis
) Po + ZQ’:I At 1 + ‘H;., and letD; denote the decision on thth symbol block,
|pial” = No2 T o2 (23)  then the ML decision rule is [15]

11 55

Lemma 2: The solution of the optimization problem

. = 1 P — . H
andN < N is the number of positivép;; |2. b= arg‘%lfl[sz GHI's;(H)]

Proof: See Appendix B. | (GR,,G") 3, — GHFs;(Hx)]. (28)
The power loading on the eigenvectdrsof HY R,' H of

Lemma 2 is identical to the so-called “water-filling” obtainedAn indirect way of reducing the probability of error is to maxi-
from the maximization of the mutual information on paralleinize the minimum distance between hypotheses, and this is usu-
Gaussian channels (see, e.g., [6], [8], [12], and [22]), and &lly done through the appropriate selection of the code vectors
the context of linear precoding, it leads exactly to the solutia). Here, we want to search for the optim@land G without
described in [29, Lemma 2]. In particular, in Appendix C, wehangings; in order to retain the modularity of the system de-
show the following. sign that only focuses on the choice Bfand@G. Therefore, a

2Note that only the amplitude af;; is fixed, whereas the phase is arbitrary; 3If this assumption is not satisfied, one has to use the maximpwsteriori
thus,¢;; can be a real number. probability (MAP) detector.
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meaningful formulation of the problem would be to maximizand G,,; = f‘FHHHR,;{ with the N x N matrix T being

the minimum distance between the hypotheses, i.e., invertible.
_ [ — Proof: See Appendix F. Similar to Lemma 5, we have
max{, min [s;(Hn) = si(Hi,)|"F7 H" G (GRnnGT) SNR(Fopt, Gopt) = Lol -

Interestingly, the solution of Lemma 5 coincides with the
GHPF[s;(Hp) — si(Hx 29 4 . L
X [3: () = :(Ha)l} - (29) MMSE solution under the zero forcing (ZF) constraint in [30,

under some constraint ai. The solution of (29) depends onth- 3]. The ZF receiver in [30, th. 3] corresponds to selecting
the symbol alphabet. On the other hand, observing how (29) de= I, and in this case, the design of Lemma 5 (as well as the
pends orF and@G, and we can consider the following SNR-likeone of Lemma 6) leads to an ML detection scheme that performs

matrix as a sensible measure related to the probability of err§eparately a low complexity quantization of the components of
$;. Indeed, as will be extensively discussed in the following

SNRF,G) := F'H? Q" (GR,,,G")"'GHFo2,. (30) section, the selection &f = V® andG = TFIHYR !
with (P, f‘) diagonal matrices leads to diagonalizing the overall
Instead of solving (29), realizing by design some properties @hannelGHF and the noise covarian@R,,,,G* . Such diago-
SNR(F",G) may provide suboptimal but more general desigRajization decomposes the system in a sé¥ glarallel indepen-
solutions that are not tied to a certain symbol alphabet. The Gfisnt AGN subchannels for which symbol-by-symbol decision
terion that we will adopt is based on the observation that the mig-gptimal [15]. As will be shown in Section IV, the particular
imum eigenvalue\,in(SNR(F, @)) provides a lower bound for feature ofF, in Lemmas 5 and 6 is that the decision on each

the minimum distance: component o§; is characterized by the same SNR. As a last re-
. ‘ ‘ H ‘ ‘ mark, it is interesting to observe that for arbitrdfyandG, we
}L,IIB}ILI;}ék[SZ (Hn) = (0 )]" SNRE, Gl () — 5i(H.)] can extend to the Gaussian MIMO case the capacity formula of
> Amin(SNR(F, G))} I;}-l;h;ek lls:(Hn) — si(H)|1?. (31) the SISO AWGN channel as follows:
I(3,z) =log |I + SNRIF, G)|. (38)

Maximizing the lower bound in (31) will possibly force (31)
to higher values. The corresponding solutions are given in the
following two lemmas.
Lemma 5: The solution of the optimization problem V. PERFORMANCE OF THEOPTIMAL DESIGNS
In this section, we will derive expressions for performance
(Fopt, Gopt) = argmax Auwin(SNR(F, G)) measures such as the mutual information, the probability of
H o . error, and the mean square error achievable with the optimal
tr (F opt 1" OPt) s =To (32) precoding/decoding schemes presented so far. As mentioned be-
fore, all optimal designs lead invariably to loading the power

isgiven byF',,. = V& with ® diagonalV x N having diagonal )
g Yot g gdlag across the elgenvectorstHR;j;H.

entries
lpai? = Ll)\fl (33) A Equivalent Decomposition Into Independent Subchannels
k22 2 — 3
035 2ok Akk Lemma 7: All optimal designs we described so far have so-
andGoy, = DV HY R7! with the N x N matrix I being Utions of the following form:
invertible#

— _ —1y7H rH p—1
Proof: See Appendix F. Fop, =V®, Gop =T'ATVIH'R,, (39)

Note that the solution leads to where® andT" are diagonal matrices.

