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Abstract—In this paper, we introduce a new paradigm for the
design of transmitter space-time coding that we refer to as linear
precoding. It leads to simple closed-form solutions for trans-
mission over frequency-selective multiple-input multiple-output
(MIMO) channels, which are scalable with respect to the number
of antennas, size of the coding block, and transmit average/peak
power. The scheme operates as a block transmission system in
which vectors of symbols are encoded and modulated through a
linear mapping operating jointly in the space and time dimension.
The specific designs target minimization of the symbol mean
square error and the approximate maximization of the minimum
distance between symbol hypotheses, under average and peak
power constraints. The solutions are shown to convert the MIMO
channel with memory into a set of parallel flat fading subchannels,
regardless of the design criterion, while appropriate power/bits
loading on the subchannels is the specific signature of the different
designs. The proposed designs are compared in terms of various
performance measures such as information rate, BER, and symbol
mean square error.

I. INTRODUCTION

D IVERSITY techniques have been widely studied in the
past, although attention was focused on receive diver-

sity. A proliferation of new diversity techniques and optimal
space-time coding has followed the recognition of the possible
benefits of transmit diversity [1], [32]. At the same time, the
demand for high-speed wireless links and the progressive
saturation of the radio frequency (RF) bands contributed to the
idea of using multiple transmit and receive antennas to increase
channel capacity [8], [11], [22]. However, to achieve the infor-
mation rate and/or the diversity gain afforded by the increased
hardware complexity, appropriate precoding and modulation
techniques are necessary. Two main approaches emerged from
the effort of defining such effective transmission strategies:
One uses appropriate mappings of the information symbols in
space and time so that, without channel state information (CSI)
at the transmitter and with low complexity at the receiver, full

Manuscript received October 19, 2000; revised December 20, 2001. The as-
sociate editor coordinating the review of this paper and approving it for publi-
cation was Prof. Michail K. Tsatsanis.

A. Scaglione is with the School of Electrical and Computer Engineering, Cor-
nell University, Ithaca, NY 14853 USA.

P. Stoica is with the Dept. of Systems and Control, Information Technology,
Uppsala University, Uppsala, Sweden.

S. Barbarossa is with the Infocom Department, University of Rome “La
Sapienza,” Rome. Italy.

G. B. Giannakis is with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA.

H. Sampath is with Iospan Wireless, Inc., San Jose, CA 95134 USA.
Publisher Item Identifier S 1053-587X(02)03281-6.

diversity gains become possible (e.g., [1], [23], [32], [33]);
the second one addresses specifically the optimization of the
information rate in the case of flat fading [8], [11], [22] and
frequency-selective channels [24], [25], assuming that CSI is
available at both the transmitter and receiver sides. Optimal
designs developed in the past, which were based on multi-input
multi-output (MIMO) models such as [4], [17], [18], and
[26], gained importance because of the new interest in joint
transmit-receive diversity schemes. The optimization of pre and
post-filters was considered in [21] for a MIMO system distorted
by additive noise only. The design paradigm we adopt in this
paper is based on an optimal pair of linear transformations
(precoder) and (decoder) of blocks of the transmit symbols
and receive samples, respectively, thatoperate jointly and
linearly on the time and space dimensions. The designs target
different criteria of optimality and constraints, assuming the
channel is known at the receiver as well as at the transmitter
end. CSI can be acquired at the transmitter either if a feedback
channel is present or when the transmitter and receiver operate
in time division duplex (TDD) so that the time-invariant MIMO
channel transfer function is the same in both ways. Our linear
optimal solutions can appropriately take advantage of the CSI
and utilize resources at best while maintaining a reasonable
complexity. They also bring additional flexibility into the
design that the alternative approaches in [1], [23], [32], and
[33] do not have for the latter impose restrictions on the number
of antennas for which the algorithms can be implemented.

In all our designs, the paradigm of linear precoding/decoding
exploits the channel eigendecomposition in constructing the op-
timal . The distinct solutions are characterized by how the
power is loaded on each channel eigenfunction. However, un-
like [14] and [16], instead of assuming vector coding, we will
show how optimal linear transceivers naturally result in having
their specific structure from the criterion. Some designs consid-
ered in this paper extend the results of [29] and [30] to the case
where space diversity is present and, as in [29] and [30], we
make no assumptions regarding the noise color or the channel
matrix size and rank, which are arbitrary. The different solutions
will be compared in order to underline the tradeoffs or advan-
tages implied by the various designs. Special emphasis will be
put on the design that targets minimization of the MSE of the
decoded block through the minimization of the trace or the de-
terminant of the error covariance matrix. The first design corre-
sponds to the MMSE criterion, whereas the second one is proved
to be equivalent to the maximization of the mutual information
between transmitter and receiver. The MMSE design constitutes
a valid alternative to the design that maximizes the information
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rate because the former provides satisfactory bit error rates and
does not require bit loading.

The paper first introduces the system model in Section II. The
joint transmit and receive optimal linear designs are derived in
Section III, and their performances are evaluated in closed form
in Section IV, after showing that all optimal designs convert the
channel into a set of independent flat fading subchannels. Fi-
nally, in Section V, numerical examples are provided that high-
light some salient aspects of our space-time linear precoding
alternatives.

