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Abstract—We study space–time block coding for single-carrier
block transmissions over frequency-selective multipath fading
channels. We propose novel transmission schemes that achieve
a maximum diversity of order ( + 1) in rich scattering
environments, where ( ) is the number of transmit (receive)
antennas, and is the order of the finite impulse response (FIR)
channels. We show that linear receiver processing collects full an-
tenna diversity, while the overall complexity remains comparable
to that of single-antenna transmissions over frequency-selective
channels. We develop transmissions enabling maximum-likelihood
optimal decoding based on Viterbi’s algorithm, as well as turbo
decoding. With single receive and two transmit antennas, the
proposed transmission format is capacity achieving. Simulation
results demonstrate that joint exploitation of space-multipath
diversity leads to significantly improved performance in the
presence of frequency-selective fading channels.

Index Terms—Block transmissions, frequency-selective multi-
path channels, space–time block coding.

I. INTRODUCTION

SPACE–TIME (ST) coding has by now been well docu-
mented as an attractive means of achieving high data rate

transmissions with diversity and coding gains in wireless appli-
cations; see, e.g., [27], [30] for tutorial treatments. So far, ST
codes are mainly designed for frequency-flat channels. How-
ever, future broad-band wireless systems will communicate
symbols with duration smaller than the channel delay spread,
which gives rise to frequency-selective propagation effects.
Targeting broad-band wireless applications, it is thus important
to design ST codes in the presence of frequency-selective
multipath channels.

Unlike flat fading channels, optimal design of ST codes for
dispersive multipath channels is complex because signals from
different antennas are mixed not only in space but also in time.
In order to maintain decoding simplicity and take advantage of
existing ST coding designs for flat fading channels, most ex-
isting works have pursued (suboptimal) two-step approaches.
First, they mitigate intersymbol interference (ISI) by converting
frequency-selective fading channels to flat fading ones, and then
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design ST coders and decoders for the resulting flat fading chan-
nels. One approach to ISI mitigation is to employ a rather com-
plex multiple-input multiple-output equalizer (MIMO-EQ) at
the receiver to turn finite impulse response (FIR) channels into
temporal ISI-free ones [10], [11]. Another approach, with lower
receiver complexity, is to employ orthogonal frequency division
multiplexing (OFDM), which converts frequency-selective mul-
tipath channels into a set of flat fading subchannels through in-
verse fast Fourier transform (IFFT) and cyclic prefix (CP) in-
sertion at the transmitter, together with CP removal and fast
Fourier transform (FFT) processing at the receiver [44]. On the
flat fading OFDM subchannels, many authors have applied ST
coding for transmissions over frequency-selective channels, in-
cluding [31] that assumes channel knowledge, and [1], [20],
[21], [26], [27] that require no channel knowledge at the trans-
mitter. The ST trellis codes of [38] are employed in [1], [21]
across OFDM subcarriers, while the orthogonal ST block codes
(STBCs) of [3], [36] are adopted by [20], [26], [27] on each
OFDM subcarrier.

Although using ST codes designed for flat fading channels
can at least achieve full multiantenna diversity [37], the po-
tential diversity gains embedded in multipath propagation have
not been addressed thoroughly. Recently, in OFDM-based sys-
tems, it was first claimed in [6], and then [28], that it is possible
to achieve both multiantenna and multipath diversity gains of
order equal to the product of the number of transmit antennas,
the number of receive antennas, and the number of FIR channel
taps. However, code designs which guarantee full exploitation
of the embedded diversity were not provided in [6], [28]. The
simple design of [7] achieves full diversity, but it is essentially
a repeated transmission, which decreases the transmission rate
considerably (see Section II-F for details). On the other hand,
for single-antennatransmissions, it is shown in [45] that a di-
versity order equal to the number of FIR taps is achievable when
OFDM transmissions are linearly precoded across subcarriers.

An inherent limitation of all multicarrier (OFDM) based ST
transmissions is their nonconstant modulus, which necessitates
power amplifier back-off, and thus reduces power efficiency
[34]. In addition, multicarrier schemes are more sensitive to car-
rier frequency offsets relative to their single-carrier counterparts
[34]. These two facts motivate well ST codes for single-carrier
transmissions over frequency-selective channels, that have been
looked upon recently in [2], [22], [42], [47] with block coding,
and in [23] using trellis coding.

In this paper, we designST block codesfor single-carrier
block transmissionsin the presence of frequency-selective
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Fig. 1. Single-carrier ST transceiver model.

fading channels. We propose novel transmission formats, that
subsume those in [2], [22], [42], as special cases. Furthermore,
we show that a maximum diversity up to order
is achieved in a rich scattering environment, whereis the
number of transmit antennas, is the number of receive
antennas, and is the number of taps corresponding
to each FIR channel. With single receive and two transmit
antennas, our transmission offers a capacity-achieving scheme.

Being counterparts of orthogonal STBCs [3], [36], but for
frequency- selective channels, our proposed schemes enable
simple linear processing to collect full antenna diversity, and
incur receiver complexity that is comparable to single-antenna
transmissions. Interestingly, our transmissions enable exact ap-
plication of Viterbi’s algorithm for maximum-likelihood (ML)
optimal decoding, in addition to various reduced-complexity
suboptimal equalization alternatives. Equally important, when
our ST transmissions are combined with channel coding, they
facilitate application of iterative (turbo) equalizers. Simulation
results demonstrate that joint exploitation of space-multipath
diversity leads to significantly improved performance in the
presence of frequency-selective multipath channels.