Po Proof: See Appendix G. [ |
S Ak The matricesF,,; and Gp: in (39) cascaded with the
) ) ] channel matrix in between are depicted in Fig. 1. Matr#k
that, replaced in (31), enforces the equality with the lowgfines the transmit filters to the eigenstructure of the propagation
bound. _ S B channel that depends dfi and the AGN covarianc&,,,,. The
Lemma 6: The solution of the optimization problem matrix equivalent of the cascade inside the box of Fig. 1 is

(Fopta Gopt) =arg l;laGX )\min(SNR(Fv G)) (35)

SNR(F 1, Gopt) = 02, HAD = 1 (34)

AYWHIHIRIHV = A-'WVIVAVIV =1 (40)
Amax(FFMY o2, =L 36 . : .
( e 0 (36) and the noise correlation at the output of the box is
is given byF',,, = V& with & diagonalNV x N such that
gven ByFop J AWHHIR-IR RTIHVA~ = A~L.  (41)
|¢ii|? = M)\tl (37) ) ) . )

K o2, T Thus, the matrix (or block) channel is described by the diagonal
4The receiver selection is not completely defined by the optimal design (:trr:ms}ter matriXC'® and additive noise with correlation matrix
terion. A similar observation was made in [29] in deriving the solution for thE‘HrAil- Hence, thev SL_IbChanneIS_are decoupled, and Fig. 1
maximum information rate. becomes equivalent to Fig. 2, in which case, the flat fading on
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ample, the symbol probability of errdr,(z) fora@; — QAM
system is such that

. QAM 1 _:SNR
Fig. 1. Optimal transceivers: Matrix model. PS(Z) < z2{l- \/@ e @y (45)
and (45) can be used to select the constellatipithat leads to
(51 by { Bi}z Vi ¢ §.} P,(¥) < Pp, wherePp, is the desired upper bound on the BER
L1 ® é R Lh that is necessary to meet a prescribed QoS. This operation is
‘ usually referred to as “bit loading” (see, e.g., [5]). We can infer
: from (45) that it is easier to enforce an upper boundRy(¥)
LB rather thanP, (¢) itself. For example, considering the case of a
{8y Oy ¢°N YN (S; ) QAM constellation, to havé’; (¢) < Pp, (45) implies
o PR - 5)
Fig. 2. Equivalent subchannels. f 21Og(PD/2) '

Itis important to remark that the SNRor one or more subchan-
each of the parallel subchannels corresponds to the diagonahells can be such th§}; < 2. Since not even one bit per block

ements of"®, and the noise componer{ig; }».k =1,...,N can be received at the prescribed error fatdl subchannels
are uncorrelated with variandej,j. with ; < 2 are turned off by settin@; = 0. The power orig-

inally allocated to these subchannels is distributed over the re-
B. Performance Measures maining ones, and the size of the encoded blydls decreased

a&;Tcl)_rrespondingly. The solution is found iteratively by discarding
g?_e subchannels with the smallest SNRomparing the expres-

: . sion for@); in (46) with the SNRin Table I, we can also observe

I I . ! .
owing cororanes that the ZF designs of Lemmas 5 and 6 that lead to uniform

Corollary 2: With & andI' diagonal, the transceivers in (39) : .
render the MIMO linear AGN channel with memory equivalenf'NRi are the only ones that lead to adopting a uniform constel-
ion size across subchannels for a consiantin contrast, all

to IV parallel independent ISI-free subchannels, each with ﬂot er designs can benefit from uneven distribution of bits ac
fading gaingrryir and AGN{S, }, with variancel /Ay and . . . - R
Ing gaings i {B; ., with vari /A cording to (46) and provide an increased transmission rate, as

{Bi}r, {Bi}; uncorrelated fok  j, i.e., will be illustrated by the examples of Section V.

Based on the model in Fig. 2, we can also derive the following
result.