Notation: All boldface letters indicate vectors (lower case)
or matrices (upper case). The tr are the trace, de-
terminant, and eigenvalues of matrix vec is the
column vector formed stacking the columns of, and the in-
verse operation is denoted by vec , where is the
number of columns of . Continuous-time multidimensional
signals are written as , discrete time multidimensional se-
quences as , and sequences of vectors obtained by stacking
consecutive blocks are characterized by a suffix, for ex-
ample, vec .

II. SYSTEM MODEL

The system considered has transmit and receive an-
tennas. The baseband equivalent transmitted signal is the vector

of complex envelopes emitted by
the transmit antennas. We assume a digital link with linear mod-
ulation so that the vector is related to the (coded) symbol
vector by

(1)

where is the transmit pulse, and is the rate with
which the data are transmitted. Correspondingly,

is the received vector that contains the channel
output and additive noise . For a linear (generally time-
varying) channel, the input-output (I/O) relationship can be cast
in the form

(2)

where is the impulse response of the lowpass receive
filter (usually a square-root raised cosine filter) matched to the
transmit filter , and the th entry of matrix is
the impulse response of the channel between theth transmit and
the th receive antennas. The received noise-free signal vector
is thus

(3)

Introducing

(4)

the vector of received samples is

(5)

If the channel discrete-time time-varying impulse response
is causal and has finite memory, we can write the

I/O relationship (5) in block FIR form. Specifically, stacking
transmit snapshots in a vector

vec and received snapshots in
a vector vec ,
where we eliminated the first vectors to cancel the interblock
interference (IBI), we have

(6)

where is an block-banded matrix. Alternatively,
defining vec and
vec and padding with zero sam-
ples the tail of every block , we could have written an equation
analogous to (6) but with of dimension . For sim-
plicity, we will assume that IBI is removed at the receiver, and
thus, is , but most of the derivations in the fol-
lowing are valid in both cases if one replacesby , and vice
versa.

We will precode vectors of symbols as

(7)

where . Since symbols will be em-
bedded in through the precoder , it will take
snapshots to transmit information symbols. If is the time
necessary to transmit one snapshot, the throughput is

(8)

Therefore, by increasing , the upper bound on the information
rate is not limited by the overhead ofsnapshots added to
to avoid IBI.

If the channel is also time invariant (LTI), i.e., ,
where is the th sample of the impulse response char-
acterizing the channel between theth transmit element and the
th receive element, then in (6) becomes a block Toeplitz ma-

trix.
Although our designs are valid for any , in the case of

time-varying channels, the assumption of knowledge of the CSI
at the transmitter is not realistic, unless the channel can be con-
sidered time invariant for a sufficiently long interval or it can be
modeled resorting to a few approximately invariant parameters
that can be estimated and used to predict the channel evolution
with sufficient accuracy [2].

III. OPTIMAL LINEAR DESIGNS

We assume that the vectors of symbols transmitted
every sec.satisfy the following.

a0) The size of the block of encoded symbols satisfies
rank . Depending on the adoption of the null guard

at the transmitter or at the receiver, we have, respectively, that
rank or rank .
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The received signal contains noise that we model
as additive Gaussian noise (AGN) with covariance . We will
use the notation and assume the following.

a1) The transmit symbols are white, i.e., , the
noise is Gaussian with covariance , the noise covariance
matrix is positive definite, and and are uncorrelated.

If , a prewhitening operation can be performed
over the symbol blocks prior to precoding, and the corre-
sponding inverse operation can be performed after the decoder

. Assumptiona0) is necessary to guarantee symbol recovery
because it is otherwise impossible to invert the channel with
a linear equalizer , which operates on a single block of data
only, even in the absence of noise and with perfect knowledge of

. Note that if the channel is LTI, rank
occurs whenever the channels between thetransmitters and
the receivers have common zeros [13, p. 142]. Compared
wiht the single antenna case of , we can gain
in terms of rate because the rows of that correspond
to a specific channel are linearly independent (they form a
Toeplitz sub-matrix), and hence, rank . The challenge
is to define an appropriate encoding strategy that will lead to
satisfactory performance for whatever diversity the channel
is able to provide. As already stated, the scheme we consider
here uses as a precoder a linear mapping, as in (7). The
receiver performs an appropriate inverse mappingon the
vector vec ,1 estimating
the symbols as . From (6), we have

(9)

A reasonable criterion to design a linear receiver, for given
and , is to minimize the mean square error (MSE) matrix that
is given by

MSE (10)

where

MSE
(11)

The cumulative MSE of the estimate of is
tr MSE . The that minimizes the whole
MSE matrix is the same as the MMSE (Wiener)
receiver [15], which is known to minimize the trMSE
and is given by

(12)

Here, MSE is minimum in the sense that

MSE MSE

MSE (13)

and the last inequality indicates that , the difference
MSE MSE is a positive semidefinite matrix. Be-
cause of a1), we can write

(14)

1The definition ofzzz would change consistently with the definition ofyyy , and
zero guards are used at the transmitter side. The uniformity of notation in the
two cases allows solving both problems at the same time.