The rest of this paper is organized as follows. Section II
deals with the important special case of single receive and
two transmit antennas. Section III details the equalization and
decoding designs. Section IV generalizes the proposed schemes
to multiple transmit and receive antennas. Simulation results
are presented in Section V, while conclusions are drawn in
Section VI.

Notation: Bold upper case letters denote matrices, bold
lower case letters stand for column vectors;, , and
denote conjugate, transpose, and Hermitian transpose, respec-
tively; for expectation, for the trace of a matrix,
for the Euclidean norm of a vector; denotes the identity
matrix of size , denotes an all-zero (all-one)
matrix with size , and denotes an FFT matrix
with the st entry ,

; stands for a diagonal matrix with
on its diagonal. denotes the st entry of a vector,

and denotes the st entry of a matrix.

II. SINGLE-CARRIER BLOCK TRANSMISSIONS

Fig. 1 depicts the discrete-time equivalent baseband model of
a communication system with transmit antennas and

receive antenna. We detail this important special case
first, and then generalize to more than two transmit antennas

and multiple receive antennas in Section IV. The information-
bearing data symbols belonging to an alphabet are first
parsed to blocks ,
where the serial index is related to the block indexby

. The blocks are precoded by a
matrix (with entries in the complex field) to yield

symbol blocks . The linear precoding by can
be either nonredundant with or redundant when .
The ST encoder takes as input two consecutive blocks and

to output the following ST block-coded matrix:

time

space
(1)

where is a permutation matrix that is drawn from a set of
permutation matrices , with denoting the dimen-
sionality . Each performs a reverse cyclic shift (that
depends on ) when applied to a vector

Specifically, the st entry of is

Two important special cases are and . The output of

performstime reversalof , while

corresponds to taking the-point IFFT twice on the vector.
This double IFFT operation in the ST coded matrix is, in fact,
a special case of the-transform approach originally proposed
in [25], with the -domain points chosen to be equally spaced
on the unit circle . Note that in our notation, [22]
uses only , [2] uses only , and [42] uses both and

. Our unifying view here allows for any from the set
.
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Fig. 2. The transmitted sequence for CP-based block transmissions.

At each block transmission time interval, the blocks
and are forwarded to the first and the second antennae,
respectively. From (1), we have that

(2)

which shows that each transmitted block from one antenna at
time slot is a conjugated and permuted version of the
corresponding transmitted block from the other antenna at time
slot (with a possible sign change). For flat fading channels,
symbol blocking is unnecessary, i.e., and
, and the design of (1) reduces to the well-known Alamouti

ST code matrix [3]. However, for frequency-selective multipath
channels, the permutation matrixis necessary as will be clar-
ified soon.

To avoid interblock interference (IBI) in the presence of fre-
quency-selective multipath channels, we adopt the CP approach
[12], [34], [44], which inserts a CP for each block before trans-
mission. Mathematically, at each antenna , a tall
transmit matrix , with comprising the last

rows of , is applied on to obtain blocks
. Indeed, multiplying with repli-

cates the last entries of and places them on its top.
The transmitted sequences from both antennas are depicted in
Fig. 2.

With symbol rate sampling,1 let
be the equivalent discrete-time channel impulse response (that
includes transmit–receive filters as well as multipath effects) be-
tween the th transmit antenna and the single receive antenna,
where is the channel order. With the CP length at least as long
as the channel order, , the IBI can be avoided at the re-
ceiver by discarding the received samples corresponding to the
cyclic prefix. CP insertion at the transmitter together with CP re-
moval at the receiver yields the following channel input–output
relationship in matrix–vector form (see e.g., [44] for a detailed
derivation in the single-antenna scenario):

(3)

where the channel matrix is circulant with
, and the additive Gaussian noise is

assumed to be white with each entry having variance .
The receiver will exploit the following two nice properties of

circulant matrices.

1Extension to fractional sampling is straightforward; we here focus on symbol
rate sampling for simplicity.

p1) Circulant matrices can be diagonalized by FFT operations
[18, p. 202]

and (4)

where , and the vector

has the st entry being the channel frequency response

evaluated at the frequency .
p2) As we prove in the Appendix, pre- and postmultiplying

by yields :

and (5)

With the ST coded blocks satisfying (2), let us consider two
consecutive received blocks [cf. (3)]:

(6)

(7)

Left-multiplying (7) by , conjugating, and using p2), we arrive
at

(8)

Notice that without the permutation matrix inserted at the
transmitter, it would have been impossible to have the Hermi-
tian of the channel matrices showing up in (8) that will prove in-
strumental for enabling multiantenna diversity gains with linear
receiver processing.

We will pursue frequency-domain processing of the received
blocks, which we describe by multiplying the blocks with
the FFT matrix that implements the -point FFT of the en-
tries in . Let us define ,

, and likewise and
. For notational convenience, we also

define the diagonal matrices and
with the corresponding transfer function FFT samples on their
diagonals. Applying the property p1) on (6) and (8), we obtain
the FFT processed blocks as

(9)

(10)

It is important to note at this point that permutation, conjugation,
and FFT operations on the received blocks do not introduce
any information loss, or color the additive noises in (9) and (10)
that remain white. It is thus sufficient to rely only on the FFT
processed blocks and when performing symbol
detection.
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After defining , we can com-
bine (9) and (10) into a single block matrix–vector form to ob-
tain

(11)

where the identities and have
been used following our design in (1).