Corollary 4: The MSE for theF and G in (39) coincides
with the cumulative MSE over th& independent subchannels
in Fig. 2 and is given by

The decomposition shown in the previous subsection stre
lines the performance analysis, as we summarize in the f

{8ite = drvadsite +vadBite, k=1,...,N. (42)

The SNR at the output for thieth subchannel is

o2 lder 12 lves |2
SNR, = M — U§5|¢kk|2)\kk- (43)

A 1] Al |iil? 2 2
MSE(T, @) = |~ + i = 1%02, | . (47)
The independence of the parallel subchannels implies the fol- i=1 v
lowing. i _ 2 GHA-L | 2 Hy—1
Corollary 3: For the linear transceivers of (39), the mutu Fosréhies MMSE receivel’ = o, @"(A™" + 0, 227) ™, the
information is given by
N o2 N o2
N MSE(®)=> ———s 57— => —=— (49
1 ; 3 ]
1(3;2) = 1 Y log,(1+ SNR). (44) o1t 1ultol A i 1+ SNR

=1 . . .. .
‘ which reaches its minimum for a constrained power wign

Under constrained powek(s; z) in (44) achieves its maximum are given by (23).

when{¢;; 1Y, are given by (23). For the ZF receivel’ = &7, the MSE is

According to (42), the set of equivalent parallel subchannels N . N
are also ISI-free. Thus, assuming that information is quantized MSE(®) — — Tss (49)
and that{s,}, belong to a finite alphabet, the optimal deci- (®) ; | pail? Nii ; SNR;

sion scheme based ¢8; } ;. performs symbol-by-symbol detec- ) .
tion. When the transceiver design provides us with the freeddr@rollaries 1 through 4 show that performance evaluation
to choose among different constellations on different subchaif- our optimal designs requires only specifying the values
nels, we can choose the order of the constellaggrso that ©f SNR;. Table | gives the SNRcharacterizing the optimal

IOQQ(Qz) ~ log,(1 + SNRL‘) in (44). Alternatively, the proba-  sye do not consider here possible error-correcting capabilities due to error
bility of error expression can be used to determihe for ex-  correction coding that would allow the selection of any rational valu@.of 0.
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TABLE |
COMPARISON OFOPTIMAL LOADING FOR DIFFERENT CODING STRATEGIES (CP := CONSTRAINT ON THE AVERAGE TRANSMIT POWER,
CApax := CONSTRAINT ON THEMAXIMUM EIGENVALUE)

Lemma | Criterion Constr. bii SNR; = |¢il*02,Mii
1 min(tr(MSE)) | CP + (35%*/& AV - %>+ (/ctr(MSE) AR - 1)+
2 |mnusE)  op | p (PR o) | (K M- 1)
3 min(|M SE)|) Chnaz Lofo?, Lo Ais

4 min(tr(MSE)) Chnas Lo/a2, Lo Aii

5 max(Amin(SNR)) | CP * (TP;—T) A Ksnr-cp

6 max{Amin(SNR)) | Chnae s LoAnn A KsNR—CAmaz

designs of Section Ill. Comparing the SNBxpressions, we strongest eigenvalues ﬁH[q]A;,iﬁ[q], which are the ones
observe the similarity between the MMSE and water-fillingelevant to the optimal design.

solutions of Lemmas 1 and 2: Both of these solutions tend to

exclude the most noisy subchannels (corresponding to smallest V. NUMERICAL EXAMPLES AND DISCUSSION

y 1/2 y i
Ai;8), and the SNRgrows as\;;~ and A;;, respectively. The , yhig section, we provide some numerical examples that il-

other designs do not include this control and, thus, Wasifate the performance of our optimal designs, relying on the

power over these subchannels. Consequently, performapges, mance measures presented in Section IV. We adopted the
may degrade significantly foN close to its maximum value following channel model

_ H .
of @ = rankH" R, H) when the smallest eigenvalues aré cpanne| ModelThe FIR channel taps. () are uncorre-
close to zero. This effect will be illustrated by the numericgl,;.q complex Gaussian random variables (Rayleigh fading).

examples in Section V. The standard high performance radio LAN (HIPERLAN) pro-
vides short distance, high-speed radio links among computer
C. Complexity systems using the 5.2— or 17.1-GHz frequency band. The vari-

2 _ 2 -
The most demanding operation in terms of computation%?lc;ycgr;?i?etizmgél)cﬁagngl) Afc?’”\(/)vvzisc;hih%zaeznzls F;O\gl/?)rical
complexity is the estimation and the eigendecomposition Indoor multipath scenario for HIPERLAN/2 in [7], operating

LY S ; "
H R, H, .WhICh s akM x KM matrix. However, it is at 5.2 GHz, withB = 100 MHz (7" = 10 ns). The channel
worth pointing out the following. . .
order isL = 19 for the impulse response samples beyond the
1) For LTI channels, the number of parameters to be esfigih (j.e., after 190 ns) are statistically very small. The results
mated is actually less than or equalli& R, whereL is  5re always averaged over 100 random channels. We also simu-
the maximum channel order. _ _ lated white complex stationary additive Gaussian noise having
2) OFDM transmission with, long cyclic prefix or zero the same variance for each antenna equalgoThe horizontal
guard will diagonalize each multipath chanhgl,.(7) for  a4is in the plots that follow is the average block SNR (in deci-
any block length}/. bels) defined as SNR= tr(FF")o2_ /Ny, which does not in-

3) Assuming that the noise is spatially and tempqgyge in its definition possible gain/attenuation of the channel
rally uncorrelated, the noise correlation matrix i$gglization.