and

MSE (15)

In the following, we will determine based on different
performance measures that depend onMSE . Without any
constraint, minimization ofMSE in (17) will lead to the
trivial solution of increasing to infinity the norm of . A rea-
sonable constraint is obtained by bounding the expected norm
of the transmit vector tr , which limits
the transmit power, and thus, we will refer to it as the power
constraint (PC)

tr (16)

An alternative is to constrain the maximum eigenvalue of
the transmit vector covariance , which also limits
the power because tr . This
corresponds to

(17)

Besides limiting the transmit power, the maximum eigenvalue
constraint (17) imposes a limit on the peak power of the output.
In effect, the peak of the transmit signal corresponds to the max-
imum (in absolute value) entry of . The constraint
(17) limits the peak power because for , the
following inequalities apply:

(18)

where is bounded since is formed by symbols that are
all bounded in amplitude. The advantage of this constraint is that
it limits the signal peak, independent of the specific constella-
tion used. The disadvantage is that the bound may not be tight.

Finally, let us introduce the following EVD:

(19)

where may be tall if is rank deficient and is
an diagonal matrix, where rank
rank . We assume the following (which is not a restriction).

a2) The elements in the diagonal of matrix ,
which are the non-null eigenvalues of , are arranged
in decreasing order. Note that a0) requires . For conve-
nience, we will denote by the diagonal matrix with
diagonal entries ( is equal to the top left
block of ) and matrix denoting the first columns of

, which are the eigenvectors corresponding to thelargest
eigenvalues of .

A. MMSE Criterion Under Power Constraint

The MMSE design minimizes the trMSE jointly
with respect to and under the transmit-power constraint.
Analogous criteria formulated in the frequency domain for
joint transmit/receive-filter optimization for the scalar case can
be found in [3, p. 333] and for the MIMO case in [18]. The joint
transmit and receive design that minimizes trMSE can
be obtained by minimizing trMSE with respect to . The
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solution for is given in the following lemma, and
can be obtained by replacingwith in (12).

Lemma 1: The solution of the optimization problem

arg tr MSE tr (20)

is given by , where is an diagonal matrix
with the following entry:2

(21)

where and is such that
for and for all other .

Proof: See Appendix A.
Note that is a function of the eigenvalues as well: For

a given and can be found calculating (21) iteratively
starting with and, while , decreasing
progressively by one, as explained in Appendix A. Interestingly,
the minimization of the determinant, in lieu of the trace, of the
MSE matrix with respect to is equivalent to maximizing
the information rate. As mentioned in the introduction, the ca-
pacity of a MIMO channel was first derived in [4] and, for the
multiple-antenna and flat fading case, in [8] and [22]. In [24]
and [25], the authors generalized the discrete multitone (DMT)
scheme for the MIMO frequency-selective case. The optimal
space-time processing for the maximization of the information
rate is also derived in [9]. Compared with these works, our ap-
proach

1) jointly optimizes the precoder and decoder explicitly;
2) does not treat the frequency-selective and flat-fading

cases separately and includes the time-varying case as
well;

3) does not rely on the full rank of any of the matrices in-
volved;

4) links together the MSE metric with the maximum infor-
mation rate criterion.

Lemma 2: The solution of the optimization problem

arg MSE tr (22)

is given by , where is an diagonal matrix
with entry

(23)

and is the number of positive .
Proof: See Appendix B.

The power loading on the eigenvectorsof of
Lemma 2 is identical to the so-called “water-filling” obtained
from the maximization of the mutual information on parallel
Gaussian channels (see, e.g., [6], [8], [12], and [22]), and in
the context of linear precoding, it leads exactly to the solution
described in [29, Lemma 2]. In particular, in Appendix C, we
show the following.

2Note that only the amplitude of� is fixed, whereas the phase is arbitrary;
thus,� can be a real number.

Corollary 1: For a Gaussian input , if has the following
structure:

(24)

where is an arbitrary matrix, the mutual information
per blockdoes not dependon (see also [29]) and is

(25)

The in (23) and in (12) also maximize the mutual
information between transmit and receive data.

Proof: See Appendix C.

B. MMSE Criterion Under Maximum Eigenvalue Constraint

Lemma 3: The solution of the optimization problem

arg tr MSE

(26)

is given by .
Proof: See Appendix D.

Lemma 4: The solution of the optimization problem

arg MSE

(27)

is given by .
Proof: See Appendix E.

As with Lemma 2, it is worth noting that because of (25), the
solution in Lemma 4 also provides the maximum information
rate under (17).

