Modelling and Control of Highly Distributed Loads

Ian A. Hiskens
Vennema Professor of Engineering
Professor, Electrical Engineering and Computer Science

Acknowledge:
Duncan Callaway, Univ of California, Berkeley
Zhongjing Ma, Beijing Institute of Technology
Scott Backhaus, Misha Chertkov, Nic Sinitsyn, Los Alamos National Lab
Soumya Kundu, Mads Almassalkhi, Ian Beil, Univ of Michigan
Ralph Hermans, TU Eindhoven

Michigan Engineering
NSF Workshop
November 15, 2013
Load modelling overview

• The behaviour of loads during large disturbances affects system transient response.
 – This is well known, and has been for a long time.
 – Many, many, many studies have been undertaken, and papers written, on estimating load-model parameters.

• Typical models are a composite representation of large numbers of diverse devices.
 – Loads are continually varying, so deterministic models can never be correct.
 – But stochastic models are inconsistent with traditional large-disturbance simulation techniques.
 – Computational challenge: assessing uncertainty in large-scale, nonlinear hybrid dynamical systems (e.g. power systems.)

• Loads that have high penetration (e.g. residential AC, power electronics, energy efficient lighting) can display synchronized behaviour in response to particular events.
Load control overview

- Non-disruptive load control is standard in communications so why not in electricity delivery.
- Load control offers enhanced system responsiveness at the local, regional and system-wide levels.
- There are many open questions on how to design controls that interact appropriately across these three levels, and with other controllable devices.
- Incorporating load control (and distributed generation) into load models is extremely challenging.
Traditional load modelling

- The WECC load model has around 120 parameters, all of which are unknown, and most of which are not identifiable.
- It was motivated by the desire to capture the effects of disparate types of loads.
- A particular driver was the phenomenon known as “Fault induced delayed voltage recovery” (FIDVR).
FIDVR

- FIDVR involves progressive stalling of residential ACs in response to a (seemingly) benign voltage dip.
- A spatially continuous PDE model of feeder dynamics has been developed to better understand the phenomenon.

From Duclut, Backhaus, Chertkov: Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
PEV charging load

- The response of PEV chargers to power quality events is governed by SAE Standard J2894:
 - PEV chargers must remain energized if the supply voltage drops to 80% of nominal for up to 2 sec.
 - PEV chargers must ride through a complete loss of voltage for up to 12 cycles.
 - Nothing stated about situations where voltages sag below 80% but remain nonzero.

- Probability of PEV charger tripping was modelled by:

\[
P(\text{PEV trips during } T) = 1 - e^{-\lambda(\Delta V)T}, \quad \Delta V = 0.8 - V > 0
\]
Uncertainty in nonlinear hybrid dynamics

• Increasingly important to map parameter uncertainty along the trajectory.
 – Including uncertainty in communications latency.

Phase portrait

Time domain
Load control

- Competing objectives:
 - Local control objective, e.g.,
 - Maintain temperature close to setpoint.
 - Deliver required charge to PEV by specified time.
 - System service, e.g.,
 - Balance renewable generation output.

- Load control strategies must be consistent with the legacy system operating philosophy.
- Centralized control of large numbers of loads is impractical.
Electric vehicle charging

- Charging control strategies will be vitally important for ensuring large-scale adoption of plug-in EVs does not cause generation scheduling problems.

MISO summer load demand

Time-based charging strategy

- Total demand, including PEVs
- Underlying demand
Electric vehicle charging (continued)

- Price-based charging strategy: charge when price falls below a lower threshold, cease charging when price rises above an upper threshold.

![Graphs showing demand for different numbers of PEVs](image_url)
Decentralized control of PEVs

Theorem: A collection of charging strategies u for an infinite population of PEVs is a Nash equilibrium, if (i) u_n minimizes the cost function,

$$J_n(u_n; z) = \sum_{t \in T} \left(p_t(z_t)u_{nt} + \delta(u_{nt} - z_t)^2 \right) + h_n(|u_n|_1)$$

with respect to a fixed z, and (ii) $z_t = \bar{u}_t$, for all $t \in T$, i.e., z can be reproduced by averaging the individual optimal control trajectories of all PEV agents.