R, = [diagoy, (1), ..., 00, (R)] ® Il where@ The assumption of uncorrelated scattering is optimistic, es-

denotes the Kronecker product. pecially if the multipath is dominated by a few strong reflec-
Hence, by incorporating OFDM modulation, the equivalerbrs in the far field [24]. The matriceH generated according
channel matrix is block diagonal, i.e.H = diagl(H[0],..., to our model above will be, in most cases, full rank and well

H[M — 1]), whereH[q] = Z{‘ZOH[Z] exp(—j2nql/M) is conditioned. However, the real scattering is likely to be corre-

the K x R matrix of the channel’s frequency response. Sindated and, hence, leads to matrices with high condition numbers.
IFFT/FFT operations do not change the noise color, the noités also reasonable to expect that by increasing the number of
covariances at the output of the receivers’ FFT will still bantennas, the diversity gain will tend to saturate, and this as-
diagonal. Therefore, instead of the eigendecomposition @éct is not exhibited by our model. Nevertheless, the model is
the KM x KM matrix HY R,;' H, the design will require sufficiently accurate to provide some insight into the proposed
M eigendecompositions off x K matrices of the form designs.

HY[¢]AZ1H[q], with A,.,, := diago2,(1),...,02, (R)]and  Example 1: The first set of curves in Fig. 3 compare the de-

g = 0,...,M (see also [24]). Subspace tracking techniquessgns in Lemmas 1-6 in terms of MSE, BER, mutual informa-
can be used to track the eigenvectors corresponding to thm, and number of bits that can be transmitted with a prescribed
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QoS (specified as an upper bound Br()), using the expres- the design. For the other designs, &in< rank H” R} H)
sions derived in Section IV. Note that Lemma 3 and 4 lead to tkan be chosen to trade off transmission rate versus diversity
same solution, and therefore, only five curves appear on eaain and complexity. In this experiment, we chose to set
figure. For Lemmas 3, 4, and 6, we set the same peak eigéd-= R, P, = M/K and N = 0.75MK. In Fig. 4, we
valueLy = Py/N. Because, in Lemma 3 and®, = LI, the show the performances normalized h§N averaged over 100
tr(Fop, F2 ) = Py for every channel. For Lemma 6, insteadtandom channel for the criteriomin(|MSE(F)|) — CP. The

opt
if )\maX(Flpth)f)t) = Py/N, then t(Fopth)t) £ Py. The interesting observation that can be made is that the normalized
curves corresponding to Lemma 6 are given as a function of therformance tends to be invariant with respectiMo or K
corresponding (o, 2L, ) /o2 averaged over the channels. and R for K, R > 1, i.e., they all grow proportionally to

Lemma 1, which minimizes the MSE subject to the averagein(M K, M R). This applies also to the other designs not
power constraint, provides perhaps the best compromise sBown in Fig. 4. The linear grow of the capacity with the
tween BER and information rate. If, as described in Section Mumber of antennas was first shown in [8] and [22]. The prop-
the constellation size is allowed to change according to (48yty can be explained using the theory of random eigenvalues
Fig. 3(d) shows that the design of Lemma 2, which minimizeznd the asymptotic distribution of random matrices, as was
the determinant of the MSE subject to the average power caione in [20].
straint, provides the highest rate for a given QoS. In Figs. 3(c)Example 3: Another important point to emphasize is the re-
and (d), the design in Lemma 3 that minimizes the MSE subjdetion betweenV and the system parametéeis K. If we count
to the peak power constraint, which leadsito= X1, performs all the physical links between information source and destina-
very similar to that in Lemma 2, which requirds # I, con- tion, there arek R channels in parallel, and we transnitt =
firming that the power loading is not strictly necessary whe! +L samples per block. However, since the channels are inter-
maximizing the information rate because most of the watdering and there is ISI, the rate does not increase proportionally
filling gain in terms of information rate derives from the bitto the productK 72/°. The rate grows as the number of equiv-
loading. The designs of Lemma 5 and 6 that maximize a lowalent uncorrelated Gaussian chann@ls= rank H” R, * H),
bound on the minimum distance under the power and maximuwmhich can be utilized upon appropriate precoding. Therefore,
eigenvalue constraints are ZF designs and tend to perform betier diversity increases as the réf’ R, s H). Since N <
than the other criteria only in terms of BER. The reason whanK H” R} H) < min(K P, RM), the first useful observa-
Lemma 6 (eigenvalue constraint) performs slightly worse théion is thatK' = R is preferable ta{ > R or R > K because
Lemma 5 (average power constraint) is that we fixed for Lemni¥ is tied to the minimum betweelf and . Although it is not
6 the sameL, = P,/N used for Lemma 3 and 4 instead ofshown in the figures, choosing = » andR = y leads to the
fixing the average power. Had we fixed the average power $ame average performance as chooding- y andR = z, as
be the same, the two algorithms of Lemma 5 and 6 would hagge would expect by symmetry. The differeriée — R| only
performed identically. helps one to increase the normBf’ R} H and, thus, the rel-