C. Maximum SNR Under Power or Maximum
Eigenvalue Constraints

Designs minimizing the probability of error are difficult
to deal with because they are rarely solvable in closed form;
they depend on the symbol alphabet and on the detection
rule. Here, we propose design criteria that can come close
to the desired goal, although their optimization isalphabet
independent. Based on (9), the optimal decision rule is the
maximum likelihood (ML) detector, provided that the noise is
Gaussian and that the symbols are i.i.d.3 Specifically, if we let

denote the symbol vector corresponding to hypothesis
, and let denote the decision on theth symbol block,

then the ML decision rule is [15]

arg

(28)

An indirect way of reducing the probability of error is to maxi-
mize the minimum distance between hypotheses, and this is usu-
ally done through the appropriate selection of the code vectors

. Here, we want to search for the optimaland without
changing in order to retain the modularity of the system de-
sign that only focuses on the choice ofand . Therefore, a

3If this assumption is not satisfied, one has to use the maximuma posteriori
probability (MAP) detector.
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meaningful formulation of the problem would be to maximize
the minimum distance between the hypotheses, i.e.,

(29)

under some constraint on. The solution of (29) depends on
the symbol alphabet. On the other hand, observing how (29) de-
pends on and , and we can consider the following SNR-like
matrix as a sensible measure related to the probability of error:

SNR (30)

Instead of solving (29), realizing by design some properties of
SNR may provide suboptimal but more general design
solutions that are not tied to a certain symbol alphabet. The cri-
terion that we will adopt is based on the observation that the min-
imum eigenvalue SNR provides a lower bound for
the minimum distance:

SNR

SNR (31)

Maximizing the lower bound in (31) will possibly force (31)
to higher values. The corresponding solutions are given in the
following two lemmas.

Lemma 5: The solution of the optimization problem

arg SNR

tr (32)

is given by with diagonal having diagonal
entries

(33)

and with the matrix being
invertible.4

Proof: See Appendix F.
Note that the solution leads to

SNR (34)

that, replaced in (31), enforces the equality with the lower
bound.

Lemma 6: The solution of the optimization problem

SNR (35)

(36)

is given by with diagonal such that

(37)

4The receiver selection is not completely defined by the optimal design cri-
terion. A similar observation was made in [29] in deriving the solution for the
maximum information rate.

and with the matrix being
invertible.

Proof: See Appendix F. Similar to Lemma 5, we have
SNR .

Interestingly, the solution of Lemma 5 coincides with the
MMSE solution under the zero forcing (ZF) constraint in [30,
th. 3]. The ZF receiver in [30, th. 3] corresponds to selecting

, and in this case, the design of Lemma 5 (as well as the
one of Lemma 6) leads to an ML detection scheme that performs
separately a low complexity quantization of the components of

. Indeed, as will be extensively discussed in the following
section, the selection of and
with diagonal matrices leads to diagonalizing the overall
channel and the noise covariance . Such diago-
nalization decomposes the system in a set ofparallel indepen-
dent AGN subchannels for which symbol-by-symbol decision
is optimal [15]. As will be shown in Section IV, the particular
feature of in Lemmas 5 and 6 is that the decision on each
component of is characterized by the same SNR. As a last re-
mark, it is interesting to observe that for arbitraryand , we
can extend to the Gaussian MIMO case the capacity formula of
the SISO AWGN channel as follows:

SNR (38)

IV. PERFORMANCE OF THEOPTIMAL DESIGNS

In this section, we will derive expressions for performance
measures such as the mutual information, the probability of
error, and the mean square error achievable with the optimal
precoding/decoding schemes presented so far. As mentioned be-
fore, all optimal designs lead invariably to loading the power
across the eigenvectors of .

A. Equivalent Decomposition Into Independent Subchannels

Lemma 7: All optimal designs we described so far have so-
lutions of the following form:

(39)

where and are diagonal matrices.
Proof: See Appendix G.

The matrices and in (39) cascaded with the
channel matrix in between are depicted in Fig. 1. Matrix
tunes the transmit filters to the eigenstructure of the propagation
channel that depends on and the AGN covariance . The
matrix equivalent of the cascade inside the box of Fig. 1 is

(40)

and the noise correlation at the output of the box is

(41)

Thus, the matrix (or block) channel is described by the diagonal
transfer matrix and additive noise with correlation matrix

. Hence, the subchannels are decoupled, and Fig. 1
becomes equivalent to Fig. 2, in which case, the flat fading on
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Fig. 1. Optimal transceivers: Matrix model.

Fig. 2. Equivalent subchannels.

each of the parallel subchannels corresponds to the diagonal el-
ements of , and the noise components
are uncorrelated with variance .

B. Performance Measures

The decomposition shown in the previous subsection stream-
lines the performance analysis, as we summarize in the fol-
lowing corollaries.

Corollary 2: With and diagonal, the transceivers in (39)
render the MIMO linear AGN channel with memory equivalent
to parallel independent ISI-free subchannels, each with flat
fading gain and AGN , with variance and

uncorrelated for , i.e.,

(42)

The SNR at the output for theth subchannel is

SNR (43)

The independence of the parallel subchannels implies the fol-
lowing.

Corollary 3: For the linear transceivers of (39), the mutual
information is given by

SNR (44)

Under constrained power, in (44) achieves its maximum
when are given by (23).

