Deduplication in a Storage System

Russ Henry
May, 2008
Introduction

Russ Henry
LSI Corporation
Wichita, Kansas

Engenio Storage Group (ESG)

Yes, I am a Jayhawk!!
Key Take-Away

• Deduplication is a very important technology
 – Large amounts of digital data being created
 – Green play

• Data integrity is of great concern
 – Can’t lose or corrupt data
 – Chunk size to signature?

• High level of processing power is needed

• Questions persist
• Last year digital cameras and camera phones in world surpassed 1 billion
• Digital TVs should surpass 500 million by 2011

Regulatory requirements are increasing information retention

LSI Definition of Deduplication

• By any name, Deduplication, data reduction, capacity optimization, factoring, . . .

• Defined by LSI as any way to save space/reduce bytes, most commonly disk space

• Most typically used and first implemented in the backup, archive and VTL industries

• Technologies
 – Compression
 – SIS
 – Byte-Level Delta compare
 – Hash
 – Proprietary algorithms
Where to De-dupe?
File System Level

• Client
 – Typically for bandwidth reduction
 – Within a file
 – May have a negative affect on client performance
 – Only affects data on this client

• Server/Appliance
 – Well known

 – Slide set example
 – Search example
Block Level

• Storage System
 – Can be applied across entire incoming data set, but may make you an island

 – Functionality
 • Chunking the data stream
 – Chunk size
 – Fixed or variable length
 • Finding candidates/hits
 – Hash
 – Fingerprinting
 • Byte compare
 – Guarantee data integrity
 • Table lookups
 – Drive access

• Deduplicating across Storage Systems may be key to future products
• Performance balance and Scaling high on the “important” list
File & Block

• File level has value

• Block level has value

• We believe Block Deduplication has value even when File Deduplication is used
In-line vs Post-Processing

• In-line is familiar for storage industry
• In-line should maintain balance
 – Front side, 10 to 40 Gbs
 – Memory, <10 to 30 GBs
 – Numbers of drives
• Uses a lot of processing power, performance is an issue

• Post processing uses more disk space
• However it’s really like a staging area, it could get reused

• Bottom line is it really depends on your goal

• Hybrid may be best!!
Comparison

<table>
<thead>
<tr>
<th></th>
<th>In-line</th>
<th>Post Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assist conducive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication conducive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hash for Deduplication

• What hash to use?
 – MD5
 – SHA-1
 – SHA-2

• Do we care if they are secure? Do we care if someone can create a collision on purpose?

• Do we care if small changes to the data produce similar signatures?

• If not maybe smallest and fastest is best.

• Collisions must be handled!
Data Integrity

• Customers will not accept data loss

• No matter what the % of chance, if the window is not closed it is not closed

• The byte compare is very costly for performance

• We’ve heard arguments
 – Not a practical concern
 – Other parts of the system will fail first
 – 1 in 10^{38} chance of getting a collision

• If there is a chance for error do you want your bank account data to be de-duped??

• Possible good research area.
Resources Needed

• We know most solutions are using multiple dual and quad core processors with large amounts of memory, 4-16 GB

• How much power is needed?
 – Typically using multiple dual cores for <30 drives
 – Multiple quad cores will support more drives

• Multiprocessor Affect
 – Can this resolve the processing power issue?

• Must maintain balance between performance and capacity

• Use of SSD’s for metadata may help
More areas

• Primary Storage
 – From SNW 2008, secondary storage costs 5-10 times more than primary
 – Value proposition for use in primary storage may be changing
 – Most if not all Deduplication use today is in secondary storage
 – Performance issues abound
 – How do we maintain performance balance?

• Hardware Assist
 – Chunking the data stream
 – Hash
 – Table lookup
Green Aspects

• Direct relation to disk use

• Processing power reduction or increase?

• Typical savings in the range from 10:1 to 25:1

• Using easy calculations if each drive uses 15 watts a 20:1 ratio saves you 285 watts, plus cooling
 – Assuming of course you have them powered down or don’t buy

• Is this Greenwashing?
Addressable Market Segments

• Source based Deduplication used at the lower end of the market
 – Remote office environments

• The middle of the market has NAS based implementations
 – Easy to use and Ethernet based

• VTL approaches in the enterprise
 – Typically utilize FC
 – But tape still in use, Salt Mine issues

• De-dupe mostly being used for small to medium data sets. Due to speed and power issues.
Concluding

• Digital content is exploding
• YouTube 250 million unique visitors on a monthly basis
• 5 million surveillance cameras in use across Britain
 – Deduplication is a very important technology for storage

• Customers will not accept data loss
 – Data integrity is of great concern

• These functions are compute and disk intensive
 – High level of processing power is needed
Thank You