In Figs. 3(e) and (f), we show the MSE and information ratative power on the subchannels. However, it will not add diver-
curves versus the ratio of the maximum eigenvalue (which $8y, which is the main source of performance improvement, as
an upperbound for the peak power) over the noise varianééso emphasized in several papers on transmit diversity (see e.g.,
The curves are obtained normalizing the value in the abscig$a]). This is confirmed by Fig. 5 where, unlike Fig. 4, the dif-
Amax(FF?) /02 to the same constam, for all criteria in all ferent curves now pertain to different values of the pirR,
iterations and averaging over 100 random channels. The plagsumingX + R is constant. Of course, it all depends on the na-
clearly show the gain obtained by the designs that use the eigkie of the scattering environment and on the way it affects the
value constraint over the corresponding criteria using the agigenvalues off ” R;,} H. Often, the channels are modeled as
erage power constraint [cf. Table I]. Only in the case of Lemnizaving flat uncorrelated balanced Rayleigh fading coefficients.
5 and 6, because of the normalization, do the two criteria pétowever, with only a few effective scatterers and if the trans-
form identically. mission bandwidth is not sufficient to resolve the delay spread

Example 2: One important aspect of the optimal designgue to the different locations of the array elements, the number
in Lemmas 1-6 is the effect of increasidd, K, R, and the of paths, and notin(X, R), will limit the rank(H" R, H)
selection of the block sizéV (that has to be smaller than(see also [24]).
rank H R} H) < min(M K, M R) according to assumption ~Example 4: Compared with schemes that do not make use
a0). Even though the construction of the optimal transceive?bthe channel state information (CSI) at the transmitter, the ad-
allows N = rank HY R;' H), various circumstances mayvantages in performance, power saving, and flexibility of the
suggest choosing a smallaft. If some); < 1, the ZF designs optimal linear designs can justify their extra complexity. De-
of Lemmas 5 and 6 will drain most of the power on suchigns like the one in [1] cannot be generalized to an arbitrary
subchannels. Other designs, such as the ones in Lemmas 1rasdber of antennas and do not make use or take advantage of
2, will tend automatically to exclude subchanfielgith very the CSI, if available. Methods such as [1], [23], [32], [33] or
small \;;S. However, in those cases, the choice of a smafler their extension to frequency selective fading [19] operate as di-
might be dictated by the need of reducing the complexity afrsity schemes that exploit multiple antennas to increase the

6Another option is to combine some of the equivalent subchannels descri SymbOI- SNR but not the Symbql rate. Ther_efore, the number of
in Section IV-A by sending the same information symbol on two or more gfgnsmnted Symb0|s does not increase with the number of an-
them. tennas and remains equal to the size of the block in time, i.e.,
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Fig. 3. Comparison between the designs in Lemma 1-6 [cf. Taklé B 32, K = R = 4, N = 112, P, = 32. (a)-(e) MSE= tr(MSE(F)). (b) Average
BER. (¢)—(f)I(x, $). (d) Number of bits= Y. max(|log, Q:],0),Q; given by (48) withP, < 1072.