According to (42), the set of equivalent parallel subchannels
are also ISI-free. Thus, assuming that information is quantized
and that belong to a finite alphabet, the optimal deci-
sion scheme based on performs symbol-by-symbol detec-
tion. When the transceiver design provides us with the freedom
to choose among different constellations on different subchan-
nels, we can choose the order of the constellationso that

SNR in (44). Alternatively, the proba-
bility of error expression can be used to determine; for ex-

ample, the symbol probability of error for a
system is such that

SNR
(45)

and (45) can be used to select the constellationthat leads to
, where is the desired upper bound on the BER

that is necessary to meet a prescribed QoS. This operation is
usually referred to as “bit loading” (see, e.g., [5]). We can infer
from (45) that it is easier to enforce an upper bound on
rather than itself. For example, considering the case of a
QAM constellation, to have , (45) implies

SNR
(46)

It is important to remark that the SNRfor one or more subchan-
nels can be such that . Since not even one bit per block
can be received at the prescribed error rate,5 all subchannels
with are turned off by setting . The power orig-
inally allocated to these subchannels is distributed over the re-
maining ones, and the size of the encoded blockis decreased
correspondingly. The solution is found iteratively by discarding
the subchannels with the smallest SNR. Comparing the expres-
sion for in (46) with the SNRin Table I, we can also observe
that the ZF designs of Lemmas 5 and 6 that lead to uniform
SNR are the only ones that lead to adopting a uniform constel-
lation size across subchannels for a constant. In contrast, all
other designs can benefit from uneven distribution of bits ac-
cording to (46) and provide an increased transmission rate, as
will be illustrated by the examples of Section V.

Based on the model in Fig. 2, we can also derive the following
result.

Corollary 4: The MSE for the and in (39) coincides
with the cumulative MSE over the independent subchannels
in Fig. 2 and is given by

MSE (47)

For the MMSE receiver , the
MSE is

MSE
SNR

(48)

which reaches its minimum for a constrained power when
are given by (23).

For the ZF receiver , the MSE is

MSE
SNR

(49)

Corollaries 1 through 4 show that performance evaluation
of our optimal designs requires only specifying the values
of SNR . Table I gives the SNRcharacterizing the optimal

5We do not consider here possible error-correcting capabilities due to error
correction coding that would allow the selection of any rational value ofQ > 0.
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TABLE I
COMPARISON OFOPTIMAL LOADING FOR DIFFERENT CODING STRATEGIES (CP := CONSTRAINT ON THE AVERAGE TRANSMIT POWER;

C� := CONSTRAINT ON THEMAXIMUM EIGENVALUE)

designs of Section III. Comparing the SNRexpressions, we
observe the similarity between the MMSE and water-filling
solutions of Lemmas 1 and 2: Both of these solutions tend to
exclude the most noisy subchannels (corresponding to smallest

s), and the SNRgrows as and , respectively. The
other designs do not include this control and, thus, waste
power over these subchannels. Consequently, performance
may degrade significantly for close to its maximum value
of rank when the smallest eigenvalues are
close to zero. This effect will be illustrated by the numerical
examples in Section V.

C. Complexity

The most demanding operation in terms of computational
complexity is the estimation and the eigendecomposition of

, which is a matrix. However, it is
worth pointing out the following.

1) For LTI channels, the number of parameters to be esti-
mated is actually less than or equal to , where is
the maximum channel order.

2) OFDM transmission with long cyclic prefix or zero
guard will diagonalize each multipath channel for
any block length .

3) Assuming that the noise is spatially and tempo-
rally uncorrelated, the noise correlation matrix is

diag , where
denotes the Kronecker product.

Hence, by incorporating OFDM modulation, the equivalent
channel matrix is block diagonal, i.e., diag

, where is
the matrix of the channel’s frequency response. Since
IFFT/FFT operations do not change the noise color, the noise
covariances at the output of the receivers’ FFT will still be
diagonal. Therefore, instead of the eigendecomposition of
the matrix , the design will require

eigendecompositions of matrices of the form
, with diag and
(see also [24]). Subspace tracking techniques

can be used to track the eigenvectors corresponding to the

strongest eigenvalues of , which are the ones
relevant to the optimal design.

V. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we provide some numerical examples that il-
lustrate the performance of our optimal designs, relying on the
preformance measures presented in Section IV. We adopted the
following channel model.

Channel Model:The FIR channel taps are uncorre-
lated complex Gaussian random variables (Rayleigh fading).
The standard high performance radio LAN (HIPERLAN) pro-
vides short distance, high-speed radio links among computer
systems using the 5.2– or 17.1-GHz frequency band. The vari-
ance of the taps follows the channel power-
delay profile named “Channel A,” which chosen as a typical
indoor multipath scenario for HIPERLAN/2 in [7], operating
at 5.2 GHz, with MHz ( ns). The channel
order is for the impulse response samples beyond the
19th (i.e., after 190 ns) are statistically very small. The results
are always averaged over 100 random channels. We also simu-
lated white complex stationary additive Gaussian noise having
the same variance for each antenna equal to. The horizontal
axis in the plots that follow is the average block SNR (in deci-
bels) defined as SNR tr , which does not in-
clude in its definition possible gain/attenuation of the channel
realization.

The assumption of uncorrelated scattering is optimistic, es-
pecially if the multipath is dominated by a few strong reflec-
tors in the far field [24]. The matrices generated according
to our model above will be, in most cases, full rank and well
conditioned. However, the real scattering is likely to be corre-
lated and, hence, leads to matrices with high condition numbers.
It is also reasonable to expect that by increasing the number of
antennas, the diversity gain will tend to saturate, and this as-
pect is not exhibited by our model. Nevertheless, the model is
sufficiently accurate to provide some insight into the proposed
designs.