Consider a diagonal matrix with nonnegative di-
agonal entries as . We can verify that
the matrix in (11) satisfies , where stands
for Kronecker product. Based on and , we next construct
a unitary matrix . If and do not share common zeros
on the FFT grid , then is invertible, and we se-
lect as . If and happen to share
common zero(s) on the FFT grid (although this event has proba-
bility zero), then we construct as follows. Supposing without
of loss of generality that and share a common zero at the
first subcarrier , we have that

We then construct a diagonal matrix which differs from
only at the first diagonal entry: . Similar to the
definition of and , we construct and by substi-
tuting with . Because is invertible, we form

. In summary, no matter whether is in-
vertible or not, we can always construct a unitary, which sat-
isfies and , where the latter can
be easily verified. As multiplying by unitary matrices does not
incur any loss of decoding optimality in the presence of additive
white Gaussian noise, (11) yields
as

(12)

where the resulting noise

is still white with each entry having variance .
We infer from (12) that the blocks and can

be demodulated separately without compromising the ML opti-
mality, after linear receiver processing. Indeed, so far we applied
at the receiver three linear unitary operations after the CP re-
moval: i) permutation (via ); ii) conjugation and FFT (via );
and iii) unitary combining (via ). As a result, we only need
to demodulate each information block separately from the
following subblocks [cf. (12)]:

(13)

Before specifying equalization and decoding possibilities (that
will be discussed in Section III), we will first go after the bench-
mark performance with ML decoding. Starting from (13), we
will study the diversity gains of existing and our novel unifying

ST schemes in the presence of frequency-selective channels;
this analysis is not available in the single-carrier approaches of
[2], [22], [42].

A. Diversity Gain Analysis

Let us drop the block indexfrom (13), and, e.g., useto de-
note for notational brevity. With perfect channel state infor-
mation (CSI) at the receiver, we will consider the pairwise error
probability (PEP) that the symbol block
is transmitted, but is erroneously decoded as . The PEP
can be approximated using the Chernoff bound as

(14)

where denotes the Euclidean distance betweenand .
Define the error vector as , and a

Vandermonde matrix with . The
matrix links the channel frequency response with the time-
domain channel taps as . Starting with (13), we then
express the distance as

(15)

where such that

We focus on block quasi-static channels, i.e., channels that
remain invariant over each ST coded block, but may vary from
one block to the next. We further adopt the following assump-
tion:

as0) the channels and are uncorrelated; and for
each antenna , the channel is zero-mean,
complex Gaussian distributed, with covariance matrix

.
If the entries of are independent and identically dis-

tributed (i.i.d.), then we have , where the
channel covariance matrix is normalized to have unit energy;
i.e., . Because general frequency-selective multi-
path channels have covariance matrices with arbitrary rank, we
define the “effective channel order” as .
Let us consider now the following eigendecomposition:

(16)

where is an diagonal matrix with
the positive eigenvalues of on its diagonal, and is
an matrix having orthonormal columns

. Defining , we can

verify that the entries of are i.i.d. with unit variance. Since

and have identical distributions, we replace the
former by the latter in the ensuing PEP analysis. A special case
of interest corresponds to transmissions experiencing channels
with full-rank correlation matrices; i.e.,
and . As will be clear later, a rich scattering environment
leads to ’s with full rank, which is favorable in broad-band
wireless applications because it is also rich in diversity.
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With the aid of the whitened and normalized channel vector
, we can simplify (15) to

(17)
From the spectral decomposition of the matrix ,

where , we know that there exists a
unitary matrix such that ,
where is diagonal with nonincreasing diagonal entries
collected in the vector

Consider now the channel vectors , with iden-
tity correlation matrix. The vector is clearly zero mean, com-
plex Gaussian, with i.i.d entries. Using , we can rewrite (17)
as

(18)

Based on (18), and by averaging (14) with respect to the i.i.d.
Rayleigh random variables , we can upper-bound
the average PEP as follows:

(19)
If is the rank of (and thus the rank of ),
then if and only if . It thus follows
from (19) that

(20)

As in [38], we call the diversity gain ,
and

the coding gain of the system for a given symbol error
vector . The diversity gain determines the slope of the
averaged [with respect to (w.r.t.) the random channel] PEP (be-
tween and ) as a function of the signal-to-noise ratio (SNR)
at high SNR ( ). Correspondingly, determines the
shift of this PEP curve in SNR relative to a benchmark error rate
curve of . Different from [19], [38], that relied on
PEP to design (nonlinear) ST codes for flat fading channels, we
here invoke PEP bounds to prove diversity properties of our pro-
posed single-carrier block transmissions over frequency-selec-
tive channels.

Since both and depend on the choice of (thus,
on and ), we define the diversity and coding gains for our
system, respectively, as

and (21)

Based on (21), one can check both diversity and coding gains.
However, in this paper, we focus only on the diversity gain.
First, we observe that the matrix is square of size

. Therefore, the maximum achievable diversity gain
in a two transmit and one receive antennas system is

for FIR channels with effective channel order
, , while it becomes in rich scattering en-

vironments. This maximum diversity can be easily achieved by
e.g., a simple redundant transmission where each antenna trans-
mits the same symbol followed by zeros in two nonoverlap-
ping time slots. We next examine the achieved diversity levels
in our following proposed schemes, which certainly have much
higher rate than redundant transmissions.

B. CP-Only

We term CP-only the block transmissions with no precoding:
, , and . The word “only” empha-

sizes that, unlike OFDM, no IFFT is applied at the transmitter.
Let us now check the diversity order achieved by CP-only. The
worst case is to select and implying

, where . Verifying that for these
error events, the matrix has only one nonzero
entry, we deduce that . Therefore, the system
diversity order achieved by CP-only is . This is nothing
but space diversity of order two coming from the two transmit
antennas [cf. (13)]. Note that CP-only schemes (as those in [2],
[42]) suffer from loss of multipath diversity.

To benefit also from the embedded multipath-induced diver-
sity, we have to modify our transmissions.