N = M = 32. Setting the parameters to match the valuesarriers (see, e.g., [19]). In this case, it can be shown that the
SNR; of the symbols received in each frequency bin for the

required by the design in [1], for examplé = 2,R = 2,
N = M symbols can be transmitted ovadf orthogonal sub- scheme of [1] is SNR = Ei,r:l |Hp (1)|*Po/(2M2,,),
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Fig. 4. Performance of the optimal designs St = 0.75MK Po = Fig. 6. BER obtained with the designs in Lemma &5= R = 2, M =
M/K K = R antennasi(z, $) Lemma 2—{min(|MSE(F)|) — CP). 32, N = 32 and the design in [2] (ST-map).
45 T T T T
APPENDIX
40
A. Proof of Lemma 1
35 Optimizing (20) could follow the steps in [18], where IR
< frequency-domain designs were optimized using iterative
Taop minimization of Lagrange multipliers. However, similar to
g [30], our discrete time-domain matrix formulation will lead to
Tost aclosed-fornselection of the redundant FIR precoder/decoder
@ matrices. An alternative proof to that in [30] can be found in
% 20f K=5, R=35' [27] for white symbols and white noise.
E K10, R=30 The proof in [30] considers the more general case of
18- 1 colored symbols but restricts the attention to the case
K=20, R=20 N = Q = rank H?R;'H), whereV = V andA = A.
10 : 71 Denoting by A the diagonal matrix with entries equal to the
elgenvalues{éu} “ , of matrix R, sorted in decreasing order,
5 s 10 15 20 25 2 (21)is nothlng but a special case of the solution in [30] obtained
SNR (dB) for {6”} * . = o2,.In [30], to prevent negative solutions for

Fig. 5. Performance of the optimal designs over 100 channels accordifg;, @ constraint was imposed on the minimum value For

to Model B, block sizel = 32, N' = 160, and various values ok and  Here, we would like to show that the solution can also be

R: I(x,3) (Lemma 2). found for 7 lower than the minimum value by having some
|¢i:|? = 0. In fact, the solution in [30] was obtained setting to

whereH,, ,.(i) = FFT[Ay ()] is thek, r channel transfer func- zerg the gradient of

tion at frequency bi/M . We compare the BER of our scheme

with that of [1] in Fig. 6. J = min[MSE(F) + p(tr(FFH)o?, — P
VI. CONCLUSION 2
ii| "0 — 50
| . . . . 1n1n21+|¢”| 6”)\”+N<Z|¢ | P)( )
In this paper, we derived several optimal linear designs i

for MIMO transmission systems with finite memory, which

targeted minimum MSE and BER, under constraints on t

transmit power or the maximum output of the transmitter.

also provided closed-form expressions for various performance { 62 \is
(

ith {6”}Z . = o2, in our case. The gradient provides us the
gllowmg condmon

measures of the communication link that streamline the inter- Ty ENEBE
pretation of the optimization results. The optimal designs allow

us to define space-time modulation designs that take advantagplying that either we send to zero the first term or we simply

of the channel state information and offer simple closed-forset¢;; = 0. Since MSEF') is a decreasing function ¢6;;|?,
solutions, scalable with respect to the number of antennas, sizbe power constraint cannot be enforced keepingalt> 0,

of the coding block, and transmit average/peak power. then the negative values have to be setto zero. In this case, where

+u} 65 =0 (51)
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{511}?21 = ¢2_, this can be done iteratively, starting from the=urthermore, for any pair of matricesand B with compatible

components with the highest indexes because they are assdiciensions, it holds that the non-null eigenvaluesA@ and

ated with the smallest;; and, hence, provide the highest con8 A coincide, i.e.,

tribution to (50). With NV indicating the maximum number of

$:; > 0, we arrive at the solution in (21). MAB) =MBA) = [I + AB| = [+ BA|  (55)
For N < @, we can generalize the proof by expanding with

Q — N zeros the symbol vector and having then the same settffgd therefore

as in [30]. By construction, in this case, the lgst NV diagonal

entries of A are zero, i.e.§;; = o2 fori = 1,...,N and IMSE(F))| b= |I+A§"1’H°’§s

6 = 0fori = N 4+ 1,...,Q. The proof of (50) does not ?

require thats;; are strictly positive and therefore is also valid < [IA+ 2 {2200l (56)
for 6;; = €. Arguing by continuity and considering the limit in a=1

bii = ¢ — 0in (51) requireq:¢; = 0, and thusg; = 0. where the upperbound can be reached sele@i®g diagonal.
B. Proof of L 9 If N = @, we can set, without loss of generalif,as diagonal,
- rrootortemma and the gradient with respect ¢g,, is

We will make use of the following corollary.