Example 1: The first set of curves in Fig. 3 compare the de-
signs in Lemmas 1–6 in terms of MSE, BER, mutual informa-
tion, and number of bits that can be transmitted with a prescribed
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QoS (specified as an upper bound on ), using the expres-
sions derived in Section IV. Note that Lemma 3 and 4 lead to the
same solution, and therefore, only five curves appear on each
figure. For Lemmas 3, 4, and 6, we set the same peak eigen-
value . Because, in Lemma 3 and 4, , the
tr for every channel. For Lemma 6, instead,
if , then tr . The
curves corresponding to Lemma 6 are given as a function of the
corresponding tr averaged over the channels.

Lemma 1, which minimizes the MSE subject to the average
power constraint, provides perhaps the best compromise be-
tween BER and information rate. If, as described in Section IV,
the constellation size is allowed to change according to (48),
Fig. 3(d) shows that the design of Lemma 2, which minimizes
the determinant of the MSE subject to the average power con-
straint, provides the highest rate for a given QoS. In Figs. 3(c)
and (d), the design in Lemma 3 that minimizes the MSE subject
to the peak power constraint, which leads to , performs
very similar to that in Lemma 2, which requires , con-
firming that the power loading is not strictly necessary when
maximizing the information rate because most of the water-
filling gain in terms of information rate derives from the bit
loading. The designs of Lemma 5 and 6 that maximize a lower
bound on the minimum distance under the power and maximum
eigenvalue constraints are ZF designs and tend to perform better
than the other criteria only in terms of BER. The reason why
Lemma 6 (eigenvalue constraint) performs slightly worse then
Lemma 5 (average power constraint) is that we fixed for Lemma
6 the same used for Lemma 3 and 4 instead of
fixing the average power. Had we fixed the average power to
be the same, the two algorithms of Lemma 5 and 6 would have
performed identically.

In Figs. 3(e) and (f), we show the MSE and information rate
curves versus the ratio of the maximum eigenvalue (which is
an upperbound for the peak power) over the noise variance.
The curves are obtained normalizing the value in the abscissa

to the same constant for all criteria in all
iterations and averaging over 100 random channels. The plots
clearly show the gain obtained by the designs that use the eigen-
value constraint over the corresponding criteria using the av-
erage power constraint [cf. Table I]. Only in the case of Lemma
5 and 6, because of the normalization, do the two criteria per-
form identically.

Example 2: One important aspect of the optimal designs
in Lemmas 1–6 is the effect of increasing and the
selection of the block size (that has to be smaller than
rank according to assumption
a0). Even though the construction of the optimal transceivers
allows rank , various circumstances may
suggest choosing a smaller. If some , the ZF designs
of Lemmas 5 and 6 will drain most of the power on such
subchannels. Other designs, such as the ones in Lemmas 1 and
2, will tend automatically to exclude subchannels6 with very
small s. However, in those cases, the choice of a smaller
might be dictated by the need of reducing the complexity of

6Another option is to combine some of the equivalent subchannels described
in Section IV-A by sending the same information symbol on two or more of
them.

the design. For the other designs, an rank
can be chosen to trade off transmission rate versus diversity
gain and complexity. In this experiment, we chose to set

and . In Fig. 4, we
show the performances normalized by averaged over 100
random channel for the criterion MSE CP. The
interesting observation that can be made is that the normalized
performance tends to be invariant with respect to or
and for , i.e., they all grow proportionally to

. This applies also to the other designs not
shown in Fig. 4. The linear grow of the capacity with the
number of antennas was first shown in [8] and [22]. The prop-
erty can be explained using the theory of random eigenvalues
and the asymptotic distribution of random matrices, as was
done in [20].

Example 3: Another important point to emphasize is the re-
lation between and the system parameters . If we count
all the physical links between information source and destina-
tion, there are channels in parallel, and we transmit

samples per block. However, since the channels are inter-
fering and there is ISI, the rate does not increase proportionally
to the product . The rate grows as the number of equiv-
alent uncorrelated Gaussian channels rank ,
which can be utilized upon appropriate precoding. Therefore,
the diversity increases as the rank . Since
rank , the first useful observa-
tion is that is preferable to or because

is tied to the minimum between and . Although it is not
shown in the figures, choosing and leads to the
same average performance as choosing and , as
one would expect by symmetry. The difference only
helps one to increase the norm of and, thus, the rel-
ative power on the subchannels. However, it will not add diver-
sity, which is the main source of performance improvement, as
also emphasized in several papers on transmit diversity (see e.g.,
[11]). This is confirmed by Fig. 5 where, unlike Fig. 4, the dif-
ferent curves now pertain to different values of the pair ,
assuming is constant. Of course, it all depends on the na-
ture of the scattering environment and on the way it affects the
eigenvalues of . Often, the channels are modeled as
having flat uncorrelated balanced Rayleigh fading coefficients.
However, with only a few effective scatterers and if the trans-
mission bandwidth is not sufficient to resolve the delay spread
due to the different locations of the array elements, the number
of paths, and not , will limit the rank
(see also [24]).