C. Linearly Precoded CP-Only

To increase our ST system’s diversity order, we will adopt the
linear precoding ideas developed originally for single-antenna
transmissions in [44], [45]. One can view CP-only as a special
case of the linearly precoded CP-only system (denoted hence-
forth as LP-CP-only) with identity precoder. With
and carefully designed , we next show that the max-
imum diversity is achieved. We will discuss two cases: the first
one introduces no redundancy because it uses , while the
second one is redundant and adopts .

For nonredundant precoding with , it has been es-
tablished that forany signal constellation adhering to a finite
alphabet, there always exists a unitary constellation ro-
tating (CR) matrix ensuring that each entry of
is nonzerofor anypair of [46]. We thus propose to con-
struct such that . With this construc-
tion, is guaranteed to have nonzero entries on
its diagonal, and thus it has full rank. Consequently, the matrix

has full column rank , and
has full column rank . Hence, the maximum
achievable diversity order is indeed achieved.
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We emphasize here that the nonredundant precoderis
constellation dependent. For commonly used binary phase shift
keying (BPSK), quaternary phase shift keying (QPSK), and all
quadrature amplitude modulation (QAM) constellations, and for
the block size equal to a power of , one class of

precoders with large coding gains is found to be [9], [17],
[46]

and, thus, (22)

where

with the scalar . For block size ,
one can construct by truncating a larger unitary matrix con-
structed as in (22) [46]. The price paid for our increased di-
versity gain is that LP-CP-only does not offer constant mod-
ulus transmissions, in general. However, by designingto be
a power of , and by choosing as in (22), the transmitted sig-
nals are constant modulus if are phase
shift keying (PSK) signals. Therefore, by selectingto be a
power of , we can increase the diversity gain without reducing
power efficiency.

Alternatively, we can adopt a redundant precoder
with . Our criterion for selecting such tall precoding
matrices is to guarantee that satisfies the following
property:any rows of are linearly independent. One
class of satisfying this property includes Vandermonde
matrices with distinct generators , defined as
[44], [45]

...
...

. . .
...

and thus

(23)

With , we have that has at least
nonzero entries for any regardless of the underlying signal
constellation. Indeed, if has only nonzero entries for
some , then it has zero entries. Picking the corresponding

rows of to form the truncated matrix , we have
, which shows that these rows are linearly de-

pendent, thus violating the design of the precoder . With
having at least nonzero entries,

the matrix has full rank becauseany rows of
are linearly independent. Thus, the maximum diversity gain is
achieved with redundant precodingirrespectiveof the under-
lying constellation.

When , constellation-irrespective precoders
are impossible because cannot have nonzero entries
for any that is unconstrained. Therefore, constellation-inde-
pendent precoders are not possible for . However,
with some redundancy , the design of constellation-de-
pendent precoders may become easier. Optimal design of nonre-
dundant or redundant precoders that also maximize coding gains
within the class of our maximum diversity achieving precoders,

Fig. 3. Affine precoded CP-only, withs(i) = [d (i);b (i)] andP =
P .

is certainly an interesting research topic, but will not be pursued
in this paper.

D. Affine Precoded CP-Only

Another interesting class of linear precoders implements an
affine transformation , where is
a known symbol vector. In this paper, we are only interested in
the special form of

(24)

where the precoder is the first columns of , the
precoder is the last columns of , and the known
symbol vector has size with entries drawn from the
same alphabet . We henceforth term the transmission format
in (24) as AP-CP-only. Notice that in this scheme,
and .

Although here we place at the bottom of for con-
venience, we could also place at arbitrary positions within

. As long as consecutive symbols are known in , all
decoding schemes detailed in Section III are applicable.

Recall that the error matrix does not
contain known symbols. Since is a Vandermonde matrix
of the form of the matrix in Section II-C, the maximum diver-
sity gain is achieved, as discussed in Section II-C for redundant
LP-CP-only.

In the CP-based schemes depicted in Fig. 2, the CP portion
of the transmitted sequence is generally unknown, because it
is replicated from the unknown data blocks. However, with
AP-CP-only in (24), and with the specific choice of ,
we have

which implies thatboth the data block and the known symbol
block are time reversed, but keep their original positions. The
last entries of are again known, and are then repli-
cated as cyclic prefixes. For thisspecial case, we depict the
transmitted sequences in Fig. 3. In this format, the data block

is surrounded by two known blocks that correspond to the
pre-amble and post-amble in [22]. Our general design based on
the CP structure includes this known pre- and post-ambles as a
special case.

Notice that the pre-amble and post-amble have not been prop-
erly designed in [22]. The consequence is that “edge effects” ap-
pear for transmissions with finite block length, and an approxi-
mation on the order of has to be made in order to apply
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TABLE I
SUMMARY OF SINGLE-CARRIER SCHEMES IN RICH-SCATTERING ENVIRONMENTS

Fig. 4. The transmitted sequence for ZP-only.

Viterbi’s decoding algorithm. This approximation amounts to
nothing but the fact that a linear convolution can be approxi-
mated by a circular convolution when the block size is much
larger than the channel order. By simply enforcing a CP struc-
ture to obtain circulant convolutions, Viterbi’s algorithm can
be applied to our proposed AP-CP-only withno approximation
whatsoever, regardless of the block length and the channel order,
as will be clear soon.

E. ZP-Only

Suppose now that in AP-CP-only, we let instead of
having known symbols drawn from the constellation alphabet,
and we fix . Now, the adjacent data blocks are
guarded by two zero blocks, each having length, as depicted
in Fig. 3. Since the channel has only order, presence of

zeros in the middle of two adjacent data blocks is not
necessary. Keeping only a single block ofzeros corresponds
to removing the CP-insertion operation at the transmitter.
On the other hand, one could view that the zero block in the
previous block serves as the CP for the current block, and thus
all derivations done for CP-based transmission are still valid.
The resulting transmission format is shown in Fig. 4, which
achieves higher bandwidth efficiency than AP-CP-only. We
term this scheme as ZP-only, where and .