Corollary 5: Without loss of generality, the structureBf,; oF _ < 1 B u) & =0 (57)

is Fope = V&, where® is an arbitrary@ x N matrix. Ign Agd + ldgql? e
Proof: Any matrix F' and, thus, the optimal solution as . o
well, can be decomposed as which leads to the water-filling principle:
_ +

B B 3 |pgal” = (K =A.1),0)" qe[L,N]. (58)
Fai =V (5 ) 52) o |

n Depending or?, it may or may not be possible to set all the

diagonal entries to positive values. 7 is not sufficient, then
other entries ofp have to be set to zero. Since M3@B is a
decreasing function of,,, which are sorted in decreasing order,
the minimum MSEF') is obtained selecting those entries that
L . - correspond to the first (and bigger) diagonal elementa.dBy
MSE (Fop) = (I +®"V H"R'HV® imposing the power constraint to determidgwe arrive at (23).
However, note that itV < @, then®®" is rank deficient;
therefore, the enforcing a diagonal structure requires having

with V', standing for the orthogonal complement¥of Let us
introducel'op,; = V@Lwith P x N, which is restricted to the
subspace spanned by We have that

+ SIVIHI R AV, ®,)

= MSE_I(FOPt) Q — N rows of® equal to zero. This restricts the possible values
of [I + (@7 A®)o2 |, but it is not a restrictive assumption for
while at the same time, (tF’ IfFHt) = t(®BH) 4 our optimal solution search. In fact, sindg, are sorted in de-
1 opt+ opt.

tr(®, &) > tr(F.F ), where the equality holds true for¢reasing order, from (54), it follows that ady having the last

opt

®,, = 0. Hence, we can focus on matrices sucliag, = V@ @ — IV rows equal to zero and such that

without restricting our search for the optimal solution, and re- o
placing it in the objective function, we can search equivalently |(/;1 2= Z | nl? (59)
for the optimal matrix®. n ’ “

_ n=N+41
Let us assume initially tha¥ = @ and, therefore, thdt’ =

V. UsingF = V& in (15), it is simple to verify tha#,,, = still satisfying the constraint provides an higher or equal upper

ming [MSE(F)| = V®,,,, where bound onI+(®"” A®)s?,|. Atthe same time, matrices having
such structure a® can reach this upper bound by using the

(53) Same designasin (58), settihg ,|> = 0forg = N+1,....Q.
Thus, the cost function is maximized by (58) fsr < Q. De-
noting by ® only the top/N x N nonzero part of the original

. N Q .
subject to @)l = 37 31 ¢enl® = Po- We  matrix & used above, based on a2), we can whitg, = V&,
will use the Hadamard inequality [6, th. 16.8.2] to maximiz§nered is N x N and diagonal.

|I + (27 A®)02,|. The Hadamard inequality dictates that the
product of the diagonal entries of a positive definite matrixis a& proof of Corollary 1
ways greater or equal than the matrix determinant with equality
holding true if and only if the matrix is diagonal

Doy = argmax I+ (27 A®)s?,

The mutual informatiod (5, z) per block is

|G (c2, HFFYH" + R,,,) G"|
|GR,.,.G"|
o2, GHFF'H"G"(GR,,G") ' +1]|.
(60)

IMSE(F)| ™

I+ (2"A®)02, I(3,z) =log

N Q
11 <1+2Aqq|¢q,nl2> - (34) =log

n=1 q=1

IA
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Because of (59), (60) can be written as E. Proof of Lemma 4

Normalizing the objective function by?2,, we want to solve
1(3,2) = log ‘FHHHRT;%/QHRI/ZGHR;é/QHFO_ES +1 the equivalent optimization problem

T max I+ F"H"R;HFo2,| and
<log|F"H"R,;HFo? +1| (61)
)\max(FHF)O—SS = ['0- (64)

where g1 2qn = RY*GH(GR,,G")"'GRY? < I'is
the orthogonal projector onto the range spaceR)f>G”.
The upper bound oni(s,x) is reached if and only if |I+FHHHR 'HFo?,
RY2G" = R;Y?HFTH, whereI' is anN x N invertible "
arbitrary matrix, i.e., ifG has the structure in (24). Lemma 7 = ‘I-i- FIVAYP APV Fol,
shows that the MMSE receiver in (14) can be written equiva- e H _
lently in the same form as (24) [see (70) in Appendix GJ; thus, - ‘I + AV FFHVAI/QU?S‘
Gyt in (12) is optimal also in the sense of maximizihg, x). < T+ LoA] (65)
From (25), one can observe that

Using (55), we can write

where the inequality takes into account the fact gat- vV

NN H rpH p—1 eigenvalues ofF'F'” are equal to zero. The upperbound is
1(3,) = log |[F"H" R, HF o, +1| achieved whet, . = /Lo/o2V.
- agsM_SE_l(F)‘ ] (62) F. Proof of Lemmas 5 and 6

Arguing as in Appendix C, we can write

Because maximizinngSE_l(F)| or minimizing [IMSE(F')| is SNRF,GQ) = FIHYR, Y N1 )oou R, HF
equivalent,F,; in (25) maximized (s, x). < FHEYR-1HF (66)