Under certain mild assumptions, the Nash equilibrium:
- Exists and is unique.
- Can be obtained by a convergent iterative process.
- Satisfies a “valley filling” property which gives globally optimal cost.
Undamped interactions between PEVs

- If the damping term δ is zero:
Decentralized charging control

- Damping δ is a small positive value:
Hysteresis-based load control: residential air conditioning

- Steady-state temperature distribution for 10,000 cooling loads.
- Temperature behaviour modelled according to:
 \[\theta_{n+1} = a\theta_n + (1-a)(\theta_{amb} - m_nK) + w_n \]

- Regions:
 - ‘a’ contains only loads in the off state.
 - ‘b’ contains loads in both the on and off state.
 - ‘c’ contains only loads in the on state.

- Control strategy:
 - Increase load by lowering setpoint.
 - Decrease load by raising setpoint.

From Callaway: Tapping the energy storage potential in electric loads.
Load control: tracking wind variations

- Controlling 60,000 AC loads to follow wind variations.

From Callaway: Tapping the energy storage potential in electric loads.
Hysteresis-based control of PEV load

- Hysteresis-based load control can be extended to loads that require a certain amount of energy, but have some flexibility in when they receive that energy.
 - PEV charging, refrigeration, dehumidifiers, pool pumps.

![PEV charging pattern](image1)

![Power consumption of 20,000 PEVs](image2)
PEV charging control: tracking

Tracking wind variability

- Actual state of charge
- Nominal state of charge
- Deadband
- Power consumption

Aggregate demand (kW)

Actual demand
Desired demand

Shift in deadband

Time (hr)

State of charge (kWh)

Time (min)
State-space modeling of hysteretic control

- State-space modelling results in a nonlinear hybrid dynamical system.
 - Nonlinear because states and inputs multiple together.
 - Hybrid due to the influence of rapidly changing inputs.

Period-3 orbit,
Input period = 15.6 min

Period-4 orbit,
Input period = 12.4 min
Distribution network overloads

• Plug-in electric vehicles:
 – Charging: 10-80 Ampères per PEV
 – Typical household connection 10-20A (@ 240V)
 – Scenario: *en masse* over-night charging

Uncoordinated PEV charging
=
distribution network overload!
Dynamical model of PEV charging

- SOC dynamics / charging of \(N \) vehicles
 \[\dot{s}_n(t) = \tilde{\eta}_n p_n(t) = \tilde{\eta}_n V_{AC} i_n(t) \]

- Aggregated current
 \[i(t) := i_d(t) + \sum_{n \in N} i_n(t) \]

- Transformer temperature dynamics
 \[\dot{T}(t) = \frac{1}{C} \left\{ R_c i^2(t) - \frac{T(t) - T_a(t)}{R} \right\} \]
Iterative, distributed solution

- Open-loop coordinated charging, driven by pseudo-price $\lambda^{(p)}$

PRICE MANAGER (subgradient step)

$$\lambda^{(p+1)} = \left[\lambda^{(p)} + \alpha^{(p)} \left(\Phi \Delta T[0] + \Psi \left(\sum_{n \in \mathcal{N}} i^{(p)}_n \right) + \Psi_d \hat{d} - T_{\text{max}} \mathbf{1}_K \right) \right] +$$

PEV SCHEDULER (local optimization)

$$i^{(p)}_n = \arg \min_{i_n \in \Pi_n \left(s_n[0] \right)} \hat{J}_n(i_n) + (\lambda^{(p)})^\top \Psi i_n, \quad n \in \mathcal{N}$$

Centralized solution is recovered for $p \to \infty$
Case study: temp and load profiles

Temperature within limits, despite 5% inaccuracy in background load
Wireless testbed for PEV charging algorithms

• A testbed has been developed to investigate PEV charging control algorithms.
• Each charger communicates with each other and a “transformer” using a Zigbee wireless mesh network.
Conclusions

• Modelling of load behaviour has always been challenging.
 – This is further complicated by synchronizing events driven by a high penetration of similar devices.
 – Distributed generation and controllable loads provide other nontrivial complications.

• Significant actuation can be achieved through coordinated non-disruptive control of highly distributed loads.
 – Technical issues: control structure, nonlinearity (bifurcations), latency, interoperability, data security, …
 – Social issues: incentives for consumers to participate in (non-disruptive) fast-acting, demand response schemes.
Primary references