By mathematically viewing ZP-only as a special case of
AP-CP-only with , it is clear that the maximum
diversity is achieved. In addition to the rate improvement,
ZP-only also saves the transmitted power occupied by CP and
known symbols.

For convenience, we list all aforementioned schemes in
Table I, assuming a rich scattering environment. Power loss
induced by the cyclic prefix and the known symbols, is also
considered. It certainly becomes negligible when .

F. Links With Multicarrier Transmissions

In this section, we link single carrier with digital multicar-
rier (OFDM-based) schemes. We first examine the transmitted
blocks on two consecutive time intervals. For LP-CP-only, the
transmitted ST matrix is

(25)

If we let , and for a general matrix , we
obtain from (25)

(26)

If , then (26) corresponds to the ST block-coded OFDM
proposed in [20], [27]. Designing introduces linear
precoding across OFDM subcarriers, as proposed in [26], [27].
Therefore, LP-CP-only includes linear precoded ST-OFDM as a
special case by selecting the precoderand the permutation
appropriately. Although linear precoding was introduced [26],
[27] for ST-OFDM systems, the diversity analysis was not pro-
vided. The link we introduced here reveals that the maximum
diversity gain is also achieved by linearly precoded ST-OFDM
with the Vandermonde precoders provided in [26], [27].

Interestingly, linearly precoded OFDM can even be converted
to zero padded transmissions. Indeed, choosingto be the first

columns of , we obtain the transmitted block as
which inserts zeros

both at the top and at the bottom of each data block. By con-
verting linearly precoded OFDM to a zero-padded transmission,
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the special multicarrier multiple-access scheme in [44] offers
constant modulus transmissions.

The design example presented in [7] for ST-coded OFDM
happens to fall into this category, too. In the design example of
[7], subcarriers are used for OFDM, and the channel
order is . Two symbols and are linearly trans-
formed and transmitted as follows: the first antenna transmits

on its eight subcarriers, and the second antenna
transmits on its eight subcarriers, where is the

st column of with . Carrying out the
calculation for the transmitted sequence , the first antenna
transmits , while the second antenna
transmits , which amounts to nonover-
lapping transmissions from two antennas, with each antenna
transmitting each symbol followed by zeros. This simple ex-
ample achieves full diversity, but suffers significant rate loss,
due to the nature of repeated transmissions, and the absence of
symbol blocking that is used in [44].

G. Capacity Result

We now analyze the capacity of the ST block-coding format
of (1). The equivalent channel input–output relationship, after
receiver processing, is described by (13) as ,
where we drop the block index for brevity. Let denote the
mutual information between and , and recall that is
maximized when is Gaussian distributed [13]. Due to the lack
of channel knowledge at the transmitter, the transmission power
is equally distributed among symbols, with

. Taking into account the CP of length, the channel ca-
pacity, for a fixed channel realization, is thus

(27)

Define as the total transmitted power from two an-
tennas per channel use. As the block sizeincreases, we obtain

(28)

The capacity for frequency-selective channels with multiple
transmit and receive antennas can be found in, e.g., [23]. The
result in (28) coincides with that of [23] when we have two
transmit antennas and one receive antenna. Therefore, our
proposed transmission format in (1) does not incur capacity
loss in this special case. This is consistent with [16], [33],
where the Alamouti coding [3] is shown to achieve capacity

for frequency-flat fading channels with such an antenna con-
figuration. To achieve capacity for systems with two transmit
antennas and a single receive antenna, it thus suffices to deploy
suitable one-dimensional channel codes, or scalar codes [16].

III. EQUALIZATION AND DECODING

Let for CP-only, LP-CP-only, ZP-only, and
for AP-CP-only. With this con-

vention, we can unify the equivalent system output after the
linear receiver processing as

(29)

where , the noise is white with covariance
, and the corresponding is defined as in Section II.

Brute-force ML decoding applied to (29) requires enu-
merations, which becomes certainly prohibitive as the constel-
lation size and/or the block length increases. A relatively
faster near-ML search is possible with the sphere decoding (SD)
algorithm, which only searches for vectors that are within a
sphere centered at the received symbols [41]. The theoretical
complexity of SD is polynomial in , which is lower than expo-
nential, but still too high for . Only when the block size

is small, the SD equalizer can be adopted to achieve near-ML
performance at a manageable complexity. The unique feature of
SD is that the complexity does not depend on the constellation
size. Thus, SD is suitable for systems with small block size,
but with large signal constellations.

We now turn our attention to low-complexity equalizers by
trading off performance with complexity. Linear zero forcing
(ZF) and minimum mean square error (MMSE) block equalizers
certainly offer low complexity alternatives. The block MMSE
equalizer is

(30)

where we have assumed that the symbol vectors are white with
covariance matrix . The MMSE
equalizer reduces to the ZF equalizer by setting in (30).

For nonredundant LP-CP-only with , we further
simplify (30) to

(31)

which amounts to a diagonal matrix inversion followed by
an IFFT operation. The MMSE equalizer for CP-only can be
simply obtained by setting in (31). This
equalizer for CP-only is equivalent to the MMSE frequency-do-
main equalizer derived in [2]. Therefore, the frequency-domain
MMSE equalizer is overall MMSE optimal for the CP-only
investigated in [2]; this fact is not available in [2].