Example 4: Compared with schemes that do not make use
of the channel state information (CSI) at the transmitter, the ad-
vantages in performance, power saving, and flexibility of the
optimal linear designs can justify their extra complexity. De-
signs like the one in [1] cannot be generalized to an arbitrary
number of antennas and do not make use or take advantage of
the CSI, if available. Methods such as [1], [23], [32], [33] or
their extension to frequency selective fading [19] operate as di-
versity schemes that exploit multiple antennas to increase the
symbol SNR but not the symbol rate. Therefore, the number of
transmitted symbols does not increase with the number of an-
tennas and remains equal to the size of the block in time, i.e.,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison between the designs in Lemma 1–6 [cf. Table I]M = 32;K = R = 4;N = 112;P = 32. (a)–(e) MSE= tr(MSE(FFF )). (b) Average
BER. (c)–(f)I(xxx; ŝss). (d) Number of bits= max(blog Q c; 0);Q given by (48) withP � 10 .

. Setting the parameters to match the values
required by the design in [1], for example ,

symbols can be transmitted over orthogonal sub-

carriers (see, e.g., [19]). In this case, it can be shown that the
SNR of the symbols received in each frequency bin for the
scheme of [1] is SNR ,
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Fig. 4. Performance of the optimal designs forN = 0:75MK P =
M=K K = R antennas:I(xxx; ŝss) Lemma 2—(min(jMSE(FFF )j)� CP).

Fig. 5. Performance of the optimal designs over 100 channels according
to Model B, block sizeM = 32; N = 160, and various values ofK and
R: I(xxx; ŝss) (Lemma 2).

where FFT is the channel transfer func-
tion at frequency bin . We compare the BER of our scheme
with that of [1] in Fig. 6.

VI. CONCLUSION

In this paper, we derived several optimal linear designs
for MIMO transmission systems with finite memory, which
targeted minimum MSE and BER, under constraints on the
transmit power or the maximum output of the transmitter. We
also provided closed-form expressions for various performance
measures of the communication link that streamline the inter-
pretation of the optimization results. The optimal designs allow
us to define space-time modulation designs that take advantage
of the channel state information and offer simple closed-form
solutions, scalable with respect to the number of antennas, size
of the coding block, and transmit average/peak power.

Fig. 6. BER obtained with the designs in Lemma 1–5K = R = 2;M =
32;N = 32 and the design in [2] (ST-map).

APPENDIX

A. Proof of Lemma 1

Optimizing (20) could follow the steps in [18], where IIR
frequency-domain designs were optimized using iterative
minimization of Lagrange multipliers. However, similar to
[30], our discrete time-domain matrix formulation will lead to
a closed-formselection of the redundant FIR precoder/decoder
matrices. An alternative proof to that in [30] can be found in
[27] for white symbols and white noise.

The proof in [30] considers the more general case of
colored symbols but restricts the attention to the case

rank , where and .
Denoting by the diagonal matrix with entries equal to the
eigenvalues of matrix sorted in decreasing order,
(21) is nothing but a special case of the solution in [30] obtained
for . In [30], to prevent negative solutions for

, a constraint was imposed on the minimum value for.
Here, we would like to show that the solution can also be
found for lower than the minimum value by having some

. In fact, the solution in [30] was obtained setting to
zero the gradient of

MSE tr

(50)

with in our case. The gradient provides us the
following condition:

(51)

implying that either we send to zero the first term or we simply
set . Since MSE is a decreasing function of ,
if the power constraint cannot be enforced keeping all ,
then the negative values have to be set to zero. In this case, where
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, this can be done iteratively, starting from the
components with the highest indexes because they are associ-
ated with the smallest and, hence, provide the highest con-
tribution to (50). With indicating the maximum number of

, we arrive at the solution in (21).
For , we can generalize the proof by expanding with

zeros the symbol vector and having then the same setting
as in [30]. By construction, in this case, the last diagonal
entries of are zero, i.e., for and

for . The proof of (50) does not
require that are strictly positive and therefore is also valid
for . Arguing by continuity and considering the limit in

in (51) requires , and thus, .

B. Proof of Lemma 2

We will make use of the following corollary.
Corollary 5: Without loss of generality, the structure of

is , where is an arbitrary matrix.
Proof: Any matrix and, thus, the optimal solution as

well, can be decomposed as

(52)

with standing for the orthogonal complement of. Let us
introduce , with , which is restricted to the
subspace spanned by. We have that

MSE

MSE

while at the same time, tr tr
tr tr , where the equality holds true for

. Hence, we can focus on matrices such as
without restricting our search for the optimal solution, and re-
placing it in the objective function, we can search equivalently
for the optimal matrix .