D. Proof of Lemma 3 where Mg gn = RY’G"(GR,,G")"'GRY? < T'is

The difficulty in finding the mingtr(MSE(F)) under the orthogonal projector onto the range spaceRc}ffGH
the maximum eigenvalue constraint is in showing that thehe SNRF, @) reaches its upper bound if and only if
cost function can be minimized, without loss of generahtml/?GH R—1/2HFI‘H whereL is an N x N invertible
by a precoder that loads power separately on each charm¢j|trary matrix, i.e., if@ = TFIHYR ' Let us denote
eigenvector (asF = V& with & diagonal). Assuming by SNR(F) = FHHHR*HF It is not difficult to extend

= @, we can use two facts: 1) For any positive semidefhe result in Corollary 5 to the problem of maximizing the
|n|te matrix, A, {A"'},, > {A}7} (see also [21]), and 2) minimum eigenvalue 08NR(F), and for brevity, we will not

lpgnl® < Amax(i’ ®) = Lo. Because of Corollary 5, (55), repeat the proof here. Based on Corollary 5, assuming for the
and because of the two properties stated above, we can writthoment tha® is @ x N, we have

I —_ &HA 2
tl'( SE(F)) — tr((I+ ,I),I)HA)—I) SNR(.F7 G) =& A@O’SS. (67)
N Hence, instead of (32), we can solve the equivalent problem
1 + @@H nn nn ! —
nz::l( t } ) Bop = argmax Amin(A22) > 0 and
N tr(®®")o2 =P, (68)
>3 (14 Lodnn) ™" (63)
n=1 where we also used the fact that for matrices with com-
patible dimensions, the non-null eigenvalues are such that
where the minimum is attained whé@® = £oI sothat® A(AB) = \(BA). The solution to (68) is obtained for
allocates on each column & the maximum power allowed, A®®” = ol so that the minimum and the maximum

which is equal toly. For N < @, becausep is of size@ x non-null eigenvalues oA®®* coincide. The power con-

N, & has onlyN nonzero eigenvalues. Arguing as done aitraint leads to associating these non-null eigenvalues to the
the end of Appendix B, the optimum choice is to have only theorrespondingV diagonal larger entries oA. This, as well

top right N x N submatrix of®®* not equal to zero, and all as the constraint, can be enforced by setting to zero the last
the nonzero eigenvalues equal to the maximiyyio2,. There- @ — N rows and selecting the tay x N part of & that, for

fore, @ can simply denote th& x N nonzero matrix such that simplicity, we will still denote asp, as® = /aA~%/? with
D = £y/02 1 so thatF' = V& is the optimum solution. In « = Py /(o2 tr(A~1)). This proves Lemma 5. The solution
particular,® = w/[,o/O'SSI is a possible choice fob. of Lemma 6 is also in the forn® = /aA~1/2 with the only
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difference being that to meet the eigenvalue constraint (whichje]
can be equivalently written a§,,..(®®% )02, = Py/N), we

needa = /jo/ags maxn()\;%) = )\NN»CO/USQS- {;}
G. Proof of Lemma 7 [9]

As far as Lemmas 5 and 6 are concerned, (39) is simply ver-
ified from their statements, except that the structurF o left [10]
arbitrary and, in particular

(11]
Gopi =T®HAA'VIHIR!
=TA'VIHIR !

(69) [12]

whereI' can be chosen to bE = diagonal. Selecting to be Hﬂ
diagonal simplifies the decision rule (28) that instead of oper-
ating jointly on all the components &f, it operates separately
on every symbol since in this case, SNRG) = ®®7 Ao2,

is diagonal [cf. (30), (40), and (41)].

In Lemmas 1-4, the structure #%,,; is the same as in (39),
whereas,,;, selected as in (12), appears to have a different
structure. Nevertheless, simple derivations show that the expre?]
sion of G, in (12) can be rearranged in the same fashion as
in (39). In fact, withA := o, R;Y*HF = AY2VHV® = [18]
AY2®, we can write (12) as

[15]

[16]

[19]
1
G =0, FTH"R\? (a;R;,{/ 2HFFYHTR;M? + I)

oW RV =AM (AAY L IRV, 120

and using the matrix inversion lemrmaye have that (21]

AT (AAT D)7 = (A" A+ D) TAR, 22]

Therefore, we can write
[23]

Gumse = (ATA+ DT AR
= (A A+ D) AHRY?
=I'FPHYR}

(24]

(70) 25
which, after replacing the expressioniét= V ® and with some
extra manipulations, as in (69) and denotinglby= (AHA +
7102 and byT' := I'®7 A, we arrive at the expression in
(39).

[26]

(27]
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