Capitalizing on the finite-alphabet property of source sym-
bols, the nonlinear block decision feedback equalizer (DFE)
proposed in [35] is directly applicable to the systems analyzed
here, and is expected to outperform linear receivers with com-
parable complexity.

More interestingly, it turns out that Viterbi’s algorithm is ex-
actly applicable to AP-CP-only and ZP-only, as we detail next.
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A. ML Decoding for AP-CP-Only and ZP-Only

For AP-CP-only and ZP-only, we have

(32)

where we drop the block indexfor simplicity. Distinct from
other systems, AP-CP-only and ZP-only assure thathas the
last entries known, and the first entries drawn from the
finite alphabet .

In the presence of white noise, ML decoding can be expressed
as

(33)

Notice that the ML detection in (33) does not depend on the
noise variance . We retain , however, in order to facilitate
our subsequent extension from ML to turbo decoding, as will
become clear in Section III-B. We next simplify (33), starting
with

(34)

where . We let , and . Rec-
ognizing that expresses nothing but a circular convolution
between the channel and , we have

Hence, we obtain

(35)

For each , let us define a sequence of state
vectors as

out of which the first and the last states are known2

. The symbol sequence deter-
mines a unique path evolving from the known initial stateto
the known final state . Thus, Viterbi’s algorithm is applicable.
Specifically, we have

(36)

2In CP-only, we have��� = ��� , but ��� and��� are unknown. The trellis of
CP-only then corresponds to that of a tail-biting convolutional code [4], [29].
Subsequently, ML and maximuma posterioriprobability (MAP) decoders can
be developed for CP-only.

where is the branch metric, that is readily obtain-
able from (35). The explicit recursion formula for Viterbi’s al-
gorithm is well known; see, e.g., [40, eq. (7)].

We now simplify the branch metric further. We first have

The matrix has st entry

(37)

Let us now select , and define

(38)

It can be easily verified that the first column of is

Let denote the circulant matrix with first column

Because is circulant and Hermitian, can be decomposed
into . We thus obtain .
Recognizing

and combining with (35), we obtain a simplified metric as

(39)

The branch metric in (39) has a format analogous to the one
proposed by Ungerboeck for ML sequence estimation (MLSE)
receivers withsingle-antenna serialtransmissions [8], [39]. For
multiantenna block-coded transmissions, a similar metric has
been suggested in [22, eq. (23)]. The important distinction is
that [22] suffers from “edge effects” for transmissions with fi-
nite block length, resulting in an approximation on the order
of , while our derivation here is exact. The key is that
our CP-based design assures a circular convolution, while the
linear convolution in [22] approximates well a circulant convo-
lution only when . Note also that we allow for an ar-
bitrary permutation matrix , which includes the time reversal
in [22] as a special case. Furthermore, a known symbol vector

can be placed in an arbitrary position within the vector
for AP-CP-only. If the known symbols occupy positions

, we just need to redefine the states as

Notice that for channels with order, the complexity of
Viterbi’s algorithm is per symbol; thus, ML decoding
with our exact application of Viterbi’s algorithm should be
particularly attractive for transmissions with small constellation
size, over relatively short channels.
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Fig. 5. Coded AP-CP-only or ZP-only with turbo equalization.

B. Turbo Equalization for Coded AP-CP-Only and ZP-Only

So far, we have only considered uncoded systems, and
established that full diversity is achieved. To further improve
system performance by enhancing also coding gains, con-
ventional channel coding can be applied to our systems. For
example, outer convolutional codes can be used in AP-CP-only
and ZP-only, as depicted in Fig. 5. Other codes such as tr-
rellis-coded modulation (TCM) and turbo codes are applicable
as well.

In the presence of frequency-selective channels, iterative
(turbo) equalization is known to enhance system performance,
at least for single-antenna transmissions [14]. We here derive
turbo equalizers for our coded AP-CP-only and ZP-only
multiantenna systems.

To enable turbo equalization, one needs to find the
a posteriori probability on the transmitted symbols based
on the received vector. Suppose each constellation point
is determined by bits . Let
us consider the log-likelihood ratio (LLR)

(40)

As detailed in [40], the LLR in (40) can be obtained by running
two generalized Viterbi recursions: one in the forward direction
evolving from to , and the other in the backward direction
going from to . We refer the readers to [40, eqns. (7′), (8′),
(10′)] for explicit expressions. The only required change is to
modify our branch metric as follows:

(41)

This modification is needed to take into account thea priori
probability , determined by the extrinsic informa-
tion from the convolutional channel decoders during the turbo
iteration. When the transition from to is caused by the
input symbol , we have . We as-
sume that the bit interleaver in Fig. 5 renders the symbols
independent and equal likely, such that

which, in turn, can be determined by the LLRs for bits
.

Finally, we remark that one could also adopt the turbo de-
coding algorithm of [43] that is based on MMSE equalizers.
This iterative receiver is applicable not only to AP-CP-only and
ZP-only, but also to CP-only and LP-CP-only systems.

C. Receiver Complexity

Omitting the complexity of permutation and diagonal matrix
multiplication, the linear processing to reach (13) only requires
one size- FFT per block, which amounts to per
information symbol.

Channel equalization is then performed based on (13) for
each block. We notice that the complexity is the same as the
equalization complexity for single-antenna block transmissions
over FIR channels [45]. We refer the readers to [45] for detailed
complexity comparisons of the different equalization options.
For coded AP-CP-only and ZP-only, the complexity of turbo
equalization is again the same as that of single-antenna trans-
missions [14].