Let us assume initially that and, therefore, that
. Using in (15), it is simple to verify that

MSE , where

arg (53)

subject to tr . We
will use the Hadamard inequality [6, th. 16.8.2] to maximize

. The Hadamard inequality dictates that the
product of the diagonal entries of a positive definite matrix is al-
ways greater or equal than the matrix determinant with equality
holding true if and only if the matrix is diagonal

MSE

(54)

Furthermore, for any pair of matricesand with compatible
dimensions, it holds that the non-null eigenvalues of and

coincide, i.e.,

(55)

and therefore

MSE

(56)

where the upperbound can be reached selecting diagonal.
If , we can set, without loss of generality,as diagonal,
and the gradient with respect to is

(57)

which leads to the water-filling principle:

(58)

Depending on , it may or may not be possible to set all the
diagonal entries to positive values. If is not sufficient, then
other entries of have to be set to zero. Since MSE is a
decreasing function of , which are sorted in decreasing order,
the minimum MSE is obtained selecting those entries that
correspond to the first (and bigger) diagonal elements of. By
imposing the power constraint to determine, we arrive at (23).

However, note that if , then is rank deficient;
therefore, the enforcing a diagonal structure requires having

rows of equal to zero. This restricts the possible values
of , but it is not a restrictive assumption for
our optimal solution search. In fact, since are sorted in de-
creasing order, from (54), it follows that any having the last

rows equal to zero and such that

(59)

still satisfying the constraint provides an higher or equal upper
bound on . At the same time, matrices having
such structure as can reach this upper bound by using the
same design as in (58), setting for .
Thus, the cost function is maximized by (58) for . De-
noting by only the top nonzero part of the original
matrix used above, based on a2), we can write ,
where is and diagonal.

C. Proof of Corollary 1

The mutual information per block is

(60)
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Because of (59), (60) can be written as

(61)

where is
the orthogonal projector onto the range space of .
The upper bound on is reached if and only if

, where is an invertible
arbitrary matrix, i.e., if has the structure in (24). Lemma 7
shows that the MMSE receiver in (14) can be written equiva-
lently in the same form as (24) [see (70) in Appendix G]; thus,

in (12) is optimal also in the sense of maximizing .
From (25), one can observe that

MSE (62)

Because maximizingMSE or minimizing MSE is
equivalent, in (25) maximizes .

D. Proof of Lemma 3

The difficulty in finding the tr MSE under
the maximum eigenvalue constraint is in showing that the
cost function can be minimized, without loss of generality,
by a precoder that loads power separately on each channel
eigenvector (as with diagonal). Assuming

, we can use two facts: 1) For any positive semidef-
inite matrix, (see also [21]), and 2)

. Because of Corollary 5, (55),
and because of the two properties stated above, we can write

tr MSE tr

(63)

where the minimum is attained when so that
allocates on each column of the maximum power allowed,
which is equal to . For , because is of size

has only nonzero eigenvalues. Arguing as done at
the end of Appendix B, the optimum choice is to have only the
top right submatrix of not equal to zero, and all
the nonzero eigenvalues equal to the maximum . There-
fore, can simply denote the nonzero matrix such that

so that is the optimum solution. In
particular, is a possible choice for .

E. Proof of Lemma 4

Normalizing the objective function by , we want to solve
the equivalent optimization problem

and

(64)

Using (55), we can write

(65)

where the inequality takes into account the fact that
eigenvalues of are equal to zero. The upperbound is
achieved when .

F. Proof of Lemmas 5 and 6

Arguing as in Appendix C, we can write

SNR

(66)

where is
the orthogonal projector onto the range space of .
The SNR reaches its upper bound if and only if

, where is an invertible
arbitrary matrix, i.e., if . Let us denote
by SNR . It is not difficult to extend
the result in Corollary 5 to the problem of maximizing the
minimum eigenvalue ofSNR , and for brevity, we will not
repeat the proof here. Based on Corollary 5, assuming for the
moment that is , we have

SNR (67)

Hence, instead of (32), we can solve the equivalent problem

arg and

tr (68)

where we also used the fact that for matrices with com-
patible dimensions, the non-null eigenvalues are such that

. The solution to (68) is obtained for
so that the minimum and the maximum

non-null eigenvalues of coincide. The power con-
straint leads to associating these non-null eigenvalues to the
corresponding diagonal larger entries of . This, as well
as the constraint, can be enforced by setting to zero the last

rows and selecting the top part of that, for
simplicity, we will still denote as , as with

tr . This proves Lemma 5. The solution
of Lemma 6 is also in the form with the only
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difference being that to meet the eigenvalue constraint (which
can be equivalently written as ), we
need .

G. Proof of Lemma 7

As far as Lemmas 5 and 6 are concerned, (39) is simply ver-
ified from their statements, except that the structure ofis left
arbitrary and, in particular

(69)

where can be chosen to be diagonal. Selecting to be
diagonal simplifies the decision rule (28) that instead of oper-
ating jointly on all the components of, it operates separately
on every symbol since in this case, SNR
is diagonal [cf. (30), (40), and (41)].

In Lemmas 1–4, the structure of is the same as in (39),
whereas , selected as in (12), appears to have a different
structure. Nevertheless, simple derivations show that the expres-
sion of in (12) can be rearranged in the same fashion as
in (39). In fact, with

, we can write (12) as

and using the matrix inversion lemma,7 we have that

Therefore, we can write

(70)

which, after replacing the expression of and with some
extra manipulations, as in (69) and denoting by

and by , we arrive at the expression in
(39).
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