In summary, the overall receiver complexity for the two
transmit antennas case is comparable to that of single-antenna
transmissions, with only one additional FFT per data block.
This nice property originates from the orthogonal ST block code
design, that enables linear ML processing to collect antenna
diversity. Depending desirable/affordable diversity–complexity
tradeoffs, the designer is then provided with the flexibility to
collect extra multipath-diversity gains.

IV. EXTENSION TO MULTIPLE ANTENNAS

In Section II, we focused on transmit and
receive antennas. In this section, we will extend our system de-
sign to the general case with and/or antennas.
For each and , we denote the
channel between theth transmit and the th receive antennas
as , and as before we model it
as a zero-mean, complex Gaussian vector with covariance ma-
trix . Correspondingly, we define the effective channel
order , which for a sufficiently rich
scattering environment becomes .

Transmit diversity with has been addressed in [25],
[26] for OFDM-based multicarrier transmissions over FIR
channels by applying the orthogonal ST block codes of [36] on
each OFDM subcarrier. Here, we extend the orthogonal designs
to single-carrier block transmissions over frequency-selective
channels.

We will review briefly generalized orthogonal designs to in-
troduce notation, starting with the basic definitions given in the
context of frequency-flat channels [36].

Definition 1: Define , and let
be an matrix with entries , . If

with positive, then
is termed a generalized real orthogonal design (GROD)

in variables of size and rate .

Definition 2: Define , and let be
an matrix with entries , , , .
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If with positive,
then is termed a generalized complex orthogonal design
(GCOD) in variables of size and rate

.
Explicit construction of with was discussed in

[36], where it was also proved that the highest rate for
is when . When , there exist some spo-
radic codes with rate . Although the orthogonal designs
with for have been incorporated in [26]
for multicarrier transmissions, we will not consider them in our
single-carrier block transmissions here;3 we will only consider
the GCOD designs primarily because GCOD of

can be constructed using the following steps (
for , while for [36]):

s1)construct GROD of size with ;
s2) replace the symbols in by their con-

jugates to arrive at ;
s3) form .
As will be clear soon, we are explicitly taking into account the

fact that all symbols from the upper part of are unconju-
gated, while all symbols from the lower part are conjugated. The
rate loss can be as high as 50%, when .

With , the ST mapper takes consecutive blocks to
output the following ST coded matrix :

...
...

...
time

space.

(42)

The design steps are summarized as follows:
d1) construct of size in the variables

, as in s1)–s3);
d2) replace in by

d3) replace in by

where is taken properly for different schemes as explained in
Section II.

Note that with transmit antennas, the above procedure
has actually been applied to the GCOD design in [3].

At each block transmission slot, is forwarded to the
th antenna, and transmitted through the FIR channel after CP

insertion. Each receive antenna processes blocks independently
as follows. The receiver removes the CP and collects
blocks . Then FFT is performed
on the first blocks , while
permutation and conjugation is applied to the last blocks

3We find that the rate3=4 code forN = 3; 4 can be incorporated in CP-only,
LP-CP-only, and AP-CP-only transmissions only whenP = P is used,
becauseF P x (i) = (F x(i)) indicates that no actual permutation is
needed at the receiver. In this case, the first step at the receiver is to take the
FFT of each received block to yieldF x(i), and follow the processing used in
[26]. We only point out this case in a footnote for brevity.

, followed by FFT
processing. Coherently combining the FFT outputs as we did for
the two-antennas case to derive (13), we obtain on each antenna
the equivalent output after the optimal linear processing

(43)

where

and

We next stack to form
(likewise for ), and define , to ob-
tain: . Defining

we have . Therefore, we can construct a matrix
, which has orthonormal columns ,

and satisfies . As and share range spaces,
multiplying by incurs no loss of optimality, and leads
to the following equivalent block:

(44)

where the noise is still white. Now the distance between
and , corresponding to two different symbol blocksand ,
becomes

(45)

Comparing (45) with (15), the contribution now comes from
multipath channels. Following the same steps as in Sec-

tion II, it is straightforward to establish the following result.

Proposition 1: The maximum achievable diversity order is
with transmit and receive an-

tennas, which equals when the channel correla-
tion has full rank.

1) CP-only achieves multiantenna diversity of order ;
2) LP-CP-only achieves the maximum diversity gain through

either nonredundant but constellation-dependent, or, redundant
but constellation-independent precoding;

3) AP-CP-only and ZP-only achieve the maximum diversity
gain irrespective of the underlying signal constellation.

The linear ML processing to reach (44) requires a total of
FFTs corresponding to each ST-coded block

of (42), which amounts to FFTs per information block.
Channel equalization based on (44) incurs identical com-
plexity as in single-antenna transmissions. For AP-CP-only and
ZP-only, the ML estimate
can be obtained via exact application of Viterbi’s algorithm.
Relative to the two-antenna case detailed in Section III-A, we
can basically use the same expression for the branch metric
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Fig. 6. Comparisons of various equalizers for uncoded ZP-only.

of (39), with two modifications, namely, with
, and

(46)

We summarize the general complexity results of this section and
those of Section II in the following.

Proposition 2: The proposed ST block coded CP-only,
LP-CP-only, AP-CP-only, and ZP-only systems with

transmit and receive antennas require an
additional complexity of (respectively,

) per information symbol, relative to their coun-
terparts with single transmit and single receive antenna, where

is the FFT size.

V. SIMULATED PERFORMANCE

In this section, we present simulation results for systems with
two transmit and one receive antennas. For ease in FFT pro-
cessing, we always choose the block sizeto be a power of .
In all figures, we define SNR as the average received symbol
energy-to-noise ratio at the receive antenna. For reference, we
also depict the (outage) probability that the channel capacity is
less than the desired rate, so that reliable communication at this
rate is impossible. Specifically, we calculate (28) numerically,
and similar to [23], we evaluate the outage probability at the tar-
geted rate as with Monte Carlo simulations.

Test Case 1 (Comparisons for Different Equalizers):We
first set , and assume that the channels between each
transmit and each receive antenna are i.i.d., Gaussian, with

covariance matrix . We investigate the perfor-
mance of ZP-only with block sizes and .
We adopt QPSK constellations. Fig. 6 depicts the block error
rate performance corresponding to MMSE, DFE, SD, and ML
equalizers. We observe that the SD equalizer indeed achieves
near-ML performance, and outperforms the suboptimal block
DFE as well as the block MMSE alternatives. Without channel
coding, the performance of ZP-only is far away from the outage
probability at rate bits per channel use.

Test Case 2 (Convolutionally Coded ZP-Only):We here
adopt the channel setup of [23], [24], which consists of two
i.i.d. taps per FIR channel, i.e., . We set the block sizes
as , for our ZP-only system, and use
8-PSK constellation. For convenience, we view each block of
length as one data frame, with the ST codes applied
to two adjacent frames. Within each frame, the information
bits are convolutionally coded (CC) with a 16-state rate
encoder taken from [5, Table 11.6]. Omitting the trailing bits to
terminate the CC trellis, and ignoring the rate loss induced by
the CP since , we obtain a transmission rate of 2 bits
per channel use. The outage probability provided in Fig. 7 is
thus identical to that in [23, Fig. 6].

As in [23], [24], five turbo decoding iterations are performed.
With the 16-state convolutional code, the frame error rate for
ZP-only is within 2.3 dB away from the outage probability. This
performance is comparable to (or, slightly better than) that of ST
trellis coding (STTC) [23], [24] for frequency-selective chan-
nels, that is replicated4 in Fig. 7 as well. This result is also con-

4Notice that this curve is obtained with frame length of 130 symbols in [23],
[24]. We just copy this curve from [23, Fig. 6].
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Fig. 7. Convolutionally coded ZP-only versus ST trellis coding of [23], [24]

sistent with [32], where the performance of an STBC system is
shown to be better than those of known STTC systems, in flat
fading channels.

Unlike 8-PSK used here, QPSK constellation is used in the
STTC of [23], [24]. However, thanks to the orthogonal design,
the trellis induced by the FIR channel has states for
our ZP-only system, which is smaller than the
states required by [23], [24]; hence, ZP-only will (at least in this
case) incur lower turbo decoding complexity than [23], [24].

Existing channel codes with arbitrary number of states can
be applied directly to our ZP-only system. Irrespective of the
channel code and the random interleaver used, full diversity is
always guaranteed. In contrast, the STTC and the random in-
terleaver in [23], [24] should be jointly designed to ensure full
diversity. And this design is certainly more complex than our
ZP-only scheme.

Test Case 3 (Convolutionally Coded AP-CP-Only Over
EDGE Channels):We test the Typical Urban (TU) channel
with a linearized Gaussian minimum shift keying (GMSK)
transmit pulse shape, and a symbol duration s as
in the proposed third-generation time division multiple access
(TDMA) cellular standard EDGE [enhance date rates for global
system for mobile communications (GSM) evolution][15].
The channel has order and correlated taps [2]. We use
QPSK constellations, and set the block size . We
adopt AP-CP-only that guarantees perfectly constant modulus
transmissions. Within each frame of 128 symbols, the last three
are known. Information bits are coded using a 16-state rate

convolutional code taken from [5, Table 11.2]. Taking into
account the known symbols, the cyclic prefix, and zero bits to

terminate the CC trellis, the overall transmission rate of the
proposed AP-CP-only is 0.924 bits
per channel use, or 250.4 kb/s.

As shown in Fig. 8, the system with two transmit antennas
significantly outperforms its counterpart with one transmit
antenna. At frame error rate of , about 5-dB SNR gain has
been achieved. Fig. 9 depicts the performance improvement
with turbo iterations, which confirms the importance of iterative
over noniterative receivers. A large portion of the performance
gain is achieved within three iterations.

VI. CONCLUSION

In this paper, we developed single-carrier ST block-coded
transmissions through frequency-selective multipath channels.
We proposed novel transmission formats, that correspond to or-
thogonal ST block codes for frequency-selective channels. We
showed that a maximum diversity of order in rich
scattering environment is achievable. Linear processing collects
full antenna diversity, while the overall receiver complexity re-
mains comparable to that of single-antenna transmissions over
frequency-selective channels. Optimal ML Viterbi decoding and
various suboptimal equalization alternatives were examined. It-
erative (turbo) equalizers were also developed for our ST trans-
missions combined with channel coding. With single receive
and two transmit antennas, the proposed transmission format
does not incur capacity loss. For this scenario, our novel designs
benchmark performance and capacity over ST frequency-selec-
tive channels, pretty much as Alamouti’s code did over fre-
quency-flat channels. Simulation results demonstrated that joint
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Fig. 8. Convolutionally coded AP-CP-only over EDGE channels.

Fig. 9. Turbo iterations for coded AP-CP-only with two transmit-antennas.
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exploitation of space–multipath diversity leads to significantly
improved performance in the presence of frequency-selective
fading channels.

APPENDIX

PROOF OF

As defined in the text, is a circulant matrix with
th entry

where ; and the permutation matrix is drawn
from the set . With the specific choice of ,
the matrix is obtained by a reverse cyclic row shifting on

, moving the th row to the st row, to obtain

Likewise, post-multiplying by corresponds to reversely
cyclic column-shifting by moving the th column of

to the st column. Therefore, we obtain

(47)

which implies that , and proves p2).
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